Visible to the public Biblio

Found 182 results

Filters: Keyword is data protection  [Clear All Filters]
Küpper, Axel.  2021.  Decentralized Identifiers and Self-Sovereign Identity - A New Identity Management for 6G Integration? : MobileCloud 2021 Invited Talk 2021 IEEE International Conference on Joint Cloud Computing (JCC). :71–71.
Decentralized Identifiers (DIDs) and Self-Sovereign Identity (SSI) are emerging decentralized identity solutions. DIDs allow legal entities like organizations to create and fully control their identifiers while building the necessary infrastructure for SSI, enabling entities like persons, organizations, or machines to fully control and own their digital identities without the involvement of an intermediate central authority. DIDs are identifiers that are used to reference entities unambiguously and, together with DID Documents stored in a verifiable data registry, establish a new, decentralized public-key infrastructure. An SSI-based digital identity may be composed of many different claims certified by an issuer. Examples are the identity holder’s name, age, gender, university degree, driving license, or other attributes. What makes SSI unique compared to other identity management solutions is that the users keep their digital identities in storage of their choice and thus determine their distribution and processing.With this privacy-by-design approach, the emergence of DIDs and SSI can shape the architecture of the future Internet and its applications, which will impact the future of mobile networks. While 5G networks are currently being rolled out, a discussion about the new capabilities of 6G networks, which are still in the distant future, has long since begun. In addition to even faster access, shorter delays, and new applications, features such as human-centricity, data protection, and privacy are being addressed in particular in the discussions. These latter points make DIDs, SSI, and related concepts and architectures promising candidates for 6G adoption.The talk gives a brief introduction to DIDs and SSI and then discusses the benefits and drawbacks the integration of these technologies into 6G may have. Furthermore, the talk identifies different use cases and identifies the system components and functions of cellular networks affected by a 6G integration.
Herwanto, Guntur Budi, Quirchmayr, Gerald, Tjoa, A Min.  2021.  A Named Entity Recognition Based Approach for Privacy Requirements Engineering. 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW). :406—411.
The presence of experts, such as a data protection officer (DPO) and a privacy engineer is essential in Privacy Requirements Engineering. This task is carried out in various forms including threat modeling and privacy impact assessment. The knowledge required for performing privacy threat modeling can be a serious challenge for a novice privacy engineer. We aim to bridge this gap by developing an automated approach via machine learning that is able to detect privacy-related entities in the user stories. The relevant entities include (1) the Data Subject, (2) the Processing, and (3) the Personal Data entities. We use a state-of-the-art Named Entity Recognition (NER) model along with contextual embedding techniques. We argue that an automated approach can assist agile teams in performing privacy requirements engineering techniques such as threat modeling, which requires a holistic understanding of how personally identifiable information is used in a system. In comparison to other domain-specific NER models, our approach achieves a reasonably good performance in terms of precision and recall.
Bolshakov, Alexander, Zhila, Anastasia.  2021.  Fuzzy Logic Data Protection Management. 2021 28th Conference of Open Innovations Association (FRUCT). :35—40.
This article discusses the problem of information security management in computer systems and describes the process of developing an algorithm that allows to determine measures to protect personal data. The organizational and technical measures formulated by the FSTEC are used as measures.
Chernov, Denis.  2021.  Definition of Protective Measures of Information Security of Automated Process Control Systems. 2021 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :993—997.
In this work an overview of basic approaches to choosing protective measures for automated process control systems is done. The aim of the research was to develop a method for choosing protection measures for information security at every APCs level using set theory within analysis of basic sets of protection measures. In the framework of the research relevant attacks on industrial infrastructure are considered, an algorithm of choosing APCs protective measures is constructed, and it is suggested that it is required to use protective measures for every system level in accordance with an individual assessment of data protection class at the corresponding level. The authors concluded that it is necessary to exclude from consideration “specification of an adapted basic set” of the algorithm for choosing APCs protection measures in case the adapted basic set of APCs protective measures provides blocking all security threats at the considered system level. The approach to choosing protection measures based on building Euler-Venn diagrams is suggested. The results of the research are recommended to be used when modeling information security threats and developing requirements for APCs information protection means.
El-Halabi, Mustafa, Mokbel, Hoda.  2021.  Physical-Layer Security for 5G Wireless Networks: Sharing Non-Causal CSI with the Eavesdropper. IEEE EUROCON 2021 - 19th International Conference on Smart Technologies. :343–347.
Physical-layer security is a new paradigm that offers data protection against eavesdropping in wireless 5G networks. In this context, the Gaussian channel is a typical model that captures the practical aspects of confidentially transmitting a message through the wireless medium. In this paper, we consider the peculiar case of transmitting a message through a wireless, state-dependent channel which is prone to eavesdropping, where the state knowledge is non-causally known and shared between the sender and the eavesdropper. We show that a novel structured coding scheme, which combines random coding arguments and the dirty-paper coding technique, achieves the fundamental limit of secure and reliable communication for the considered model.
Dutta, Aritra, Bose, Rajesh, Chakraborty, Swarnendu Kumar, Roy, Sandip, Mondal, Haraprasad.  2021.  Data Security Mechanism for Green Cloud. 2021 Innovations in Energy Management and Renewable Resources(52042). :1–4.
Data and veracious information are an important feature of any organization; it takes special care as a like asset of the organization. Cloud computing system main target to provide service to the user like high-speed access user data for storage and retrieval. Now, big concern is data protection in cloud computing technology as because data leaking and various malicious attacks happened in cloud computing technology. This study provides user data protection in the cloud storage device. The article presents the architecture of a data security hybrid infrastructure that protects and stores the user data from the unauthenticated user. In this hybrid model, we use a different type of security model.
Kumar, Anuj.  2021.  Data Security and Privacy using DNA Cryptography and AES Method in Cloud Computing. 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :1529—1535.
Cloud computing has changed how humans use their technological expertise. It indicates a transition in the use of computers as utilitarian instruments with radical applications in general. However, as technology advances, the number of hazards increases and crucial data protection has become increasingly challenging due to extensive internet use. Every day, new encryption methods are developed, and much research is carried out in the search for a reliable cryptographic algorithm. The AES algorithm employs an overly simplistic algebraic structure. Each block employs the same encryption scheme, and AES is subject to brute force and MITM attacks. AES have not provide d sufficient levels of security; the re is still a need to put further le vels of protection over them. In this regard, DNA cryptography allows you to encrypt a large quantity of data using only a few amount of DNA. This paper combines two methodologies, a DNA-based algorithm and the AES Algorithm, to provide a consi derably more secure data security platform. The DNA cryptography technology and the AES approach are utilized for data encryption and decryption. To improve cloud security, DNA cryptography and AES provide a technologically ideal option.
Frolova, Daria, Kogos, Konstsntin, Epishkina, Anna.  2021.  Traffic Normalization for Covert Channel Protecting. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :2330–2333.
Nowadays a huge amount of sensitive information is sending via packet data networks and its security doesn't provided properly. Very often information leakage causes huge damage to organizations. One of the mechanisms to cause information leakage when it transmits through a communication channel is to construct a covert channel. Everywhere used packet networks provide huge opportunities for covert channels creating, which often leads to leakage of critical data. Moreover, covert channels based on packet length modifying can function in a system even if traffic encryption is applied and there are some data transfer schemes that are difficult to detect. The purpose of the paper is to construct and examine a normalization protection tool against covert channels. We analyze full and partial normalization, propose estimation of the residual covert channel capacity in a case of counteracting and determine the best parameters of counteraction tool.
Bonatti, Piero A., Sauro, Luigi, Langens, Jonathan.  2021.  Representing Consent and Policies for Compliance. 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :283–291.
Being compliant with the GDPR (and data protection regulations in general) is a difficult task, that calls for manifold, computer-based automated support. In this context, several use cases related to the management and the enforcement of privacy policies and consent call for a machine-understandable policy language, equipped with reliable algorithms for compliance checking and explanations. In this paper, we outline a set of requirements for such languages and algorithms, and address such requirements with a framework based on a profile of OWL2 and a set of policy serializations based on popular formats such as ODRL and JSON. Such ``external'' policy syntax is translated into the ``internal'' OWL2 syntax, thereby enabling semantic compliance checking and explanations using specialized OWL2 reasoners. We provide a precise definition of both the OWL2 profile and the external policy language based on JSON.
Chin, Won Yoon, Chua, Hui Na.  2021.  Using the Theory of Interpersonal Behavior to Predict Information Security Policy Compliance. 2021 Eighth International Conference on eDemocracy eGovernment (ICEDEG). :80–87.

Employees' compliance with information security policies (ISP) which may minimize the information security threats has always been a major concern for organizations. Numerous research and theoretical models had been investigated in the related field of study to identify factors that influence ISP compliance behavior. The study presented in this paper is the first to apply the Theory of Interpersonal Behavior (TIB) for predicting ISP compliance, despite a few studies suggested its strong explanatory power. Taking on the prior results of the literature review, we adopt the TIB and aim to further the theoretical advancement in this field of study. Besides, previous studies had only focused on individuals as well as organizations in which the role of government, from the aspect of its effectiveness in enforcing data protection regulation, so far has not been tested on its influence on individuals' intention to comply with ISP. Hence, we propose an exploratory study to integrate government effectiveness with TIB to explain ISP compliance in a Malaysian context. Our results show a significant influence of government effectiveness in ISP compliance, and the TIB is a promising model as well as posing strong explanatory power in predicting ISP compliance.

Pokharana, Anchal, Sharma, Samiksha.  2021.  Encryption, File Splitting and File compression Techniques for Data Security in virtualized environment. 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA). :480—485.
Nowadays cloud computing has become the crucial part of IT and most important thing is information security in cloud environment. Range of users can access the facilities and use cloud according to their feasibility. Cloud computing is utilized as safe storage of information but still data security is the biggest concern, for example, secrecy, data accessibility, data integrity is considerable factor for cloud storage. Cloud service providers provide the facility to clients that they can store the data on cloud remotely and access whenever required. Due to this facility, it gets necessary to shield or cover information from unapproved access, hackers or any sort of alteration and malevolent conduct. It is inexpensive approach to store the valuable information and doesn't require any hardware and software to hold the data. it gives excellent work experience but main measure is just security. In this work security strategies have been proposed for cloud data protection, capable to overpower the shortcomings of conventional data protection algorithms and enhancing security using steganography algorithm, encryption decryption techniques, compression and file splitting technique. These techniques are utilized for effective results in data protection, Client can easily access our developed desktop application and share the information in an effective and secured way.
Shen, Sujin, Sun, Chuang.  2021.  Research on Framework of Smart Grid Data Secure Storage from Blockchain Perspective. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :270—273.
With the development of technology, the structure of power grid becomes more and more complex, and the amount of data collected is also increasing. In the existing smart power grid, the data collected by sensors need to be uploaded and stored to the trusted central node, but the centralized storage method is easy to cause the malicious attack of the central node, resulting in single point failure, data tampering and other security problems. In order to solve these information security problems, this paper proposes a new data security storage framework based on private blockchain. By using the improved raft algorithm, partial decentralized data storage is used instead of traditional centralized storage. It also introduces in detail the working mechanism of the smart grid data security storage framework, including the process of uploading collected data, data verification, and data block consensus. The security analysis shows the effectiveness of the proposed data storage framework.
Barannik, Vladimir, Shulgin, Sergii, Holovchenko, Serhii, Hurzhiy, Pavlo, Sidchenko, Sergy, Gennady, Pris.  2021.  Method of Hierarchical Protection of Biometric Information. 2021 IEEE 4th International Conference on Advanced Information and Communication Technologies (AICT). :277—281.
This paper contains analysis of methods of increasing the information protection from unauthorized access using a multifactor authentication algorithm; figuring out the best, most efficient and secure method of scanning biometric data; development of a method to store and compare a candidate’s and existisng system user’s information in steganographic space. The urgency of the work is confirmed by the need to increase information security of special infocommunication systems with the help of biometric information and protection of this information from intruders by means of steganographic transformation.
Pedroza, Gabriel, Muntés-Mulero, Victor, Mart\'ın, Yod Samuel, Mockly, Guillaume.  2021.  A Model-Based Approach to Realize Privacy and Data Protection by Design. 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :332–339.
Telecommunications and data are pervasive in almost each aspect of our every-day life and new concerns progressively arise as a result of stakes related to privacy and data protection [1]. Indeed, systems development becomes data-centric leading to an ecosystem where a variety of players intervene (citizens, industry, regulators) and where the policies regarding data usage and utilization are far from consensual. The new General Data Protection Regulation (GDPR) enacted by the European Commission in 2018 has introduced new provisions including principles for lawfulness, fairness, transparency, etc. thus endorsing data subjects with new rights in regards to their personal data. In this context, a growing need for approaches that conceptualize and help engineers to integrate GDPR and privacy provisions at design time becomes paramount. This paper presents a comprehensive approach to support different phases of the design process with special attention to the integration of privacy and data protection principles. Among others, it is a generic model-based approach that can be specialized according to the specifics of different application domains.
Chiu, Chih-Chieh, Tsai, Pang-Wei, Yang, Chu-Sing.  2021.  PIDS: An Essential Personal Information Detection System for Small Business Enterprise. 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). :01–06.
Since the personal data protection law is on the way of many countries, how to use data mining method to secure sensitive information has become a challenge for enterprises. To make sure every employee follows company's data protection strategy, it may take lots of time and cost to seek and scan thousands of folders and files in user equipment, ensuring that the file contents meet IT security policies. Hence, this paper proposed a lightweight, pattern-based detection system, PIDS, which is expecting to enable an affordable data leakage prevention with essential cost and high efficiency in small business enterprise. For verification and evaluation, PIDS has been deployed on more than 100,000 PCs of collaboration enterprises, and the feedback shows that the system is able to approach its original design functionality for finding violated or sensitive contents efficiently.
Wink, Tobias, Nochta, Zoltan.  2021.  An Approach for Peer-to-Peer Federated Learning. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :150—157.
We present a novel approach for the collaborative training of neural network models in decentralized federated environments. In the iterative process a group of autonomous peers run multiple training rounds to train a common model. Thereby, participants perform all model training steps locally, such as stochastic gradient descent optimization, using their private, e.g. mission-critical, training datasets. Based on locally updated models, participants can jointly determine a common model by averaging all associated model weights without sharing the actual weight values. For this purpose we introduce a simple n-out-of-n secret sharing schema and an algorithm to calculate average values in a peer-to-peer manner. Our experimental results with deep neural networks on well-known sample datasets prove the generic applicability of the approach, with regard to model quality parameters. Since there is no need to involve a central service provider in model training, the approach can help establish trustworthy collaboration platforms for businesses with high security and data protection requirements.
García, Kimberly, Zihlmann, Zaira, Mayer, Simon, Tamò-Larrieux, Aurelia, Hooss, Johannes.  2021.  Towards Privacy-Friendly Smart Products. 2021 18th International Conference on Privacy, Security and Trust (PST). :1—7.
Smart products, such as toy robots, must comply with multiple legal requirements of the countries they are sold and used in. Currently, compliance with the legal environment requires manually customizing products for different markets. In this paper, we explore a design approach for smart products that enforces compliance with aspects of the European Union’s data protection principles within a product’s firmware through a toy robot case study. To this end, we present an exchange between computer scientists and legal scholars that identified the relevant data flows, their processing needs, and the implementation decisions that could allow a device to operate while complying with the EU data protection law. By designing a data-minimizing toy robot, we show that the variety, amount, and quality of data that is exposed, processed, and stored outside a user’s premises can be considerably reduced while preserving the device’s functionality. In comparison with a robot designed using a traditional approach, in which 90% of the collected types of information are stored by the data controller or a remote service, our proposed design leads to the mandatory exposure of only 7 out of 15 collected types of information, all of which are legally required by the data controller to demonstrate consent. Moreover, our design is aligned with the Data Privacy Vocabulary, which enables the toy robot to cross geographic borders and seamlessly adjust its data processing activities to the local regulations.
Jahan, Nusrat, Mahmood, Md. Ashiq.  2021.  Securely Distributing Files in Cloud Environment by Dispensing Asymmetric Key Management System applying Hashing. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1105–1110.
An emerging widely used technology cloud computing which a paddle of computing resources is available for the users. Through the internet-based the resources could be supplied to cloud consumers at their request but it is not directly active management by the user. This application-based software infrastructure can store data on remote serves, which can be accessed through the internet and a user who wants to access data stored in the cloud have to use an internet browser or cloud computing software. Data protection has become one of the significant issues in cloud computing when users must rely on their cloud providers for security purposes. In this article, a system that can embarrass the disclosure of the key for distributing a file that will assure security dispensing asymmetric key and sharing it among the cloud environment and user perform the integrity check themselves rather than using third-party services by using compression or hash function where the hash is created using a hash function and it was not mentioned in the previous paper. After the user receives the data every hash is compared with other hash values to check the differences of the data. The time-consumption of encryption and decryption of the data is calculated and compared with the previous paper and the experiment shows that our calculation took around 80% less time.
Shere, A. R. K., Nurse, J. R. C., Flechais, I..  2020.  "Security should be there by default": Investigating how journalists perceive and respond to risks from the Internet of Things. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :240—249.
Journalists have long been the targets of both physical and cyber-attacks from well-resourced adversaries. Internet of Things (IoT) devices are arguably a new avenue of threat towards journalists through both targeted and generalised cyber-physical exploitation. This study comprises three parts: First, we interviewed 11 journalists and surveyed 5 further journalists, to determine the extent to which journalists perceive threats through the IoT, particularly via consumer IoT devices. Second, we surveyed 34 cyber security experts to establish if and how lay-people can combat IoT threats. Third, we compared these findings to assess journalists' knowledge of threats, and whether their protective mechanisms would be effective against experts' depictions and predictions of IoT threats. Our results indicate that journalists generally are unaware of IoT-related risks and are not adequately protecting themselves; this considers cases where they possess IoT devices, or where they enter IoT-enabled environments (e.g., at work or home). Expert recommendations spanned both immediate and longterm mitigation methods, including practical actions that are technical and socio-political in nature. However, all proposed individual mitigation methods are likely to be short-term solutions, with 26 of 34 (76.5%) of cyber security experts responding that within the next five years it will not be possible for the public to opt-out of interaction with the IoT.
[Anonymous].  2020.  B-DCT based Watermarking Algorithm for Patient Data Protection in IoMT. 2020 International Conference on Information Security and Cryptology (ISCTURKEY). :1—4.
Internet of Medical Things (IoMT) is the connection between medical devices and information systems to share, collect, process, store, and integrate patient and health data using network technologies. X-Rays, MR, MRI, and CT scans are the most frequently used patient medical image data. These images usually include patient information in one of the corners of the image. In this research work, to protect patient information, a new robust and secure watermarking algorithm developed for a selected region of interest (ROI) of medical images. First ROI selected from the medical image, then selected part divided equal blocks and applied Discrete Cosine Transformation (DCT) algorithm to embed a watermark into the selected coefficients. Several geometric and removal attacks are applied to the watermarked multimedia element such as lossy image compression, the addition of Gaussian noise, denoising, filtering, median filtering, sharpening, contrast enhancement, JPEG compression, and rotation. Experimental results show very promising results in PSNR and similarity ratio (SR) values after blocked DCT (B-DCT) based embedding algorithm against the Discrete Wavelet Transformation (DWT), Least Significant Bits (LSB) and DCT algorithms.
Khan, S., Jadhav, A., Bharadwaj, I., Rooj, M., Shiravale, S..  2020.  Blockchain and the Identity based Encryption Scheme for High Data Security. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :1005—1008.

Using the blockchain technology to store the privatedocuments of individuals will help make data more reliable and secure, preventing the loss of data and unauthorized access. The Consensus algorithm along with the hash algorithms maintains the integrity of data simultaneously providing authentication and authorization. The paper incorporates the block chain and the Identity Based Encryption management concept. The Identity based Management system allows the encryption of the user's data as well as their identity and thus preventing them from Identity theft and fraud. These two technologies combined will result in a more secure way of storing the data and protecting the privacy of the user.

Erulanova, A., Soltan, G., Baidildina, A., Amangeldina, M., Aset, A..  2020.  Expert System for Assessing the Efficiency of Information Security. 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE). :355—359.

The paper considers an expert system that provides an assessment of the state of information security in authorities and organizations of various forms of ownership. The proposed expert system allows to evaluate the state of compliance with the requirements of both organizational and technical measures to ensure the protection of information, as well as the level of compliance with the requirements of the information protection system in general. The expert assessment method is used as a basic method for assessing the state of information protection. The developed expert system provides a significant reduction in routine operations during the audit of information security. The results of the assessment are presented quite clearly and provide an opportunity for the leadership of the authorities and organizations to make informed decisions to further improve the information protection system.

Maklachkova, V. V., Dokuchaev, V. A., Statev, V. Y..  2020.  Risks Identification in the Exploitation of a Geographically Distributed Cloud Infrastructure for Storing Personal Data. 2020 International Conference on Engineering Management of Communication and Technology (EMCTECH). :1—6.

Throughout the life cycle of any technical project, the enterprise needs to assess the risks associated with its development, commissioning, operation and decommissioning. This article defines the task of researching risks in relation to the operation of a data storage subsystem in the cloud infrastructure of a geographically distributed company and the tools that are required for this. Analysts point out that, compared to 2018, in 2019 there were 3.5 times more cases of confidential information leaks from storages on unprotected (freely accessible due to incorrect configuration) servers in cloud services. The total number of compromised personal data and payment information records increased 5.4 times compared to 2018 and amounted to more than 8.35 billion records. Moreover, the share of leaks of payment information has decreased, but the percentage of leaks of personal data has grown and accounts for almost 90% of all leaks from cloud storage. On average, each unsecured service identified resulted in 33.7 million personal data records being leaked. Leaks are mainly related to misconfiguration of services and stored resources, as well as human factors. These impacts can be minimized by improving the skills of cloud storage administrators and regularly auditing storage. Despite its seeming insecurity, the cloud is a reliable way of storing data. At the same time, leaks are still occurring. According to Kaspersky Lab, every tenth (11%) data leak from the cloud became possible due to the actions of the provider, while a third of all cyber incidents in the cloud (31% in Russia and 33% in the world) were due to gullibility company employees caught up in social engineering techniques. Minimizing the risks associated with the storage of personal data is one of the main tasks when operating a company's cloud infrastructure.

Juyal, S., Sharma, S., Harbola, A., Shukla, A. S..  2020.  Privacy and Security of IoT based Skin Monitoring System using Blockchain Approach. 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). :1—5.

Remote patient monitoring is a system that focuses on patients care and attention with the advent of the Internet of Things (IoT). The technology makes it easier to track distance, but also to diagnose and provide critical attention and service on demand so that billions of people are safer and more safe. Skincare monitoring is one of the growing fields of medical care which requires IoT monitoring, because there is an increasing number of patients, but cures are restricted to the number of available dermatologists. The IoT-based skin monitoring system produces and store volumes of private medical data at the cloud from which the skin experts can access it at remote locations. Such large-scale data are highly vulnerable and otherwise have catastrophic results for privacy and security mechanisms. Medical organizations currently do not concentrate much on maintaining safety and privacy, which are of major importance in the field. This paper provides an IoT based skin surveillance system based on a blockchain data protection and safety mechanism. A secure data transmission mechanism for IoT devices used in a distributed architecture is proposed. Privacy is assured through a unique key to identify each user when he registers. The principle of blockchain also addresses security issues through the generation of hash functions on every transaction variable. We use blockchain consortiums that meet our criteria in a decentralized environment for controlled access. The solutions proposed allow IoT based skin surveillance systems to privately and securely store and share medical data over the network without disturbance.

Gupta, S., Buduru, A. B., Kumaraguru, P..  2020.  imdpGAN: Generating Private and Specific Data with Generative Adversarial Networks. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :64–72.
Generative Adversarial Network (GAN) and its variants have shown promising results in generating synthetic data. However, the issues with GANs are: (i) the learning happens around the training samples and the model often ends up remembering them, consequently, compromising the privacy of individual samples - this becomes a major concern when GANs are applied to training data including personally identifiable information, (ii) the randomness in generated data - there is no control over the specificity of generated samples. To address these issues, we propose imdpGAN-an information maximizing differentially private Generative Adversarial Network. It is an end-to-end framework that simultaneously achieves privacy protection and learns latent representations. With experiments on MNIST dataset, we show that imdpGAN preserves the privacy of the individual data point, and learns latent codes to control the specificity of the generated samples. We perform binary classification on digit pairs to show the utility versus privacy trade-off. The classification accuracy decreases as we increase privacy levels in the framework. We also experimentally show that the training process of imdpGAN is stable but experience a 10-fold time increase as compared with other GAN frameworks. Finally, we extend imdpGAN framework to CelebA dataset to show how the privacy and learned representations can be used to control the specificity of the output.