Visible to the public Biblio

Filters: Keyword is telecommunication computing  [Clear All Filters]
2021-03-15
Toma, A., Krayani, A., Marcenaro, L., Gao, Y., Regazzoni, C. S..  2020.  Deep Learning for Spectrum Anomaly Detection in Cognitive mmWave Radios. 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications. :1–7.
Millimeter Wave (mmWave) band can be a solution to serve the vast number of Internet of Things (IoT) and Vehicle to Everything (V2X) devices. In this context, Cognitive Radio (CR) is capable of managing the mmWave spectrum sharing efficiently. However, Cognitive mmWave Radios are vulnerable to malicious users due to the complex dynamic radio environment and the shared access medium. This indicates the necessity to implement techniques able to detect precisely any anomalous behaviour in the spectrum to build secure and efficient radios. In this work, we propose a comparison framework between deep generative models: Conditional Generative Adversarial Network (C-GAN), Auxiliary Classifier Generative Adversarial Network (AC-GAN), and Variational Auto Encoder (VAE) used to detect anomalies inside the dynamic radio spectrum. For the sake of the evaluation, a real mmWave dataset is used, and results show that all of the models achieve high probability in detecting spectrum anomalies. Especially, AC-GAN that outperforms C-GAN and VAE in terms of accuracy and probability of detection.
Besser, K., Lonnstrom, A., Jorswieck, E. A..  2020.  Neural Network Wiretap Code Design for Multi-Mode Fiber Optical Channels. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8738–8742.
The design of reliable and secure codes with finite block length is an important requirement for industrial machine type communications. In this work, we develop an autoencoder for the multi-mode fiber wiretap channel taking into account the error performance at the legitimate receiver and the information leakage at potential eavesdroppers. The estimate of the mutual information leakage includes AWGN and fading channels. The code design is tailored to the specific channel setup where the eavesdropper experiences a mode dependent loss. Numerical simulations illustrate the performance and show a Pareto improvement of the proposed scheme compared to the state-of-the-art polar wiretap codes.
2021-03-01
Sun, S. C., Guo, W..  2020.  Approximate Symbolic Explanation for Neural Network Enabled Water-Filling Power Allocation. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). :1–4.
Water-filling (WF) is a well-established iterative solution to optimal power allocation in parallel fading channels. Slow iterative search can be impractical for allocating power to a large number of OFDM sub-channels. Neural networks (NN) can transform the iterative WF threshold search process into a direct high-dimensional mapping from channel gain to transmit power solution. Our results show that the NN can perform very well (error 0.05%) and can be shown to be indeed performing approximate WF power allocation. However, there is no guarantee on the NN is mapping between channel states and power output. Here, we attempt to explain the NN power allocation solution via the Meijer G-function as a general explainable symbolic mapping. Our early results indicate that whilst the Meijer G-function has universal representation potential, its large search space means finding the best symbolic representation is challenging.
2021-02-23
Ashraf, S., Ahmed, T..  2020.  Sagacious Intrusion Detection Strategy in Sensor Network. 2020 International Conference on UK-China Emerging Technologies (UCET). :1—4.
Almost all smart appliances are operated through wireless sensor networks. With the passage of time, due to various applications, the WSN becomes prone to various external attacks. Preventing such attacks, Intrusion Detection strategy (IDS) is very crucial to secure the network from the malicious attackers. The proposed IDS methodology discovers the pattern in large data corpus which works for different types of algorithms to detect four types of Denial of service (DoS) attacks, namely, Grayhole, Blackhole, Flooding, and TDMA. The state-of-the-art detection algorithms, such as KNN, Naïve Bayes, Logistic Regression, Support Vector Machine (SVM), and ANN are applied to the data corpus and analyze the performance in detecting the attacks. The analysis shows that these algorithms are applicable for the detection and prediction of unavoidable attacks and can be recommended for network experts and analysts.
Gaber, C., Vilchez, J. S., Gür, G., Chopin, M., Perrot, N., Grimault, J.-L., Wary, J.-P..  2020.  Liability-Aware Security Management for 5G. 2020 IEEE 3rd 5G World Forum (5GWF). :133—138.

Multi-party and multi-layer nature of 5G networks implies the inherent distribution of management and orchestration decisions across multiple entities. Therefore, responsibility for management decisions concerning end-to-end services become blurred if no efficient liability and accountability mechanism is used. In this paper, we present the design, building blocks and challenges of a Liability-Aware Security Management (LASM) system for 5G. We describe how existing security concepts such as manifests and Security-by-Contract, root cause analysis, remote attestation, proof of transit, and trust and reputation models can be composed and enhanced to take risk and responsibilities into account for security and liability management.

2021-02-16
Shi, Y., Sagduyu, Y. E., Erpek, T..  2020.  Reinforcement Learning for Dynamic Resource Optimization in 5G Radio Access Network Slicing. 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1—6.
The paper presents a reinforcement learning solution to dynamic resource allocation for 5G radio access network slicing. Available communication resources (frequency-time blocks and transmit powers) and computational resources (processor usage) are allocated to stochastic arrivals of network slice requests. Each request arrives with priority (weight), throughput, computational resource, and latency (deadline) requirements, and if feasible, it is served with available communication and computational resources allocated over its requested duration. As each decision of resource allocation makes some of the resources temporarily unavailable for future, the myopic solution that can optimize only the current resource allocation becomes ineffective for network slicing. Therefore, a Q-learning solution is presented to maximize the network utility in terms of the total weight of granted network slicing requests over a time horizon subject to communication and computational constraints. Results show that reinforcement learning provides major improvements in the 5G network utility relative to myopic, random, and first come first served solutions. While reinforcement learning sustains scalable performance as the number of served users increases, it can also be effectively used to assign resources to network slices when 5G needs to share the spectrum with incumbent users that may dynamically occupy some of the frequency-time blocks.
2021-01-20
Lei, M., Jin, M., Huang, T., Guo, Z., Wang, Q., Wu, Z., Chen, Z., Chen, X., Zhang, J..  2020.  Ultra-wideband Fingerprinting Positioning Based on Convolutional Neural Network. 2020 International Conference on Computer, Information and Telecommunication Systems (CITS). :1—5.

The Global Positioning System (GPS) can determine the position of any person or object on earth based on satellite signals. But when inside the building, the GPS cannot receive signals, the indoor positioning system will determine the precise position. How to achieve more precise positioning is the difficulty of an indoor positioning system now. In this paper, we proposed an ultra-wideband fingerprinting positioning method based on a convolutional neural network (CNN), and we collect the dataset in a room to test the model, then compare our method with the existing method. In the experiment, our method can reach an accuracy of 98.36%. Compared with other fingerprint positioning methods our method has a great improvement in robustness. That results show that our method has good practicality while achieves higher accuracy.

Aman, W., Haider, Z., Shah, S. W. H., Rahman, M. M. Ur, Dobre, O. A..  2020.  On the Effective Capacity of an Underwater Acoustic Channel under Impersonation Attack. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—7.

This paper investigates the impact of authentication on effective capacity (EC) of an underwater acoustic (UWA) channel. Specifically, the UWA channel is under impersonation attack by a malicious node (Eve) present in the close vicinity of the legitimate node pair (Alice and Bob); Eve tries to inject its malicious data into the system by making Bob believe that she is indeed Alice. To thwart the impersonation attack by Eve, Bob utilizes the distance of the transmit node as the feature/fingerprint to carry out feature-based authentication at the physical layer. Due to authentication at Bob, due to lack of channel knowledge at the transmit node (Alice or Eve), and due to the threshold-based decoding error model, the relevant dynamics of the considered system could be modelled by a Markov chain (MC). Thus, we compute the state-transition probabilities of the MC, and the moment generating function for the service process corresponding to each state. This enables us to derive a closed-form expression of the EC in terms of authentication parameters. Furthermore, we compute the optimal transmission rate (at Alice) through gradient-descent (GD) technique and artificial neural network (ANN) method. Simulation results show that the EC decreases under severe authentication constraints (i.e., more false alarms and more transmissions by Eve). Simulation results also reveal that the (optimal transmission rate) performance of the ANN technique is quite close to that of the GTJ method.

2020-12-21
Sanila, A., Mahapatra, B., Turuk, A. K..  2020.  Performance Evaluation of RPL protocol in a 6LoWPAN based Smart Home Environment. 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA). :1–6.
The advancement in technologies like IoT, device-to-device communication lead to concepts like smart home and smart cities, etc. In smart home architecture, different devices such as home appliances, personal computers, surveillance cameras, etc. are connected to the Internet and enable the user to monitor and control irrespective of time and location. IPv6-enabled 6LoWPAN is a low-power, low-range communication protocol designed and developed for the short-range IoT applications. 6LoWPAN is based on IEEE 802.15.4 protocol and IPv6 network protocol for low range wireless applications. Although 6LoWPAN supports different routing protocols, RPL is the widely used routing protocol for low power and lossy networks. In this work, we have taken an IoT enabled smart home environment, in which 6LoWPAN is used as a communication and RPL as a routing protocol. The performance of this proposed network model is analyzed based on the different performance metrics such as latency, PDR, and throughput. The proposed model is simulated using Cooja simulator running over the Contiki OS. Along with the Cooja simulator, the network analyzer tool Wireshark is used to analyze the network behaviors.
2020-12-14
Lim, K., Islam, T., Kim, H., Joung, J..  2020.  A Sybil Attack Detection Scheme based on ADAS Sensors for Vehicular Networks. 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC). :1–5.
Vehicular Ad Hoc Network (VANET) is a promising technology for autonomous driving as it provides many benefits and user conveniences to improve road safety and driving comfort. Sybil attack is one of the most serious threats in vehicular communications because attackers can generate multiple forged identities to disseminate false messages to disrupt safety-related services or misuse the systems. To address this issue, we propose a Sybil attack detection scheme using ADAS (Advanced Driving Assistant System) sensors installed on modern passenger vehicles, without the assistance of trusted third party authorities or infrastructure. Also, a deep learning based object detection technique is used to accurately identify nearby objects for Sybil attack detection and the multi-step verification process minimizes the false positive of the detection.
Quevedo, C. H. O. O., Quevedo, A. M. B. C., Campos, G. A., Gomes, R. L., Celestino, J., Serhrouchni, A..  2020.  An Intelligent Mechanism for Sybil Attacks Detection in VANETs. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Vehicular Ad Hoc Networks (VANETs) have a strategic goal to achieve service delivery in roads and smart cities, considering the integration and communication between vehicles, sensors and fixed road-side components (routers, gateways and services). VANETs have singular characteristics such as fast mobile nodes, self-organization, distributed network and frequently changing topology. Despite the recent evolution of VANETs, security, data integrity and users privacy information are major concerns, since attacks prevention is still open issue. One of the most dangerous attacks in VANETs is the Sybil, which forges false identities in the network to disrupt compromise the communication between the network nodes. Sybil attacks affect the service delivery related to road safety, traffic congestion, multimedia entertainment and others. Thus, VANETs claim for security mechanism to prevent Sybil attacks. Within this context, this paper proposes a mechanism, called SyDVELM, to detect Sybil attacks in VANETs based on artificial intelligence techniques. The SyDVELM mechanism uses Extreme Learning Machine (ELM) with occasional features of vehicular nodes, minimizing the identification time, maximizing the detection accuracy and improving the scalability. The results suggest that the suitability of SyDVELM mechanism to mitigate Sybil attacks and to maintain the service delivery in VANETs.
Arjoune, Y., Salahdine, F., Islam, M. S., Ghribi, E., Kaabouch, N..  2020.  A Novel Jamming Attacks Detection Approach Based on Machine Learning for Wireless Communication. 2020 International Conference on Information Networking (ICOIN). :459–464.
Jamming attacks target a wireless network creating an unwanted denial of service. 5G is vulnerable to these attacks despite its resilience prompted by the use of millimeter wave bands. Over the last decade, several types of jamming detection techniques have been proposed, including fuzzy logic, game theory, channel surfing, and time series. Most of these techniques are inefficient in detecting smart jammers. Thus, there is a great need for efficient and fast jamming detection techniques with high accuracy. In this paper, we compare the efficiency of several machine learning models in detecting jamming signals. We investigated the types of signal features that identify jamming signals, and generated a large dataset using these parameters. Using this dataset, the machine learning algorithms were trained, evaluated, and tested. These algorithms are random forest, support vector machine, and neural network. The performance of these algorithms was evaluated and compared using the probability of detection, probability of false alarm, probability of miss detection, and accuracy. The simulation results show that jamming detection based random forest algorithm can detect jammers with a high accuracy, high detection probability and low probability of false alarm.
2020-11-02
Anzer, Ayesha, Elhadef, Mourad.  2018.  A Multilayer Perceptron-Based Distributed Intrusion Detection System for Internet of Vehicles. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). :438—445.

Security of Internet of vehicles (IoV) is critical as it promises to provide with safer and secure driving. IoV relies on VANETs which is based on V2V (Vehicle to Vehicle) communication. The vehicles are integrated with various sensors and embedded systems allowing them to gather data related to the situation on the road. The collected data can be information associated with a car accident, the congested highway ahead, parked car, etc. This information exchanged with other neighboring vehicles on the road to promote safe driving. IoV networks are vulnerable to various security attacks. The V2V communication comprises specific vulnerabilities which can be manipulated by attackers to compromise the whole network. In this paper, we concentrate on intrusion detection in IoV and propose a multilayer perceptron (MLP) neural network to detect intruders or attackers on an IoV network. Results are in the form of prediction, classification reports, and confusion matrix. A thorough simulation study demonstrates the effectiveness of the new MLP-based intrusion detection system.

2020-10-29
Kaur, Jasleen, Singh, Tejpreet, Lakhwani, Kamlesh.  2019.  An Enhanced Approach for Attack Detection in VANETs Using Adaptive Neuro-Fuzzy System. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :191—197.
Vehicular Ad-hoc Networks (VANETs) are generally acknowledged as an extraordinary sort of Mobile Ad hoc Network (MANET). VANETs have seen enormous development in a decade ago, giving a tremendous scope of employments in both military and in addition non-military personnel exercises. The temporary network in the vehicles can likewise build the driver's capability on the road. In this paper, an effective information dispersal approach is proposed which enhances the vehicle-to-vehicle availability as well as enhances the QoS between the source and the goal. The viability of the proposed approach is shown with regards to the noteworthy gets accomplished in the parameters in particular, end to end delay, packet drop ratio, average download delay and throughput in comparison with the existing approaches.
2020-09-04
Elkanishy, Abdelrahman, Badawy, Abdel-Hameed A., Furth, Paul M., Boucheron, Laura E., Michael, Christopher P..  2019.  Machine Learning Bluetooth Profile Operation Verification via Monitoring the Transmission Pattern. 2019 53rd Asilomar Conference on Signals, Systems, and Computers. :2144—2148.
Manufacturers often buy and/or license communication ICs from third-party suppliers. These communication ICs are then integrated into a complex computational system, resulting in a wide range of potential hardware-software security issues. This work proposes a compact supervisory circuit to classify the Bluetooth profile operation of a Bluetooth System-on-Chip (SoC) at low frequencies by monitoring the radio frequency (RF) output power of the Bluetooth SoC. The idea is to inexpensively manufacture an RF envelope detector to monitor the RF output power and a profile classification algorithm on a custom low-frequency integrated circuit in a low-cost legacy technology. When the supervisory circuit observes unexpected behavior, it can shut off power to the Bluetooth SoC. In this preliminary work, we proto-type the supervisory circuit using off-the-shelf components to collect a sufficient data set to train 11 different Machine Learning models. We extract smart descriptive time-domain features from the envelope of the RF output signal. Then, we train the machine learning models to classify three different Bluetooth operation profiles: sensor, hands-free, and headset. Our results demonstrate 100% classification accuracy with low computational complexity.
Usama, Muhammad, Qayyum, Adnan, Qadir, Junaid, Al-Fuqaha, Ala.  2019.  Black-box Adversarial Machine Learning Attack on Network Traffic Classification. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :84—89.

Deep machine learning techniques have shown promising results in network traffic classification, however, the robustness of these techniques under adversarial threats is still in question. Deep machine learning models are found vulnerable to small carefully crafted adversarial perturbations posing a major question on the performance of deep machine learning techniques. In this paper, we propose a black-box adversarial attack on network traffic classification. The proposed attack successfully evades deep machine learning-based classifiers which highlights the potential security threat of using deep machine learning techniques to realize autonomous networks.

2020-08-13
Jiang, Wei, Anton, Simon Duque, Dieter Schotten, Hans.  2019.  Intelligence Slicing: A Unified Framework to Integrate Artificial Intelligence into 5G Networks. 2019 12th IFIP Wireless and Mobile Networking Conference (WMNC). :227—232.
The fifth-generation and beyond mobile networks should support extremely high and diversified requirements from a wide variety of emerging applications. It is envisioned that more advanced radio transmission, resource allocation, and networking techniques are required to be developed. Fulfilling these tasks is challenging since network infrastructure becomes increasingly complicated and heterogeneous. One promising solution is to leverage the great potential of Artificial Intelligence (AI) technology, which has been explored to provide solutions ranging from channel prediction to autonomous network management, as well as network security. As of today, however, the state of the art of integrating AI into wireless networks is mainly limited to use a dedicated AI algorithm to tackle a specific problem. A unified framework that can make full use of AI capability to solve a wide variety of network problems is still an open issue. Hence, this paper will present the concept of intelligence slicing where an AI module is instantiated and deployed on demand. Intelligence slices are applied to conduct different intelligent tasks with the flexibility of accommodating arbitrary AI algorithms. Two example slices, i.e., neural network based channel prediction and anomaly detection based industrial network security, are illustrated to demonstrate this framework.
2020-08-07
Ramezanian, Sara, Niemi, Valtteri.  2019.  Privacy Preserving Cyberbullying Prevention with AI Methods in 5G Networks. 2019 25th Conference of Open Innovations Association (FRUCT). :265—271.
Children and teenagers that have been a victim of bullying can possibly suffer its psychological effects for a lifetime. With the increase of online social media, cyberbullying incidents have been increased as well. In this paper we discuss how we can detect cyberbullying with AI techniques, using term frequency-inverse document frequency. We label messages as benign or bully. We want our method of cyberbullying detection to be privacy-preserving, such that the subscribers' benign messages should not be revealed to the operator. Moreover, the operator labels subscribers as normal, bully and victim. The operator utilizes policy control in 5G networks, to protect victims of cyberbullying from harmful traffic.
2020-08-03
Islam, Noman.  2019.  A Secure Service Discovery Scheme for Mobile ad hoc Network using Artificial Deep Neural Network. 2019 International Conference on Frontiers of Information Technology (FIT). :133–1335.

In this paper, an agent-based cross-layer secure service discovery scheme has been presented. Service discovery in MANET is a critical task and it presents numerous security challenges. These threats can compromise the availability, privacy and integrity of service discovery process and infrastructure. This paper highlights various security challenges prevalent to service discovery in MANET. Then, in order to address these security challenges, the paper proposes a cross-layer, agent based secure service discovery scheme for MANET based on deep neural network. The software agents will monitor the intrusive activities in the network based on an Intrusion Detection System (IDS). The service discovery operation is performed based on periodic dissemination of service, routing and security information. The QoS provisioning is achieved by encapsulating QoS information in the periodic advertisements done by service providers. The proposed approach has been implemented in JIST/ SWANS simulator. The results show that proposed approach provides improved security, scalability, latency, packet delivery ratio and service discovery success ratio, for various simulation scenarios.

2020-07-16
Ayub, Md. Ahsan, Smith, Steven, Siraj, Ambareen.  2019.  A Protocol Independent Approach in Network Covert Channel Detection. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :165—170.

Network covert channels are used in various cyberattacks, including disclosure of sensitive information and enabling stealth tunnels for botnet commands. With time and technology, covert channels are becoming more prevalent, complex, and difficult to detect. The current methods for detection are protocol and pattern specific. This requires the investment of significant time and resources into application of various techniques to catch the different types of covert channels. This paper reviews several patterns of network storage covert channels, describes generation of network traffic dataset with covert channels, and proposes a generic, protocol-independent approach for the detection of network storage covert channels using a supervised machine learning technique. The implementation of the proposed generic detection model can lead to a reduction of necessary techniques to prevent covert channel communication in network traffic. The datasets we have generated for experimentation represent storage covert channels in the IP, TCP, and DNS protocols and are available upon request for future research in this area.

2020-07-10
Muñoz, Jordi Zayuelas i, Suárez-Varela, José, Barlet-Ros, Pere.  2019.  Detecting cryptocurrency miners with NetFlow/IPFIX network measurements. 2019 IEEE International Symposium on Measurements Networking (M N). :1—6.

In the last few years, cryptocurrency mining has become more and more important on the Internet activity and nowadays is even having a noticeable impact on the global economy. This has motivated the emergence of a new malicious activity called cryptojacking, which consists of compromising other machines connected to the Internet and leverage their resources to mine cryptocurrencies. In this context, it is of particular interest for network administrators to detect possible cryptocurrency miners using network resources without permission. Currently, it is possible to detect them using IP address lists from known mining pools, processing information from DNS traffic, or directly performing Deep Packet Inspection (DPI) over all the traffic. However, all these methods are still ineffective to detect miners using unknown mining servers or result too expensive to be deployed in real-world networks with large traffic volume. In this paper, we present a machine learning-based method able to detect cryptocurrency miners using NetFlow/IPFIX network measurements. Our method does not require to inspect the packets' payload; as a result, it achieves cost-efficient miner detection with similar accuracy than DPI-based techniques.

2020-05-26
Hamamreh, Rushdi A., Ayyad, Mohammad, Jamoos, Mohammad.  2019.  RAD: Reinforcement Authentication DYMO Protocol for MANET. 2019 International Conference on Promising Electronic Technologies (ICPET). :136–141.
Mobile ad hoc network (MANET) does not have fixed infrastructure centralized server which manage the connections between the nodes. Rather, the nodes in MANET move randomly. Thus, it is risky to exchange data between nodes because there is a high possibility of having malicious node in the path. In this paper, we will describe a new authentication technique using message digest 5 (MD5), hashing for dynamic MANET on demand protocol (DYMO) based on reinforcement learning. In addition, we will describe an encryption technique that can be used without the need for a third party to distribute a secret key. After implementing the suggested model, results showed a remarkable enhancement in securing the path by increasing the packet delivery ratio and average throughput. On the other hand, there was an increase in end to end delay due to time spent in cryptographic operations.
2020-05-11
Vashist, Abhishek, Keats, Andrew, Pudukotai Dinakarrao, Sai Manoj, Ganguly, Amlan.  2019.  Securing a Wireless Network-on-Chip Against Jamming Based Denial-of-Service Attacks. 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :320–325.
Wireless Networks-on-Chips (NoCs) have emerged as a panacea to the non-scalable multi-hop data transmission paths in traditional wired NoC architectures. Using low-power transceivers in NoC switches, novel Wireless NoC (WiNoC) architectures have been shown to achieve higher energy efficiency with improved peak bandwidth and reduced on-chip data transfer latency. However, using wireless interconnects for data transfer within a chip makes the on-chip communications vulnerable to various security threats from either external attackers or internal hardware Trojans (HTs). In this work, we propose a mechanism to make the wireless communication in a WiNoC secure against persistent jamming based Denial-of-Service attacks from both external and internal attackers. Persistent jamming attacks on the on-chip wireless medium will cause interference in data transfer over the duration of the attack resulting in errors in contiguous bits, known as burst errors. Therefore, we use a burst error correction code to monitor the rate of burst errors received over the wireless medium and deploy a Machine Learning (ML) classifier to detect the persistent jamming attack and distinguish it from random burst errors. In the event of jamming attack, alternate routing strategies are proposed to avoid the DoS attack over the wireless medium, so that a secure data transfer can be sustained even in the presence of jamming. We evaluate the proposed technique on a secure WiNoC in the presence of DoS attacks. It has been observed that with the proposed defense mechanisms, WiNoC can outperform a wired NoC even in presence of attacks in terms of performance and security. On an average, 99.87% attack detection was achieved with the chosen ML Classifiers. A bandwidth degradation of \textbackslashtextless;3% is experienced in the event of internal attack, while the wireless interconnects are disabled in the presence of an external attacker.
2020-05-04
Steinke, Michael, Adam, Iris, Hommel, Wolfgang.  2018.  Multi-Tenancy-Capable Correlation of Security Events in 5G Networks. 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :1–6.
The concept of network slicing in 5G mobile networks introduces new challenges for security management: Given the combination of Infrastructure-as-a-Service cloud providers, mobile network operators as Software-as-a-Service providers, and the various verticals as customers, multi-layer and multi-tenancy-capable management architectures are required. This paper addresses the challenges for correlation of security events in such 5G scenarios with a focus on event processing at telecommunication service providers. After an analysis of the specific demand for network-slice-centric security event correlation in 5G networks, ongoing standardization efforts, and related research, we propose a multi-tenancy-capable event correlation architecture along with a scalable information model. The event processing, alerting, and correlation workflow is discussed and has been implemented in a network and security management system prototype, leading to a demonstration of first results acquired in a lab setup.
2020-04-13
Wang, Shaoyang, Lv, Tiejun, Zhang, Xuewei.  2019.  Multi-Agent Reinforcement Learning-Based User Pairing in Multi-Carrier NOMA Systems. 2019 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
This paper investigates the problem of user pairing in multi-carrier non-orthogonal multiple access (MC-NOMA) systems. Firstly, the hard channel capacity and soft channel capacity are presented. The former depicts the transmission capability of the system that depends on the channel conditions, and the latter refers to the effective throughput of the system that is determined by the actual user demands. Then, two optimization problems to maximize the hard and soft channel capacities are established, respectively. Inspired by the multiagent deep reinforcement learning (MADRL) and convolutional neural network, the user paring network (UP-Net), based on the cooperative game and deep deterministic policy gradient, is designed for solving the optimization problems. Simulation results demonstrate that the performance of the designed UP-Net is comparable to that obtained from the exhaustive search method via the end-to-end low complexity method, which is superior to the common method, and corroborate that the UP-Net focuses more on the actual user demands to improve the soft channel capacity. Additionally and more importantly, the paper makes a useful exploration on the use of MADRL to solve the resource allocation problems in communication systems. Meanwhile, the design method has strong universality and can be easily extended to other issues.