Visible to the public Biblio

Filters: Keyword is Base stations  [Clear All Filters]
Zamry, Nurfazrina Mohd, Zainal, Anazida, Rassam, Murad A..  2021.  LEACH-CR: Energy Saving Hierarchical Network Protocol Based on Low-Energy Adaptive Clustering Hierarchy for Wireless Sensor Networks. 2021 3rd International Cyber Resilience Conference (CRC). :1–6.
Wireless Sensor Network consists of hundreds to thousands of tiny sensor nodes deployed in the large field of the target phenomenon. Sensor nodes have advantages for its size, multifunctional, and inexpensive features; unfortunately, the resources are limited in terms of memory, computational, and in energy, especially. Network transmission between nodes and base station (BS) needs to be carefully designed to prolong the network life cycle. As the data transmission is energy consuming compared to data processing, designing sensor nodes into hierarchical network architecture is preferable because it can limit the network transmission. LEACH is one of the hierarchical network protocols known for simple and energy saving protocols. There are lots of modification made since LEACH was introduced for more energy efficient purposed. In this paper, hybridization of LEACH-C and LEACH-R and the modification have been presented for a more energy saving LEACH called LEACH-CR. Experimental result was compared with previous LEACH variant and showed to has advantages over the existing LEACH protocols in terms of energy consumption, dead/alive nodes, and the packet sent to Base Station. The result reflects that the consideration made for residual energy to select the cluster head and proximity transmission lead to a better energy consumption in the network.
Iqbal, Siddiq, Sujatha, B R.  2021.  Secure Key Management Scheme With Good Resiliency For Hierarchical Network Using Combinatorial Theory. 2021 2nd International Conference for Emerging Technology (INCET). :1–7.
Combinatorial designs are powerful structures for key management in wireless sensor networks to address good connectivity and also security against external attacks in large scale networks. Symmetric key foundation is the most appropriate model for secure exchanges in WSNs among the ideal models. The core objective is to enhance and evaluate certain issues like attack on the nodes, to provide better key strength, better connectivity, security in interaction among the nodes. The keys distributed by the base station to cluster head are generated using Symmetric Balanced Incomplete Block Design (SBIBD). The keys distributed by cluster head to its member nodes are generated using Symmetric Balanced Incomplete Block Design (SBIBD) and Keys are refreshed periodically to avoid stale entries. Compromised sensor nodes can be used to insert false reports (spurious reports) in wireless sensor networks. The idea of interaction between the sensor nodes utilizing keys and building up a protected association helps in making sure the network is secure. Compared with similar existing schemes, our approach can provide better security.
Maksuti, Silia, Pickem, Michael, Zsilak, Mario, Stummer, Anna, Tauber, Markus, Wieschhoff, Marcus, Pirker, Dominic, Schmittner, Christoph, Delsing, Jerker.  2021.  Establishing a Chain of Trust in a Sporadically Connected Cyber-Physical System. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :890—895.
Drone based applications have progressed significantly in recent years across many industries, including agriculture. This paper proposes a sporadically connected cyber-physical system for assisting winemakers and minimizing the travel time to remote and poorly connected infrastructures. A set of representative diseases and conditions, which will be monitored by land-bound sensors in combination with multispectral images, is identified. To collect accurate data, a trustworthy and secured communication of the drone with the sensors and the base station should be established. We propose to use an Internet of Things framework for establishing a chain of trust by securely onboarding drones, sensors and base station, and providing self-adaptation support for the use case. Furthermore, we perform a security analysis of the use case for identifying potential threats and security controls that should be in place for mitigating them.
Khasawneh, Samer, Chang, Zhengwei, Liu, Rongke, Kadoch, Michel, Lu, Jizhao.  2020.  A Decentralized Hierarchical Key Management Scheme for Grid-Organized Wireless Sensor Networks (DHKM). 2020 International Wireless Communications and Mobile Computing (IWCMC). :1613–1617.
Wireless Sensor Networks (WSNs) are attracted great attention in the past decade due to the unlimited number of applications they support. However, security has always been a serious concern for these networks due to the insecure communication links they exploit. In order to mitigate the possible security threats, sophisticated key management schemes must be employed to ensure the generating, distributing and revocation of the cryptographic keys that are needed to implement variety of security measures. In this paper, we propose a novel decentralized key management scheme for hierarchical grid organized WSNs. The main goal of our scheme is to reduce the total number of cryptographic keys stored in sensor nodes while maintaining the desired network connectivity. The performance analysis shows the efficiency of the proposed protocol in terms of communication overhead, storage cost and network connectivity.
Sharma, Prince, Shukla, Shailendra, Vasudeva, Amol.  2020.  Trust-based Incentive for Mobile Offloaders in Opportunistic Networks. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :872—877.
Mobile data offloading using opportunistic network has recently gained its significance to increase mobile data needs. Such offloaders need to be properly incentivized to encourage more and more users to act as helpers in such networks. The extent of help offered by mobile data offloading alternatives using appropriate incentive mechanisms is significant in such scenarios. The limitation of existing incentive mechanisms is that they are partial in implementation while most of them use third party intervention based derivation. However, none of the papers considers trust as an essential factor for incentive distribution. Although few works contribute to the trust analysis, but the implementation is limited to offloading determination only while the incentive is independent of trust. We try to investigate if trust could be related to the Nash equilibrium based incentive evaluation. Our analysis results show that trust-based incentive distribution encourages more than 50% offloaders to act positively and contribute successfully towards efficient mobile data offloading. We compare the performance of our algorithm with literature based salary-bonus scheme implementation and get optimum incentive beyond 20% dependence over trust-based output.
Sharnagat, Lekhchand, Babu, Rajesh, Adhikari, Jayant.  2020.  Trust Evaluation for Securing Compromised data Aggregation against the Collusion Attack in WSN. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :1–5.
With a storage space limit on the sensors, WSN has some drawbacks related to bandwidth and computational skills. This limited resources would reduce the amount of data transmitted across the network. For this reason, data aggregation is considered as a new process. Iterative filtration (IF) algorithms, which provide trust assessment to the various sources from which the data aggregation has been performed, are efficient in the present data aggregation algorithms. Trust assessment is done with weights from the simple average method to aggregation, which treats attack susceptibility. Iteration filter algorithms are stronger than the ordinary average, but they do not handle the current advanced attack that takes advantage of false information with many compromise nodes. Iterative filters are strengthened by an initial confidence estimate to track new and complex attacks, improving the solidity and accuracy of the IF algorithm. The new method is mainly concerned with attacks against the clusters and not against the aggregator. In this process, if an aggregator is attacked, the current system fails, and the information is eventually transmitted to the aggregator by the cluster members. This problem can be detected when both cluster members and aggregators are being targeted. It is proposed to choose an aggregator which chooses a new aggregator according to the remaining maximum energy and distance to the base station when an aggregator attack is detected. It also save time and energy compared to the current program against the corrupted aggregator node.
Pandey, Pragya, Kaur, Inderjeet.  2020.  Improved MODLEACH with Effective Energy Utilization Technique for WSN. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :987—992.
Wireless sensor network (WSNs) formed from an enormous number of sensor hub with the capacity to detect and process information in the physical world in a convenient way. The sensor nodes contain a battery imperative, which point of confinement the system lifetime. Because of vitality limitations, the arrangement of WSNs will required development methods to keep up the system lifetime. The vitality productive steering is the need of the innovative WSN systems to build the process time of system. The WSN system is for the most part battery worked which should be ration as conceivable as to cause system to continue longer and more. WSN has developed as a significant figuring stage in the ongoing couple of years. WSN comprises of countless sensor points, which are worked by a little battery. The vitality of the battery worked nodes is the defenseless asset of the WSN, which is exhausted at a high rate when data is transmitted, because transmission vitality is subject to the separation of transmission. Sensor nodes can be sent in the cruel condition. When they are conveyed, it ends up difficult to supplant or energize its battery. Therefore, the battery intensity of sensor hub ought to be utilized proficiently. Many steering conventions have been proposed so far to boost the system lifetime and abatement the utilization vitality, the fundamental point of the sensor hubs is information correspondence, implies move of information packs from one hub to other inside the system. This correspondence is finished utilizing grouping and normal vitality of a hub. Each bunch chooses a pioneer called group head. The group heads CHs are chosen based by and large vitality and the likelihood. There are number of bunching conventions utilized for the group Head determination, the principle idea is the existence time of a system which relies on the normal vitality of the hub. In this work we proposed a model, which utilizes the leftover vitality for group head choice and LZW pressure Technique during the transmission of information bundles from CHs to base station. Work enhanced the throughput and life time of system and recoveries the vitality of hub during transmission and moves more information in less vitality utilization. The Proposed convention is called COMPRESSED MODLEACH.
Mheisn, Alaa, Shurman, Mohammad, Al-Ma’aytah, Abdallah.  2020.  WSNB: Wearable Sensors with Neural Networks Located in a Base Station for IoT Environment. 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1—4.
The Internet of Things (IoT) is a system paradigm that recently introduced, which includes different smart devices and applications, especially, in smart cities, e.g.; manufacturing, homes, and offices. To improve their awareness capabilities, it is attractive to add more sensors to their framework. In this paper, we propose adding a new sensor as a wearable sensor connected wirelessly with a neural network located on the base station (WSNB). WSNB enables the added sensor to refine their labels through active learning. The new sensors achieve an average accuracy of 93.81%, which is 4.5% higher than the existing method, removing human support and increasing the life cycle for the sensors by using neural network approach in the base station.
H, R. M., Shet, U. Harshitha, Shetty, R. D., Shrinivasa, J, A. N., S, K. R. N..  2020.  Triggering and Auditing the Event During Intrusion Detections in WSN’s Defence Application. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). :1328–1332.
WSNs are extensively used in defence application for monitoring militant activities in various ways in large unknown territories. Here WSNs has to have large set of distributed systems in the form as sensors nodes. Along with security concerns, False Alarming is also a factor which may interrupt the service and downgrade the application further. Thus in our work we have made sure that when a trigger is raised to an event, images can be captured from the connected cameras so that it will be helpful for both auditing the event as well as capturing the scene which led to the triggering of the event.
Dubey, R., Louis, S. J., Sengupta, S..  2020.  Evolving Dynamically Reconfiguring UAV-hosted Mesh Networks. 2020 IEEE Congress on Evolutionary Computation (CEC). :1–8.
We use potential fields tuned by genetic algorithms to dynamically reconFigure unmanned aerial vehicles networks to serve user bandwidth needs. Such flying network base stations have applications in the many domains needing quick temporary networked communications capabilities such as search and rescue in remote areas and security and defense in overwatch and scouting. Starting with an initial deployment that covers an area and discovers how users are distributed across this area of interest, tuned potential fields specify subsequent movement. A genetic algorithm tunes potential field parameters to reposition UAVs to create and maintain a mesh network that maximizes user bandwidth coverage and network lifetime. Results show that our evolutionary adaptive network deployment algorithm outperforms the current state of the art by better repositioning the unmanned aerial vehicles to provide longer coverage lifetimes while serving bandwidth requirements. The parameters found by the genetic algorithm on four training scenarios with different user distributions lead to better performance than achieved by the state of the art. Furthermore, these parameters also lead to superior performance in three never before seen scenarios indicating that our algorithm finds parameter values that generalize to new scenarios with different user distributions.
Wang, H., Ma, L., Bai, H..  2020.  A Three-tier Scheme for Sybil Attack Detection in Wireless Sensor Networks. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :752–756.
Wireless sensor network (WSN) is a wireless self-organizing multi-hop network that can sense and collect the information of the monitored environment through a certain number of sensor nodes which deployed in a certain area and transmit the collected information to the client. Due to the limited power and data capacity stored by the micro sensor, it is weak in communication with other nodes, data storage and calculation, and is very vulnerable to attack and harm to the entire network. The Sybil attack is a classic example. Sybil attack refers to the attack in which malicious nodes forge multiple node identities to participate in network operation. Malicious attackers can forge multiple node identities to participate in data forwarding. So that the data obtained by the end user without any use value. In this paper, we propose a three-tier detection scheme for the Sybil node in the severe environment. Every sensor node will determine whether they are Sybil nodes through the first-level and second-level high-energy node detection. Finally, the base station determines whether the Sybil node detected by the first two stages is true Sybil node. The simulation results show that our proposed scheme significantly improves network lifetime, and effectively improves the accuracy of Sybil node detection.
Naik, D., Nikita, De, T..  2018.  Congestion aware traffic grooming in elastic optical and WiMAX network. 2018 Technologies for Smart-City Energy Security and Power (ICSESP). :1—9.

In recent years, integration of Passive Optical Net-work(PON) and WiMAX (Worldwide Interoperability Microwave Access Network) network is attracting huge interest among many researchers. The continuous demand for large bandwidths with wider coverage area are the key drivers to this technology. This integration has led to high speed and cost efficient solution for internet accessibility. This paper investigates the issues related to traffic grooming, routing and resource allocation in the hybrid networks. The Elastic Optical Network forms Backbone and is integrated with WiMAX. In this novel approach, traffic grooming is carried out using light trail technique to minimize the bandwidth blocking ratio and also reduce the network resource consumption. The simulation is performed on different network topologies, where in the traffic is routed through three modes namely the pure Wireless Network, the Wireless-Optical/Optical-Wireless Network, the pure Optical Network keeping the network congestion in mind. The results confirm reduction in bandwidth blocking ratio in all the given networks coupled with minimum network resource utilization.

Davydov, Vadim, Bezzateev, Sergey.  2018.  Secure Information Exchange in Defining the Location of the Vehicle. 2018 41st International Conference on Telecommunications and Signal Processing (TSP). :1—5.

With the advent of the electric vehicle market, the problem of locating a vehicle is becoming more and more important. Smart roads are creating, where the car control system can work without a person - communicating with the elements on the road. The standard technologies, such as GPS, can't always accurately determine the location, and not all vehicles have a GPS-module. It is very important to build an effective secure communication protocol between the vehicle and the base stations on the road. In this paper we consider different methods of location determination, propose the improved communicating protocol between the vehicle and the base station.

Zhou, Liming, Shan, Yingzi.  2019.  Multi-branch Source Location Privacy Protection Scheme Based on Random Walk in WSNs. 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). :543–547.
In many applications, source nodes send the sensing information of the monitored objects and the sinks receive the transmitted data. Considering the limited resources of sensor nodes, location privacy preservation becomes an important issue. Although many schemes are proposed to preserve source or sink location security, few schemes can preserve the location security of source nodes and sinks. In order to solve this problem, we propose a novel of multi-branch source location privacy protection method based on random walk. This method hides the location of real source nodes by setting multiple proxy sources. And multiple neighbors are randomly selected by the real source node as receivers until a proxy source receives the packet. In addition, the proxy source is chosen randomly, which can prevent the attacker from obtaining the location-related data of the real source node. At the same time, the scheme sets up a branch interference area around the base station to interfere with the adversary by increasing routing branches. Simulation results describe that our scheme can efficiently protect source and sink location privacy, reduce the communication overhead, and prolong the network lifetime.
Rimjhim, Roy, Pradeep Kumar, Prakash Singh, Jyoti.  2018.  Encircling the Base Station for Source Location Privacy in Wireless Sensor Networks. 2018 3rd International Conference on Computational Systems and Information Technology for Sustainable Solutions (CSITSS). :307–312.
Location Privacy breach in Wireless Sensor Networks (WSNs) cannot be controlled by encryption techniques as all the communications are signal based. Signal strength can be analyzed to reveal many routing information. Adversary takes advantage of this and tracks the incoming packet to know the direction of the packet. With the information of location of origin of packets, the Source is also exposed which is generating packets on sensing any object. Thus, the location of subject is exposed. For protecting such privacy breaches, routing schemes are used which create anonymization or diverts the adversary. In this paper, we are using `Dummy' packets that will be inserted into real traffic to confuse the adversary. The dummy packets are such inserted that they encircle the Sink or Base Station. These Dummy packets are send with a value of TTL (Time To Live) field such that they travel only a few hops. Since adversary starts backtracking from the Sink, it will be trapped in the dummy traffic. In our protocol, we are confusing adversary without introducing any delay in packet delivery. Adversary uses two common methods for knowing the source i.e. Traffic Analysis and Back-tracing. Mathematically and experimentally, our proposal is sound for both type of methods. Overhead is also balanced as packets will not live long.
Heigl, Michael, Schramm, Martin, Fiala, Dalibor.  2019.  A Lightweight Quantum-Safe Security Concept for Wireless Sensor Network Communication. 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :906–911.

The ubiquitous internetworking of devices in all areas of life is boosted by various trends for instance the Internet of Things. Promising technologies that can be used for such future environments come from Wireless Sensor Networks. It ensures connectivity between distributed, tiny and simple sensor nodes as well as sensor nodes and base stations in order to monitor physical or environmental conditions such as vibrations, temperature or motion. Security plays an increasingly important role in the coming decades in which attacking strategies are becoming more and more sophisticated. Contemporary cryptographic mechanisms face a great threat from quantum computers in the near future and together with Intrusion Detection Systems are hardly applicable on sensors due to strict resource constraints. Thus, in this work a future-proof lightweight and resource-aware security concept for sensor networks with a processing stage permeated filtering mechanism is proposed. A special focus in the concepts evaluation lies on the novel Magic Number filter to mitigate a special kind of Denial-of-Service attack performed on CC1350 LaunchPad ARM Cortex-M3 microcontroller boards.

Jain, Jay Kumar, Chauhan, Dipti.  2019.  Analytical Study on Mobile Ad Hoc Networks for IPV6. 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU). :1–6.
The ongoing progressions in wireless innovation have lead to the advancement of another remote framework called Mobile Ad hoc Networks. The Mobile Ad hoc Network is a self arranging system of wireless gadgets associated by wireless connections. The traditional protocol, for example, TCP/IP has restricted use in Mobile impromptu systems in light of the absence of portability and assets. This has lead to the improvement of many steering conventions, for example, proactive, receptive and half breed. One intriguing examination zone in MANET is steering. Steering in the MANETs is a testing assignment and has gotten a colossal measure of consideration from examines. An uncommon consideration is paid on to feature the combination of MANET with the critical highlights of IPv6, for example, coordinated security, start to finish correspondence. This has prompted advancement of various directing conventions for MANETs, and every creator of each developed convention contends that the technique proposed gives an improvement over various distinctive systems considered in the writing for a given system situation. In this way, it is very hard to figure out which conventions may perform best under various diverse system situations, for example, expanding hub thickness and traffic. In this paper, we give the ongoing expository investigation on MANETs for IPV6 systems.
Li, Nan, Varadharajan, Vijay, Nepal, Surya.  2019.  Context-Aware Trust Management System for IoT Applications with Multiple Domains. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1138–1148.
The Internet of Things (IoT) provides connectivity between heterogeneous devices in different applications, such as smart wildlife, supply chain and traffic management. Trust management system (TMS) assesses the trustworthiness of service with respect to its quality. Under different context information, a service provider may be trusted in one context but not in another. The existing context-aware trust models usually store trust values under different contexts and search the closest (to a given context) record to evaluate the trustworthiness of a service. However, it is not suitable for distributed resource-constrained IoT devices which have small memory and low power. Reputation systems are applied in many trust models where trustor obtains recommendations from others. In context-based trust evaluation, it requires interactive queries to find relevant information from remote devices. The communication overhead and energy consumption are issues in low power networks like 6LoWPAN. In this paper, we propose a new context-aware trust model for lightweight IoT devices. The proposed model provides a trustworthiness overview of a service provider without storing past behavior records, that is, constant size storage. The proposed model allows a trustor to decide the significance of context items. This could result in distinctive decisions under the same trustworthiness record. We also show the performance of the proposed model under different attacks.
Tariq, Mahak, Khan, Mashal, Fatima, Sana.  2018.  Detection of False Data in Wireless Sensor Network Using Hash Chain. 2018 International Conference on Applied and Engineering Mathematics (ICAEM). :126-129.

Wireless Sensor Network (WSN) is often to consist of adhoc devices that have low power, limited memory and computational power. WSN is deployed in hostile environment, due to which attacker can inject false data easily. Due to distributed nature of WSN, adversary can easily inject the bogus data into the network because sensor nodes don't ensure data integrity and not have strong authentication mechanism. This paper reviews and analyze the performance of some of the existing false data filtering schemes and propose new scheme to identify the false data injected by adversary or compromised node. Proposed schemes shown better and efficiently filtrate the false data in comparison with existing schemes.

Zhou, Liming, Shan, Yingzi, Chen, Xiaopan.  2019.  An Anonymous Routing Scheme for Preserving Location Privacy in Wireless Sensor Networks. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :262-265.

Wireless sensor networks consist of various sensors that are deployed to monitor the physical world. And many existing security schemes use traditional cryptography theory to protect message content and contextual information. However, we are concerned about location security of nodes. In this paper, we propose an anonymous routing strategy for preserving location privacy (ARPLP), which sets a proxy source node to hide the location of real source node. And the real source node randomly selects several neighbors as receivers until the packets are transmitted to the proxy source. And the proxy source is randomly selected so that the adversary finds it difficult to obtain the location information of the real source node. Meanwhile, our scheme sets a branch area around the sink, which can disturb the adversary by increasing the routing branch. According to the analysis and simulation experiments, our scheme can reduce traffic consumption and communication delay, and improve the security of source node and base station.

Hussain, Muzzammil, Swami, Tulsi.  2018.  Primary User Authentication in Cognitive Radio Network Using Pre-Generated Hash Digest. 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :903-908.

The primary objective of Cognitive Radio Networks (CRN) is to opportunistically utilize the available spectrum for efficient and seamless communication. Like all other radio networks, Cognitive Radio Network also suffers from a number of security attacks and Primary User Emulation Attack (PUEA) is vital among them. Primary user Emulation Attack not only degrades the performance of the Cognitive Radio Networks but also dissolve the objective of Cognitive Radio Network. Efficient and secure authentication of Primary Users (PU) is an only solution to mitigate Primary User Emulation Attack but most of the mechanisms designed for this are either complex or make changes to the spectrum. Here, we proposed a mechanism to authenticate Primary Users in Cognitive Radio Network which is neither complex nor make any changes to spectrum. The proposed mechanism is secure and also has improved the performance of the Cognitive Radio Network substantially.

Sejaphala, Lanka, Velempini, Mthulisi, Dlamini, Sabelo Velemseni.  2018.  HCOBASAA: Countermeasure Against Sinkhole Attacks in Software-Defined Wireless Sensor Cognitive Radio Networks. 2018 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD). :1-5.

Software-defined wireless sensor cognitive radio network is one of the emerging technologies which is simple, agile, and flexible. The sensor network comprises of a sink node with high processing power. The sensed data is transferred to the sink node in a hop-by-hop basis by sensor nodes. The network is programmable, automated, agile, and flexible. The sensor nodes are equipped with cognitive radios, which sense available spectrum bands and transmit sensed data on available bands, which improves spectrum utilization. Unfortunately, the Software-defined wireless sensor cognitive radio network is prone to security issues. The sinkhole attack is the most common attack which can also be used to launch other attacks. We propose and evaluate the performance of Hop Count-Based Sinkhole Attack detection Algorithm (HCOBASAA) using probability of detection, probability of false negative, and probability of false positive as the performance metrics. On average HCOBASAA managed to yield 100%, 75%, and 70% probability of detection.

Sahu, Abhijeet, Goulart, Ana.  2019.  Implementation of a C-UNB Module for NS-3 and Validation for DLMS-COSEM Application Layer Protocol. 2019 IEEE ComSoc International Communications Quality and Reliability Workshop (CQR). :1-6.

The number of sensors and embedded devices in an urban area can be on the order of thousands. New low-power wide area (LPWA) wireless network technologies have been proposed to support this large number of asynchronous, low-bandwidth devices. Among them, the Cooperative UltraNarrowband (C-UNB) is a clean-slate cellular network technology to connect these devices to a remote site or data collection server. C-UNB employs small bandwidth channels, and a lightweight random access protocol. In this paper, a new application is investigated - the use of C-UNB wireless networks to support the Advanced Metering Infrastructure (AMI), in order to facilitate the communication between smart meters and utilities. To this end, we adapted a mathematical model for C-UNB, and implemented a network simulation module in NS-3 to represent C-UNB's physical and medium access control layer. For the application layer, we implemented the DLMS-COSEM protocol, or Device Language Message Specification - Companion Specification for Energy Metering. Details of the simulation module are presented and we conclude that it supports the results of the mathematical model.

Ghonge, M. M., Jawandhiya, P. M., Thakare, V. M..  2018.  Reputation and trust based selfish node detection system in MANETs. 2018 2nd International Conference on Inventive Systems and Control (ICISC). :661–667.

With the progress over technology, it is becoming viable to set up mobile ad hoc networks for non-military services as like well. Examples consist of networks of cars, law about communication facilities into faraway areas, and exploiting the solidity between urban areas about present nodes such as cellular telephones according to offload or otherwise keep away from using base stations. In such networks, there is no strong motive according to assume as the nodes cooperate. Some nodes may also be disruptive and partial may additionally attempt according to save sources (e.g. battery power, memory, CPU cycles) through “selfish” behavior. The proposed method focuses on the robustness of packet forwarding: keeping the usual packet throughput over a mobile ad hoc network in the rear regarding nodes that misbehave at the routing layer. Proposed system listen at the routing layer or function no longer try after address attacks at lower layers (eg. jamming the network channel) and passive attacks kind of eavesdropping. Moreover such functionate now not bear together with issues kind of node authentication, securing routes, or message encryption. Proposed solution addresses an orthogonal problem the encouragement concerning proper routing participation.

Ali, S., Khan, M. A., Ahmad, J., Malik, A. W., ur Rehman, A..  2018.  Detection and Prevention of Black Hole Attacks in IOT Amp;Amp; WSN. 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC). :217–226.

Wireless Sensor Network is the combination of small devices called sensor nodes, gateways and software. These nodes use wireless medium for transmission and are capable to sense and transmit the data to other nodes. Generally, WSN composed of two types of nodes i.e. generic nodes and gateway nodes. Generic nodes having the ability to sense while gateway nodes are used to route that information. IoT now extended to IoET (internet of Everything) to cover all electronics exist around, like a body sensor networks, VANET's, smart grid stations, smartphone, PDA's, autonomous cars, refrigerators and smart toasters that can communicate and share information using existing network technologies. The sensor nodes in WSN have very limited transmission range as well as limited processing speed, storage capacities and low battery power. Despite a wide range of applications using WSN, its resource constrained nature given birth to a number severe security attacks e.g. Selective Forwarding attack, Jamming-attack, Sinkhole attack, Wormhole attack, Sybil attack, hello Flood attacks, Grey Hole, and the most dangerous BlackHole Attacks. Attackers can easily exploit these vulnerabilities to compromise the WSN network.