Visible to the public Biblio

Filters: Keyword is indoor communication  [Clear All Filters]
Qiu, Yu, Wang, Jin-Yuan, Lin, Sheng-Hong, Wang, Jun-Bo, Lin, Min.  2019.  Secrecy Outage Probability Analysis for Visible Light Communications with SWIPT and Random Terminals. 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.
This paper investigates the physical-layer data secure transmission for indoor visible light communications (VLC) with simultaneous wireless information and power transfer (SWIPT) and random terminals. A typical indoor VLC system including one transmitter, one desired information receiver and one energy receiver is considered. The two receivers are randomly deployed on the floor, and the random channel characteristics is analyzed. Based on the possibility that the energy receiver is a passive information eavesdropper, the secrecy outage probability (SOP) is employed to evaluate the system performance. A closed-from expression for the lower bound of the SOP is obtained. For the derived lower bound of SOP, the theoretical results match the simulation results very well, which indicates that the derived lower bound can be used to evaluate the secrecy performance. Moreover, the gap between the results of the lower bound and the exact simulation results is also small, which verifies the correctness of the analysis method to obtain the lower bound.
Ge, Hong, Dai, Jianxin, Huang, Bo, Wang, Jin-Yuan.  2019.  Secrecy Rate Analysis for Visible Light Communications Using Spatial Modulation. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1241–1248.
This paper mainly investigates the physical layer security for visible light communication (VLC) based on spatial modulation (SM). The indoor VLC system includes multiple transmitters, a legitimate receiver and an eavesdropper. In the system, we consider two constraints of the input signal: non-negative and dimmable average optical intensity constraints. According to the principle of information theory and the spatial modulation scheme of uniform selection (US), the upper and the lower bounds on the secrecy rate for SM based VLC are derived, respectively. Numerical results show that the performance gap between the upper and lower bounds of the secrecy rate is small and relatively close, which indicates that the derived secrecy rate bounds can be used to evaluate the system performance. Moreover, when the number of transmitters is set to be one, the spatial modulation disappears, and the secrecy rate bounds in this paper are consistent with the existing results. To further improve the secrecy performance, a channel adaptive selection (CAS) scheme is proposed for selecting the active transmitter. Numerical result indicates that the CAS scheme has better performance than the US scheme.
Almohanna, S., Alogayyel, M. S., Ajaji, A. A., Alkhdrawi, H. A., Alleli, M. A., Tareq, Q., Mukhtar, Sani, Mohammed Khan, Z. M..  2019.  Visible-NIR Laser Based Bi-directional Indoor Optical Wireless Communication. 2019 IEEE 10th GCC Conference Exhibition (GCC). :1–4.
We propose and demonstrate an indoor optical bi-directional communication system employing near-infrared (NIR) and visible light as carriers. Such a communication technology is attractive wherein red color could be deployed for down streaming purpose via, for instance, LiFi (light fidelity) system, and NIR color for up streaming purpose. This system concept is implemented over a simultaneous bidirectional audio signal transmission and reception over 0.6m indoor wireless channel. Besides, designing the transceiver circuits from off the shelf components, frequency scrambling encryption and decryption technique is also integrated in the system for security purpose. The communication system is optically characterized in terms of line-of-sight laser misalignment and communication distance.
Tian, Dinghui, Zhang, Wensheng, Sun, Jian, Wang, Cheng-Xiang.  2019.  Physical-Layer Security of Visible Light Communications with Jamming. 2019 IEEE/CIC International Conference on Communications in China (ICCC). :512–517.
Visible light communication (VLC) is a burgeoning field in wireless communications as it considers illumination and communication simultaneously. The broadcast nature of VLC makes it necessary to consider the security of underlying transmissions. A physical-layer security (PLS) scheme by introducing jamming LEDs is considered in this paper. The secrecy rate of an indoor VLC system with multiple LEDs, one legitimate receiver, and multiple eavesdroppers is investigated. Three distributions of input signal are assumed, i.e., truncated generalized normal distribution (TGN), uniform distribution, and exponential distribution. The results show that jamming can improve the secrecy performance efficiently. This paper also demonstrates that when the numbers of LEDs transmitting information-bearing signal and jamming signal are equal, the average secrecy rate can be maximized.
Wang, J., Lin, S., Liu, C., Wang, J., Zhu, B., Jiang, Y..  2018.  Secrecy Capacity of Indoor Visible Light Communication Channels. 2018 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
In the indoor scenario, visible light communications (VLC) is regarded as one of the most promising candidates for future wireless communications. Recently, the physical layer security for indoor VLC has drawn considerable attention. In this paper, the secrecy capacity of indoor VLC is analyzed. Initially, an VLC system with a transmitter, a legitimate receiver, and an eavesdropper is established. In the system, the nonnegativity, the peak optical intensity constraint and the dimmable average optical intensity constraint are considered. Based on the principle of information theory, the closed-form expressions of the upper and the lower bounds on the secrecy capacity are derived, respectively. Numerical results show that the upper and the lower bounds on secrecy capacity are very tight, which verify the accuracy of the derived closed-form expressions.
Lian, J., Wang, X., Noshad, M., Brandt-Pearce, M..  2018.  Optical Wireless Interception Vulnerability Analysis of Visible Light Communication System. 2018 IEEE International Conference on Communications (ICC). :1–6.
Visible light communication is a solution for high-security wireless data transmission. In this paper, we first analyze the potential vulnerability of the system from eavesdropping outside the room. By setting up a signal to noise ratio threshold, we define a vulnerable area outside of the room through a window. We compute the receiver aperture needed to capture the signal and what portion of the space is most vulnerable to eavesdropping. Based on the analysis, we propose a solution to improve the security by optimizing the modulation efficiency of each LED in the indoor lamp. The simulation results show that the proposed solution can improve the security considerably while maintaining the indoor communication performance.
Cosmas, J., Kapovits, Á.  2017.  Internet of Radio Light: Unleashing Innovation in Building Networks. 2017 Global Wireless Summit (GWS). :257–261.

Wireless networks in buildings suffer from congestion, interference, security and safety concerns, restricted propagation and poor in-door location accuracy. The Internet of Radio-Light (IoRL) project develops a safer, more secure, customizable and intelligent building network that reliably delivers increased throughput (greater than lOGbps) from access points pervasively located within buildings, whilst minimizing interference and harmful EM exposure and providing location accuracy of less than 10 cm. It thereby shows how to solve the problem of broadband wireless access in buildings and promotes the establishment of a global standard in ITU.

Araya, A., Jirón, I., Soto, I..  2017.  A New Key Exchange Algorithm over a VLC Indoor Channel. 2017 First South American Colloquium on Visible Light Communications (SACVLC). :1–5.
This paper proposes a new cryptosystem that combines Diffie-Hellman protocol implemented with hyperelliptic curves over a Galois field GF(2n) with Tree Parity Machine synchronization for a Visible Light Communication indoor channel. The proposed cryptosystem security focuses on overcoming a weakness of neuronal synchronization; specifically, the stimulus vector that is public, which allows an attacker to try to synchronize with one of the participants of the synchronization. Real data receptions of the Visible Light Communication channel are included. In addition, there is an improvement of 115% over a range of 100 $łeq$ tsync$łeq$ 400 of the average synchronization time t\_sync, compared to the classic Tree Parity Machine synchronization.
do Carmo, R., Hoffmann, J., Willert, V., Hollick, M..  2014.  Making active-probing-based network intrusion detection in Wireless Multihop Networks practical: A Bayesian inference approach to probe selection. Local Computer Networks (LCN), 2014 IEEE 39th Conference on. :345-353.

Practical intrusion detection in Wireless Multihop Networks (WMNs) is a hard challenge. The distributed nature of the network makes centralized intrusion detection difficult, while resource constraints of the nodes and the characteristics of the wireless medium often render decentralized, node-based approaches impractical. We demonstrate that an active-probing-based network intrusion detection system (AP-NIDS) is practical for WMNs. The key contribution of this paper is to optimize the active probing process: we introduce a general Bayesian model and design a probe selection algorithm that reduces the number of probes while maximizing the insights gathered by the AP-NIDS. We validate our model by means of testbed experimentation. We integrate it to our open source AP-NIDS DogoIDS and run it in an indoor wireless mesh testbed utilizing the IEEE 802.11s protocol. For the example of a selective packet dropping attack, we develop the detection states for our Bayes model, and show its feasibility. We demonstrate that our approach does not need to execute the complete set of probes, yet we obtain good detection rates.