Visible to the public Biblio

Filters: Keyword is data warehouses  [Clear All Filters]
Alzahrani, A., Feki, J..  2020.  Toward a Natural Language-Based Approach for the Specification of Decisional-Users Requirements. 2020 3rd International Conference on Computer Applications Information Security (ICCAIS). :1–6.
The number of organizations adopting the Data Warehouse (DW) technology along with data analytics in order to improve the effectiveness of their decision-making processes is permanently increasing. Despite the efforts invested, the DW design remains a great challenge research domain. More accurately, the design quality of the DW depends on several aspects; among them, the requirement-gathering phase is a critical and complex task. In this context, we propose a Natural language (NL) NL-template based design approach, which is twofold; firstly, it facilitates the involvement of decision-makers in the early step of the DW design; indeed, using NL is a good and natural means to encourage the decision-makers to express their requirements as query-like English sentences. Secondly, our approach aims to generate a DW multidimensional schema from a set of gathered requirements (as OLAP: On-Line-Analytical-Processing queries, written according to the NL suggested templates). This approach articulates around: (i) two NL-templates for specifying multidimensional components, and (ii) a set of five heuristic rules for extracting the multidimensional concepts from requirements. Really, we are developing a software prototype that accepts the decision-makers' requirements then automatically identifies the multidimensional components of the DW model.
Zheng, N., Alawini, A., Ives, Z. G..  2019.  Fine-Grained Provenance for Matching ETL. 2019 IEEE 35th International Conference on Data Engineering (ICDE). :184–195.
Data provenance tools capture the steps used to produce analyses. However, scientists must choose among workflow provenance systems, which allow arbitrary code but only track provenance at the granularity of files; provenance APIs, which provide tuple-level provenance, but incur overhead in all computations; and database provenance tools, which track tuple-level provenance through relational operators and support optimization, but support a limited subset of data science tasks. None of these solutions are well suited for tracing errors introduced during common ETL, record alignment, and matching tasks - for data types such as strings, images, etc. Scientists need new capabilities to identify the sources of errors, find why different code versions produce different results, and identify which parameter values affect output. We propose PROVision, a provenance-driven troubleshooting tool that supports ETL and matching computations and traces extraction of content within data objects. PROVision extends database-style provenance techniques to capture equivalences, support optimizations, and enable selective evaluation. We formalize our extensions, implement them in the PROVision system, and validate their effectiveness and scalability for common ETL and matching tasks.