Visible to the public Biblio

Filters: Keyword is Bit error rate  [Clear All Filters]
Ming, Kun.  2020.  Chinese Coreference Resolution via Bidirectional LSTMs using Word and Token Level Representations. 2020 16th International Conference on Computational Intelligence and Security (CIS). :73–76.
Coreference resolution is an important task in the field of natural language processing. Most existing methods usually utilize word-level representations, ignoring massive information from the texts. To address this issue, we investigate how to improve Chinese coreference resolution by using span-level semantic representations. Specifically, we propose a model which acquires word and character representations through pre-trained Skip-Gram embeddings and pre-trained BERT, then explicitly leverages span-level information by performing bidirectional LSTMs among above representations. Experiments on CoNLL-2012 shared task have demonstrated that the proposed model achieves 62.95% F1-score, outperforming our baseline methods.
Iorga, Denis, Corlătescu, Dragos, Grigorescu, Octavian, Săndescu, Cristian, Dascălu, Mihai, Rughiniş, Razvan.  2020.  Early Detection of Vulnerabilities from News Websites using Machine Learning Models. 2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet). :1–6.
The drawbacks of traditional methods of cybernetic vulnerability detection relate to the required time to identify new threats, to register them in the Common Vulnerabilities and Exposures (CVE) records, and to score them with the Common Vulnerabilities Scoring System (CVSS). These problems can be mitigated by early vulnerability detection systems relying on social media and open-source data. This paper presents a model that aims to identify emerging cybernetic vulnerabilities in cybersecurity news articles, as part of a system for automatic detection of early cybernetic threats using Open Source Intelligence (OSINT). Three machine learning models were trained on a novel dataset of 1000 labeled news articles to create a strong baseline for classifying cybersecurity articles as relevant (i.e., introducing new security threats), or irrelevant: Support Vector Machines, a Multinomial Naïve Bayes classifier, and a finetuned BERT model. The BERT model obtained the best performance with a mean accuracy of 88.45% on the test dataset. Our experiments support the conclusion that Natural Language Processing (NLP) models are an appropriate choice for early vulnerability detection systems in order to extract relevant information from cybersecurity news articles.
Shi, Y., Sagduyu, Y. E., Erpek, T..  2020.  Reinforcement Learning for Dynamic Resource Optimization in 5G Radio Access Network Slicing. 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1—6.
The paper presents a reinforcement learning solution to dynamic resource allocation for 5G radio access network slicing. Available communication resources (frequency-time blocks and transmit powers) and computational resources (processor usage) are allocated to stochastic arrivals of network slice requests. Each request arrives with priority (weight), throughput, computational resource, and latency (deadline) requirements, and if feasible, it is served with available communication and computational resources allocated over its requested duration. As each decision of resource allocation makes some of the resources temporarily unavailable for future, the myopic solution that can optimize only the current resource allocation becomes ineffective for network slicing. Therefore, a Q-learning solution is presented to maximize the network utility in terms of the total weight of granted network slicing requests over a time horizon subject to communication and computational constraints. Results show that reinforcement learning provides major improvements in the 5G network utility relative to myopic, random, and first come first served solutions. While reinforcement learning sustains scalable performance as the number of served users increases, it can also be effectively used to assign resources to network slices when 5G needs to share the spectrum with incumbent users that may dynamically occupy some of the frequency-time blocks.
Huang, H., Wang, X., Jiang, Y., Singh, A. K., Yang, M., Huang, L..  2020.  On Countermeasures Against the Thermal Covert Channel Attacks Targeting Many-core Systems. 2020 57th ACM/IEEE Design Automation Conference (DAC). :1—6.
Although it has been demonstrated in multiple studies that serious data leaks could occur to many-core systems thanks to the existence of the thermal covert channels (TCC), little has been done to produce effective countermeasures that are necessary to fight against such TCC attacks. In this paper, we propose a three-step countermeasure to address this critical defense issue. Specifically, the countermeasure includes detection based on signal frequency scanning, positioning affected cores, and blocking based on Dynamic Voltage Frequency Scaling (DVFS) technique. Our experiments have confirmed that on average 98% of the TCC attacks can be detected, and with the proposed defense, the bit error rate of a TCC attack can soar to 92%, literally shutting down the attack in practical terms. The performance penalty caused by the inclusion of the proposed countermeasures is only 3% for an 8×8 system.
Yu, Z., Fang, X., Zhou, Y., Xiao, L., Zhang, L..  2020.  Chaotic Constellation Scrambling Method for Security-Enhanced CO-OFDM/OQAM Systems. 2020 12th International Conference on Communication Software and Networks (ICCSN). :192–195.
With the deep research on coherent optical OFDM offset quadrature amplitude modulation OFDM/OQAM in these years, and the communication system exposed to potential threat from various capable attackers, which prompt people lay emphasis on encryption methods for transmission. Therefore, in this paper, we systematically discuss an encryption project with the main purpose of improving security in coherent optical OFDM/OQAM (CO-OFDM/OQAM) system, and the scheme applied the chaotic constellation scrambling (CCS) which founded on chaotic cross mapping to encrypt transmitted information. Besides, we also systematically discuss the basic principle of the encryption scheme for CO-OFDM/OQAM system. According to numerous studies and analysis on experiment data with caution, such as the performance of entropy, bit error rate (BER). It's conforms that the security of CO-OFDM/OQAM system have been enhanced.
Kulikov, G. V., Tien, D. T., Kulagin, V. P..  2020.  Adaptive filtering of non-fluctuation interference when receiving signals with multi-position phase shift keying. 2020 Moscow Workshop on Electronic and Networking Technologies (MWENT). :1—4.

{The paper considers the efficiency of an adaptive non-recursive filter using the adjustment algorithm for weighting coefficients taking into account the constant envelope of the desired signal when receiving signals with multi-position phase shift keying against the background of noise and non-fluctuation interference. Two types of such interference are considered - harmonic and retranslated. The optimal filter parameters (adaptation coefficient and length) are determined by using simulation; the effect of the filter on the noise immunity of a quadrature coherent signal receiver with multi-position phase shift keying for different combinations of interference and their intensity is estimated. It is shown that such an adaptive filter can successfully deal with the most dangerous sighting harmonic interference}.

Khatod, V., Manolova, A..  2020.  Effects of Man in the Middle (MITM) Attack on Bit Error Rate of Bluetooth System. 2020 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT NCON). :153—157.
The ad-hoc network formed by Bluetooth works on radio frequency links. The security aspect of Bluetooth has to be handled more carefully. The radio frequency waves have a characteristic that the waves can pierce the obstructions in the communication path, get rid of the requirement of line of sight between the communicating devices. We propose a software model of man-in-the-middle attack along with unauthorized and authorized transmitter and receiver. Advanced White Gaussian Noise channel is simulated in the designed architecture. The transmitter uses Gaussian Frequency Shift Keying (GFSK) modulation like in Bluetooth. The receiver uses GFSK demodulation. In order to validate the performance of the designed system, bit error rate (BER) measurements are taken with respect to different time intervals. We found that BER drops roughly 18% if hopping duration of 150 seconds is chosen. We propose that a Bluetooth system with hopping rate of 0.006 Hz is used instead of 10Hz.
Cribbs, M., Romero, R., Ha, T..  2020.  Orthogonal STBC Set Building and Physical Layer Security Application. 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). :1—5.
Given a selected complex orthogonal space-time block code (STBC), transformation algorithms are provided to build a set, S, of unique orthogonal STBCs with cardinality equal to \textbackslashtextbarS\textbackslashtextbar = 2r+c+k-1·r!·c!, where r, c, and k are the number of rows, columns, and data symbols in the STBC matrix, respectively. A communications link is discussed that encodes data symbols with a chosen STBC from the set known only to the transmitter and intended receiver as a means of providing physical layer security (PLS). Expected bit error rate (BER) and informationtheoretic results for an eavesdropper with a priori knowledge of the communications link parameters with the exception of the chosen STBC are presented. Monte Carlo simulations are provided to confirm the possible BER results expected when decoding the communications link with alternative STBCs from the set. Application of the transformation algorithms provided herein are shown to significantly increase the brute force decoding complexity of an eavesdropper compared to a related work in the literature.
Payne, J., Kundu, A..  2019.  Towards Deep Federated Defenses Against Malware in Cloud Ecosystems. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :92—100.

In cloud computing environments with many virtual machines, containers, and other systems, an epidemic of malware can be crippling and highly threatening to business processes. In this vision paper, we introduce a hierarchical approach to performing malware detection and analysis using several recent advances in machine learning on graphs, hypergraphs, and natural language. We analyze individual systems and their logs, inspecting and understanding their behavior with attentional sequence models. Given a feature representation of each system's logs using this procedure, we construct an attributed network of the cloud with systems and other components as vertices and propose an analysis of malware with inductive graph and hypergraph learning models. With this foundation, we consider the multicloud case, in which multiple clouds with differing privacy requirements cooperate against the spread of malware, proposing the use of federated learning to perform inference and training while preserving privacy. Finally, we discuss several open problems that remain in defending cloud computing environments against malware related to designing robust ecosystems, identifying cloud-specific optimization problems for response strategy, action spaces for malware containment and eradication, and developing priors and transfer learning tasks for machine learning models in this area.

Gariano, John, Djordjevic, Ivan B..  2019.  Covert Communications-Based Information Reconciliation for Quantum Key Distribution Protocols. 2019 21st International Conference on Transparent Optical Networks (ICTON). :1—5.

The rate at which a secure key can be generated in a quantum key distribution (QKD) protocol is limited by the channel loss and the quantum bit-error rate (QBER). Increases to the QBER can stem from detector noise, channel noise, or the presence of an eavesdropper, Eve. Eve is capable of obtaining information of the unsecure key by performing an attack on the quantum channel or by listening to all discussion performed via a noiseless public channel. Conventionally a QKD protocol will perform the information reconciliation over the authenticated public channel, revealing the parity bits used to correct for any quantum bit errors. In this invited paper, the possibility of limiting the information revealed to Eve during the information reconciliation is considered. Using a covert communication channel for the transmission of the parity bits, secure key rates are possible at much higher QBERs. This is demonstrated through the simulation of a polarization based QKD system implementing the BB84 protocol, showing significant improvement of the SKRs over the conventional QKD protocols.

Kin-Cleaves, Christy, Ker, Andrew D..  2018.  Adaptive Steganography in the Noisy Channel with Dual-Syndrome Trellis Codes. 2018 IEEE International Workshop on Information Forensics and Security (WIFS). :1–7.
Adaptive steganography aims to reduce distortion in the embedding process, typically using Syndrome Trellis Codes (STCs). However, in the case of non-adversarial noise, these are a bad choice: syndrome codes are fragile by design, amplifying the channel error rate into unacceptably-high payload error rates. In this paper we examine the fragility of STCs in the noisy channel, and consider how this can be mitigated if their use cannot be avoided altogether. We also propose an extension called Dual-Syndrome Trellis Codes, that combines error correction and embedding in the same Viterbi process, which slightly outperforms a straight-forward combination of standard forward error correction and STCs.
Ebrahimi, Najme, Yektakhah, Behzad, Sarabandi, Kamal, Kim, Hun Seok, Wentzloff, David, Blaauw, David.  2019.  A Novel Physical Layer Security Technique Using Master-Slave Full Duplex Communication. 2019 IEEE MTT-S International Microwave Symposium (IMS). :1096—1099.
In this work we present a novel technique for physical layer security in the Internet-of-Things (IoT) networks. In the proposed architecture, each IoT node generates a phase-modulated random key/data and transmits it to a master node in the presence of an eavesdropper, referred to as Eve. The master node, simultaneously, broadcasts a high power signal using an omni-directional antenna, which is received as interference by Eve. This interference masks the generated key by the IoT node and will result in a higher bit-error rate in the data received by Eve. The two legitimate intended nodes communicate in a full-duplex manner and, consequently, subtract their transmitted signals, as a known reference, from the received signal (self-interference cancellation). We compare our proposed method with a conventional approach to physical layer security based on directional antennas. In particular, we show, using theoretical and measurement results, that our proposed approach provides significantly better security measures, in terms bit error rate (BER) at Eve's location. Also, it is proven that in our novel system, the possible eavesdropping region, defined by the region with BER \textbackslashtextless; 10-1, is always smaller than the reliable communication region with BER \textbackslashtextless; 10-3.
Korzhik, Valery, Starostin, Vladimir, Morales-Luna, Guillermo, Kabardov, Muaed, Gerasimovich, Aleksandr, Yakovlev, Victor, Zhuvikin, Aleksey.  2019.  Information Theoretical Secure Key Sharing Protocol for Noiseless Public Constant Parameter Channels without Cryptographic Assumptions. 2019 Federated Conference on Computer Science and Information Systems (FedCSIS). :327–332.

We propose a new key sharing protocol executed through any constant parameter noiseless public channel (as Internet itself) without any cryptographic assumptions and protocol restrictions on SNR in the eavesdropper channels. This protocol is based on extraction by legitimate users of eigenvalues from randomly generated matrices. A similar protocol was proposed recently by G. Qin and Z. Ding. But we prove that, in fact, this protocol is insecure and we modify it to be both reliable and secure using artificial noise and privacy amplification procedure. Results of simulation prove these statements.

Arpitha, R, Chaithra, B R, Padma, Usha.  2019.  Performance Analysis of Channel Coding Techniques for Cooperative Adhoc Network. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :752–756.
-In wireless networks, Cooperative communication can be used to increase the strength of the communication by means of spatial diversity. Basic idea that exists behind Cooperative communication is, if the transmission from source to destination is not successful, a helping node called relay can be used to send the same information to the destination through independent paths. In order to improve the performance of such communication, channel coding techniques can be used which reduces the Bit Error Rate. Previous works on cooperative communication only concentrated on improving channel capacity through cooperation. Hence this paper presents different Channel coding methods such as Turbo coding, Convolutional coding, and low-density parity-check coding over Rayleigh fading channels in the presence of Additive white Gaussian noise. Performance of these Channel coding techniques are measured in terms of noise power spectral density (NO ) vs. Bit error rate.
Lin, W., Cai, S., Wei, B., Ma, X..  2018.  Coding Theorem for Systematic LDGM Codes Under List Decoding. 2018 IEEE Information Theory Workshop (ITW). :1–5.
This paper is concerned with three ensembles of systematic low density generator matrix (LDGM) codes, all of which were provably capacity-achieving in terms of bit error rate (BER). This, however, does not necessarily imply that they achieve the capacity in terms of frame error rate (FER), as seen from a counterexample constructed in this paper. We then show that the first and second ensembles are capacity-achieving under list decoding over binary-input output symmetric (BIOS) memoryless channels. We point out that, in principle, the equivocation due to list decoding can be removed with negligible rate loss by the use of the concatenated codes. Simulation results show that the considered convolutional (spatially-coupled) LDGM code is capacity-approaching with an iterative belief propagation decoding algorithm.
Hu, Y., Abuzainab, N., Saad, W..  2018.  Dynamic Psychological Game for Adversarial Internet of Battlefield Things Systems. 2018 IEEE International Conference on Communications (ICC). :1–6.

In this paper, a novel game-theoretic framework is introduced to analyze and enhance the security of adversarial Internet of Battlefield Things (IoBT) systems. In particular, a dynamic, psychological network interdiction game is formulated between a soldier and an attacker. In this game, the soldier seeks to find the optimal path to minimize the time needed to reach a destination, while maintaining a desired bit error rate (BER) performance by selectively communicating with certain IoBT devices. The attacker, on the other hand, seeks to find the optimal IoBT devices to attack, so as to maximize the BER of the soldier and hinder the soldier's progress. In this game, the soldier and attacker's first- order and second-order beliefs on each others' behavior are formulated to capture their psychological behavior. Using tools from psychological game theory, the soldier and attacker's intention to harm one another is captured in their utilities, based on their beliefs. A psychological forward induction-based solution is proposed to solve the dynamic game. This approach can find a psychological sequential equilibrium of the game, upon convergence. Simulation results show that, whenever the soldier explicitly intends to frustrate the attacker, the soldier's material payoff is increased by up to 15.6% compared to a traditional dynamic Bayesian game.

Yildiz, O., Gulbahar, B..  2018.  FoVLC: Foveation Based Data Hiding in Display Transmitters for Visible Light Communications. 2018 14th International Wireless Communications Mobile Computing Conference (IWCMC). :629–635.

Visible light communications is an emerging architecture with unlicensed and huge bandwidth resources, security, and experimental implementations and standardization efforts. Display based transmitter and camera based receiver architectures are alternatives for device-to-device (D2D) and home area networking (HAN) systems by utilizing widely available TV, tablet and mobile phone screens as transmitters while commercially available cameras as receivers. Current architectures utilizing data hiding and unobtrusive steganography methods promise data transmission without user distraction on the screen. however, current architectures have challenges with the limited capability of data hiding in translucency or color shift based methods of hiding by uniformly distributing modulation throughout the screen and keeping eye discomfort at an acceptable level. In this article, foveation property of human visual system is utilized to define a novel modulation method denoted by FoVLC which adaptively improves data hiding capability throughout the screen based on the current eye focus point of viewer. Theoretical modeling of modulation and demodulation mechanisms hiding data in color shifts of pixel blocks is provided while experiments are performed for both FoVLC method and uniform data hiding denoted as conventional method. Experimental tests for the simple design as a proof of concept decreases average bit error rate (BER) to approximately half of the value obtained with the conventional method without user distraction while promising future efforts for optimizing block sizes and utilizing error correction codes.

Yang, L., Murmann, B..  2017.  SRAM voltage scaling for energy-efficient convolutional neural networks. 2017 18th International Symposium on Quality Electronic Design (ISQED). :7–12.

State-of-the-art convolutional neural networks (ConvNets) are now able to achieve near human performance on a wide range of classification tasks. Unfortunately, current hardware implementations of ConvNets are memory power intensive, prohibiting deployment in low-power embedded systems and IoE platforms. One method of reducing memory power is to exploit the error resilience of ConvNets and accept bit errors under reduced supply voltages. In this paper, we extensively study the effectiveness of this idea and show that further savings are possible by injecting bit errors during ConvNet training. Measurements on an 8KB SRAM in 28nm UTBB FD-SOI CMOS demonstrate supply voltage reduction of 310mV, which results in up to 5.4× leakage power reduction and up to 2.9× memory access power reduction at 99% of floating-point classification accuracy, with no additional hardware cost. To our knowledge, this is the first silicon-validated study on the effect of bit errors in ConvNets.

Markosyan, M. V., Safin, R. T., Artyukhin, V. V., Satimova, E. G..  2017.  Determination of the Eb/N0 ratio and calculation of the probability of an error in the digital communication channel of the IP-video surveillance system. 2017 Computer Science and Information Technologies (CSIT). :173–176.

Due to the transition from analog to digital format, it possible to use IP-protocol for video surveillance systems. In addition, wireless access, color systems with higher resolution, biometrics, intelligent sensors, software for performing video analytics are becoming increasingly widespread. The paper considers only the calculation of the error probability (BER — Bit Error Rate) depending on the realized value of S/N.

Dabas, N., Singh, R. P., Kher, G., Chaudhary, V..  2017.  A novel SVD and online sequential extreme learning machine based watermark method for copyright protection. 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.

For the increasing use of internet, it is equally important to protect the intellectual property. And for the protection of copyright, a blind digital watermark algorithm with SVD and OSELM in the IWT domain has been proposed. During the embedding process, SVD has been applied to the coefficient blocks to get the singular values in the IWT domain. Singular values are modulated to embed the watermark in the host image. Online sequential extreme learning machine is trained to learn the relationship between the original coefficient and the corresponding watermarked version. During the extraction process, this trained OSELM is used to extract the embedded watermark logo blindly as no original host image is required during this process. The watermarked image is altered using various attacks like blurring, noise, sharpening, rotation and cropping. The experimental results show that the proposed watermarking scheme is robust against various attacks. The extracted watermark has very much similarity with the original watermark and works good to prove the ownership.

Zhang, Z. G., Wen, H., Song, H. H., Jiang, Yixin, Zhang, J. L., Zhu, Xiping.  2016.  A MIMO cross-layer secure communication scheme based on spatial modulation. 2016 IEEE Conference on Communications and Network Security (CNS). :350–351.

A cross-layer secure communication scheme for multiple input multiple output (MIMO) system based on spatial modulation (SM) is proposed in this paper. The proposed scheme combined the upper layer stream cipher with the distorted signal design of the MIMO spatial modulation system in the physical layer to realize the security information transmission, which is called cross-layer secure communication system. Simulation results indicate that the novel scheme not only further ensure the legitimate user an ideal reception demodulation performance as the original system, but also make the eavesdropper' error rate stable at 0.5. The novel system do not suffer from a significant increasing complexity.

Chacko, J., Jacovic, M., Sahin, C., Kandasamy, N., Dandekar, K. R..  2017.  Independent source architecture for developing FPGA-based physical layer security techniques. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :666–671.
This paper describes and verifies a method of implementing bit error rate (BER) calculation for FPGA-based physical layer security techniques for Software Defined Radio (SDR). Specifically, we describe an independent source signal processing architecture for an efficient calculation of BER for wireless communication modules across the transmitter and receiver nodes. The source components at the transmitter and the receiver both generate identical random bits independently from each other, allowing for the received data to be compared to the original bit stream to calculate BER completely on hardware. The described method is implemented on a Xilinx Virtex-6 ML605 FPGA and reduces processing time by more than four orders of magnitude less than hardware simulation techniques in regression testing and validation over billions of bits, shortening design turn around times and accelerating Physical layer based security development for wireless communication research. The described independent source approach utilizes a minimal amount of board resources, allowing it to be integrated seamlessly into SDR hardware designs. Experimental validation of the independent source based BER calculation is performed for an Orthogonal Frequency Division Multiplexing signal, and a comparison between different stages of hardware design for the execution time required for BER testing of a large number of bits is provided.
Y. Y. Won, D. S. Seo, S. M. Yoon.  2015.  "Improvement of transmission capacity of visible light access link using Bayesian compressive sensing". 2015 21st Asia-Pacific Conference on Communications (APCC). :449-453.

A technical method regarding to the improvement of transmission capacity of an optical wireless orthogonal frequency division multiplexing (OFDM) link based on a visible light emitting diode (LED) is proposed in this paper. An original OFDM signal, which is encoded by various multilevel digital modulations such as quadrature phase shift keying (QPSK), and quadrature amplitude modulation (QAM), is converted into a sparse one and then compressed using an adaptive sampling with inverse discrete cosine transform, while its error-free reconstruction is implemented using a L1-minimization based on a Bayesian compressive sensing (CS). In case of QPSK symbols, the transmission capacity of the optical wireless OFDM link was increased from 31.12 Mb/s to 51.87 Mb/s at the compression ratio of 40 %, while It was improved from 62.5 Mb/s to 78.13 Mb/s at the compression ratio of 20 % under the 16-QAM symbols in the error free wireless transmission (forward error correction limit: bit error rate of 10-3).

A. Motamedi, M. Najafi, N. Erami.  2015.  "Parallel secure turbo code for security enhancement in physical layer". 2015 Signal Processing and Intelligent Systems Conference (SPIS). :179-184.

Turbo code has been one of the important subjects in coding theory since 1993. This code has low Bit Error Rate (BER) but decoding complexity and delay are big challenges. On the other hand, considering the complexity and delay of separate blocks for coding and encryption, if these processes are combined, the security and reliability of communication system are guaranteed. In this paper a secure decoding algorithm in parallel on General-Purpose Graphics Processing Units (GPGPU) is proposed. This is the first prototype of a fast and parallel Joint Channel-Security Coding (JCSC) system. Despite of encryption process, this algorithm maintains desired BER and increases decoding speed. We considered several techniques for parallelism: (1) distribute decoding load of a code word between multiple cores, (2) simultaneous decoding of several code words, (3) using protection techniques to prevent performance degradation. We also propose two kinds of optimizations to increase the decoding speed: (1) memory access improvement, (2) the use of new GPU properties such as concurrent kernel execution and advanced atomics to compensate buffering latency.

R. Saravanan, V. Saminadan, V. Thirunavukkarasu.  2015.  "VLSI implementation of BER measurement for wireless communication system". 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS). :1-5.

This paper presents the Bit Error Rate (BER) performance of the wireless communication system. The complexity of modern wireless communication system are increasing at fast pace. It becomes challenging to design the hardware of wireless system. The proposed system consists of MIMO transmitter and MIMO receiver along with the along with a realistic fading channel. To make the data transmission more secure when the data are passed into channel Crypto-System with Embedded Error Control (CSEEC) is used. The system supports data security and reliability using forward error correction codes (FEC). Security is provided through the use of a new symmetric encryption algorithm, and reliability is provided by the use of FEC codes. The system aims at speeding up the encryption and encoding operations and reduces the hardware dedicated to each of these operations. The proposed system allows users to achieve more security and reliable communication. The proposed BER measurement communication system consumes low power compared to existing systems. Advantage of VLSI based BER measurement it that they can be used in the Real time applications and it provides single chip solution.