Visible to the public Biblio

Filters: Keyword is vehicular ad hoc networks  [Clear All Filters]
2019-12-18
Guleria, Charu, Verma, Harsh Kumar.  2018.  Improved Detection and Mitigation of DDoS Attack in Vehicular ad hoc Network. 2018 4th International Conference on Computing Communication and Automation (ICCCA). :1–4.
Vehicular ad hoc networks (VANETs) are eminent type of Mobile ad hoc Networks. The network created in VANETs is quite prone to security problem. In this work, a new mechanism is proposed to study the security of VANETs against DDoS attack. The proposed mechanism focuses on distributed denial of service attacks. The main idea of the paper is to detect the DDoS attack and mitigate it. The work consists of two stages, initially attack topology and network congestion is created. The second stage is to detect and mitigate the DDoS attack. The existing method is compared with the proposed method for mitigating DDoS attacks in VANETs. The existing solutions presented by the various researchers are also compared and analyzed. The solution for such kind of problem is provided which is used to detect and mitigate DDoS attack by using greedy approach. The network environment is created using NS-2. The results of simulation represent that the proposed approach is better in the terms of network packet loss, routing overhead and network throughput.
2019-11-18
Lu, Zhaojun, Wang, Qian, Qu, Gang, Liu, Zhenglin.  2018.  BARS: A Blockchain-Based Anonymous Reputation System for Trust Management in VANETs. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :98–103.
The public key infrastructure (PKI) based authentication protocol provides the basic security services for vehicular ad-hoc networks (VANETs). However, trust and privacy are still open issues due to the unique characteristics of vehicles. It is crucial for VANETs to prevent internal vehicles from broadcasting forged messages while simultaneously protecting the privacy of each vehicle against tracking attacks. In this paper, we propose a blockchain-based anonymous reputation system (BARS) to break the linkability between real identities and public keys to preserve privacy. The certificate and revocation transparency is implemented efficiently using two blockchains. We design a trust model to improve the trustworthiness of messages relying on the reputation of the sender based on both direct historical interactions and indirect opinions about the sender. Experiments are conducted to evaluate BARS in terms of security and performance and the results show that BARS is able to establish distributed trust management, while protecting the privacy of vehicles.
2019-08-05
Sun, M., Li, M., Gerdes, R..  2018.  Truth-Aware Optimal Decision-Making Framework with Driver Preferences for V2V Communications. 2018 IEEE Conference on Communications and Network Security (CNS). :1-9.

In Vehicle-to-Vehicle (V2V) communications, malicious actors may spread false information to undermine the safety and efficiency of the vehicular traffic stream. Thus, vehicles must determine how to respond to the contents of messages which maybe false even though they are authenticated in the sense that receivers can verify contents were not tampered with and originated from a verifiable transmitter. Existing solutions to find appropriate actions are inadequate since they separately address trust and decision, require the honest majority (more honest ones than malicious), and do not incorporate driver preferences in the decision-making process. In this work, we propose a novel trust-aware decision-making framework without requiring an honest majority. It securely determines the likelihood of reported road events despite the presence of false data, and consequently provides the optimal decision for the vehicles. The basic idea of our framework is to leverage the implied effect of the road event to verify the consistency between each vehicle's reported data and actual behavior, and determine the data trustworthiness and event belief by integrating the Bayes' rule and Dempster Shafer Theory. The resulting belief serves as inputs to a utility maximization framework focusing on both safety and efficiency. This framework considers the two basic necessities of the Intelligent Transportation System and also incorporates drivers' preferences to decide the optimal action. Simulation results show the robustness of our framework under the multiple-vehicle attack, and different balances between safety and efficiency can be achieved via selecting appropriate human preference factors based on the driver's risk-taking willingness.

Ahmad, F., Adnane, A., KURUGOLLU, F., Hussain, R..  2019.  A Comparative Analysis of Trust Models for Safety Applications in IoT-Enabled Vehicular Networks. 2019 Wireless Days (WD). :1-8.
Vehicular Ad-hoc NETwork (VANET) is a vital transportation technology that facilitates the vehicles to share sensitive information (such as steep-curve warnings and black ice on the road) with each other and with the surrounding infrastructure in real-time to avoid accidents and enable comfortable driving experience.To achieve these goals, VANET requires a secure environment for authentic, reliable and trusted information dissemination among the network entities. However, VANET is prone to different attacks resulting in the dissemination of compromised/false information among network nodes. One way to manage a secure and trusted network is to introduce trust among the vehicular nodes. To this end, various Trust Models (TMs) are developed for VANET and can be broadly categorized into three classes, Entity-oriented Trust Models (ETM), Data oriented Trust Models (DTM) and Hybrid Trust Models (HTM). These TMs evaluate trust based on the received information (data), the vehicle (entity) or both through different mechanisms. In this paper, we present a comparative study of the three TMs. Furthermore, we evaluate these TMs against the different trust, security and quality-of-service related benchmarks. Simulation results revealed that all these TMs have deficiencies in terms of end-to-end delays, event detection probabilities and false positive rates. This study can be used as a guideline for researchers to design new efficient and effective TMs for VANET.
2019-06-10
Arsalan, A., Rehman, R. A..  2018.  Prevention of Timing Attack in Software Defined Named Data Network with VANETs. 2018 International Conference on Frontiers of Information Technology (FIT). :247–252.

Software Defined Network (SDN) is getting popularity both from academic and industry. Lot of researches have been made to combine SDN with future Internet paradigms to manage and control networks efficiently. SDN provides better management and control in a network through decoupling of data and control plane. Named Data Networking (NDN) is a future Internet technique with aim to replace IPv4 addressing problems. In NDN, communication between different nodes done on the basis of content names rather than IP addresses. Vehicular Ad-hoc Network (VANET) is a subtype of MANET which is also considered as a hot area for future applications. Different vehicles communicate with each other to form a network known as VANET. Communication between VANET can be done in two ways (i) Vehicle to Vehicle (V2V) (ii) Vehicle to Infrastructure (V2I). Combination of SDN and NDN techniques in future Internet can solve lot of problems which were hard to answer by considering a single technique. Security in VANET is always challenging due to unstable topology of VANET. In this paper, we merge future Internet techniques and propose a new scheme to answer timing attack problem in VANETs named as Timing Attack Prevention (TAP) protocol. Proposed scheme is evaluated through simulations which shows the superiority of proposed protocol regarding detection and mitigation of attacker vehicles as compared to normal timing attack scenario in NDN based VANET.

2019-05-01
Lu, X., Wan, X., Xiao, L., Tang, Y., Zhuang, W..  2018.  Learning-Based Rogue Edge Detection in VANETs with Ambient Radio Signals. 2018 IEEE International Conference on Communications (ICC). :1-6.
Edge computing for mobile devices in vehicular ad hoc networks (VANETs) has to address rogue edge attacks, in which a rogue edge node claims to be the serving edge in the vehicle to steal user secrets and help launch other attacks such as man-in-the-middle attacks. Rogue edge detection in VANETs is more challenging than the spoofing detection in indoor wireless networks due to the high mobility of onboard units (OBUs) and the large-scale network infrastructure with roadside units (RSUs). In this paper, we propose a physical (PHY)- layer rogue edge detection scheme for VANETs according to the shared ambient radio signals observed during the same moving trace of the mobile device and the serving edge in the same vehicle. In this scheme, the edge node under test has to send the physical properties of the ambient radio signals, including the received signal strength indicator (RSSI) of the ambient signals with the corresponding source media access control (MAC) address during a given time slot. The mobile device can choose to compare the received ambient signal properties and its own record or apply the RSSI of the received signals to detect rogue edge attacks, and determines test threshold in the detection. We adopt a reinforcement learning technique to enable the mobile device to achieve the optimal detection policy in the dynamic VANET without being aware of the VANET model and the attack model. Simulation results show that the Q-learning based detection scheme can significantly reduce the detection error rate and increase the utility compared with existing schemes.
2019-04-01
Zhang, X., Li, R., Cui, B..  2018.  A security architecture of VANET based on blockchain and mobile edge computing. 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN). :258–259.

The development of Vehicular Ad-hoc NETwork (VANET) has brought many conveniences to human beings, but also brings a very prominent security problem. The traditional solution to the security problem is based on centralized approach which requires a trusted central entity which exists a single point of failure problem. Moreover, there is no approach of technical level to ensure security of data. Therefore, this paper proposes a security architecture of VANET based on blockchain and mobile edge computing. The architecture includes three layers, namely perception layer, edge computing layer and service layer. The perception layer ensures the security of VANET data in the transmission process through the blockchain technology. The edge computing layer provides computing resources and edge cloud services to the perception layer. The service layer uses the combination of traditional cloud storage and blockchain to ensure the security of data.

2019-03-11
Zhang, Dajun, Yu, F. Richard, Yang, Ruizhe, Tang, Helen.  2018.  A Deep Reinforcement Learning-based Trust Management Scheme for Software-defined Vehicular Networks. Proceedings of the 8th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications. :1–7.
Vehicular ad hoc networks (VANETs) have become a promising technology in intelligent transportation systems (ITS) with rising interest of expedient, safe, and high-efficient transportation. VANETs are vulnerable to malicious nodes and result in performance degradation because of dynamicity and infrastructure-less. In this paper, we propose a trust based dueling deep reinforcement learning approach (T-DDRL) for communication of connected vehicles, we deploy a dueling network architecture into a logically centralized controller of software-defined networking (SDN). Specifically, the SDN controller is used as an agent to learn the most trusted routing path by deep neural network (DNN) in VANETs, where the trust model is designed to evaluate neighbors' behaviour of forwarding routing information. Simulation results are presented to show the effectiveness of the proposed T-DDRL framework.
2019-02-18
Iwendi, C., Uddin, M., Ansere, J. A., Nkurunziza, P., Anajemba, J. H., Bashir, A. K..  2018.  On Detection of Sybil Attack in Large-Scale VANETs Using Spider-Monkey Technique. IEEE Access. 6:47258–47267.
Sybil security threat in vehicular ad hoc networks (VANETs) has attracted much attention in recent times. The attacker introduces malicious nodes with multiple identities. As the roadside unit fails to synchronize its clock with legitimate vehicles, unintended vehicles are identified, and therefore erroneous messages will be sent to them. This paper proposes a novel biologically inspired spider-monkey time synchronization technique for large-scale VANETs to boost packet delivery time synchronization at minimized energy consumption. The proposed technique is based on the metaheuristic stimulated framework approach by the natural spider-monkey behavior. An artificial spider-monkey technique is used to examine the Sybil attacking strategies on VANETs to predict the number of vehicular collisions in a densely deployed challenge zone. Furthermore, this paper proposes the pseudocode algorithm randomly distributed for energy-efficient time synchronization in two-way packet delivery scenarios to evaluate the clock offset and the propagation delay in transmitting the packet beacon message to destination vehicles correctly. The performances of the proposed technique are compared with existing protocols. It performs better over long transmission distances for the detection of Sybil in dynamic VANETs' system in terms of measurement precision, intrusion detection rate, and energy efficiency.
2019-01-31
Kazemi, M., Delavar, M., Mohajeri, J., Salmasizadeh, M..  2018.  On the Security of an Efficient Anonymous Authentication with Conditional Privacy-Preserving Scheme for Vehicular Ad Hoc Networks. Iranian Conference on Electrical Engineering (ICEE). :510–514.

Design of anonymous authentication scheme is one of the most important challenges in Vehicular Ad hoc Networks (VANET). Most of the existing schemes have high computational and communication overhead and they do not meet security requirements. Recently, Azees et al. have introduced an Efficient Anonymous Authentication with Conditional Privacy-Preserving (EAAP) scheme for VANET and claimed that it is secure. In this paper, we show that this protocol is vulnerable against replay attack, impersonation attack and message modification attack. Also, we show that the messages sent by a vehicle are linkable. Therefore, an adversary can easily track the vehicles. In addition, it is shown that vehicles face with some problems when they enter in a new Trusted Authority (TA) range. As a solution, we propose a new authentication protocol which is more secure than EAAP protocol without increasing its computational and communication overhead.

2019-01-21
Khalil, M., Azer, M. A..  2018.  Sybil attack prevention through identity symmetric scheme in vehicular ad-hoc networks. 2018 Wireless Days (WD). :184–186.

Vehicular Ad-hoc Networks (VANETs) are a subset of Mobile Ad-hoc Networks (MANETs). They are deployed to introduce the ability of inter-communication among vehicles in order to guarantee safety and provide services for people while driving. VANETs are exposed to many types of attacks like denial of service, spoofing, ID disclosure and Sybil attacks. In this paper, a novel lightweight approach for preventing Sybil attack in VANETs is proposed. The presented protocol scheme uses symmetric key encryption and authentication between Road Side Units (RSUs) and vehicles on the road so that no malicious vehicle could gain more than one identity inside the network. This protocol does not need managers for Road Side Units (RSUs) or Certification Authority (CA) and uses minimum amount of messages exchanged with RSU making the scheme efficient and effective.

Houmer, M., Hasnaoui, M. L., Elfergougui, A..  2018.  Security Analysis of Vehicular Ad-hoc Networks based on Attack Tree. 2018 International Conference on Selected Topics in Mobile and Wireless Networking (MoWNeT). :21–26.

Nowadays, Vehicular ad hoc network confronts many challenges in terms of security and privacy, due to the fact that data transmitted are diffused in an open access environment. However, highest of drivers want to maintain their information discreet and protected, and they do not want to share their confidential information. So, the private information of drivers who are distributed in this network must be protected against various threats that may damage their privacy. That is why, confidentiality, integrity and availability are the important security requirements in VANET. This paper focus on security threat in vehicle network especially on the availability of this network. Then we regard the rational attacker who decides to lead an attack based on its adversary's strategy to maximize its own attack interests. Our aim is to provide reliability and privacy of VANET system, by preventing attackers from violating and endangering the network. to ensure this objective, we adopt a tree structure called attack tree to model the attacker's potential attack strategies. Also, we join the countermeasures to the attack tree in order to build attack-defense tree for defending these attacks.

2018-10-26
Tiwari, V., Chaurasia, B. K..  2017.  Security issues in fog computing using vehicular cloud. 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC). :1–4.

In the near future, vehicular cloud will help to improve traffic safety and efficiency. Unfortunately, a computing of vehicular cloud and fog cloud faced a set of challenges in security, authentication, privacy, confidentiality and detection of misbehaving vehicles. In addition to, there is a need to recognize false messages from received messages in VANETs during moving on the road. In this work, the security issues and challenges for computing in the vehicular cloud over for computing is studied.

2018-06-20
Waraich, P. S., Batra, N..  2017.  Prevention of denial of service attack over vehicle ad hoc networks using quick response table. 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC). :586–591.

Secure routing over VANET is a major issue due to its high mobility environment. Due to dynamic topology, routes are frequently updated and also suffers from link breaks due to the obstacles i.e. buildings, tunnels and bridges etc. Frequent link breaks can cause packet drop and thus result in degradation of network performance. In case of VANETs, it becomes very difficult to identify the reason of the packet drop as it can also occur due to the presence of a security threat. VANET is a type of wireless adhoc network and suffer from common attacks which exist for mobile adhoc network (MANET) i.e. Denial of Services (DoS), Black hole, Gray hole and Sybil attack etc. Researchers have already developed various security mechanisms for secure routing over MANET but these solutions are not fully compatible with unique attributes of VANET i.e. vehicles can communicate with each other (V2V) as well as communication can be initiated with infrastructure based network (V2I). In order to secure the routing for both types of communication, there is need to develop a solution. In this paper, a method for secure routing is introduced which can identify as well as eliminate the existing security threat.

Ranjana, S. A., Sterlin, C. L. S., Benita, W. V., Sam, B. B..  2017.  Secure and concealment in cluster based framework on vehicular networks. 2017 International Conference on Information Communication and Embedded Systems (ICICES). :1–6.

Vehicular ad hoc network is based on MANET all the vehicle to vehicle and vehicle roadside are connected to the wireless sensor network. In this paper mainly discuss on the security in the VANET in the lightweight cloud environment. Moving vehicle on the roadside connected through the sensor nodes and to provide communication between the vehicles and directly connected to the centralized environment. We propose a new approach to share the information in the VANET networks in secure manner through cloud.

Deeksha, Kumar, A., Bansal, M..  2017.  A review on VANET security attacks and their countermeasure. 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC). :580–585.

In the development of smart cities across the world VANET plays a vital role for optimized route between source and destination. The VANETs is based on infra-structure less network. It facilitates vehicles to give information about safety through vehicle to vehicle communication (V2V) or vehicle to infrastructure communication (V2I). In VANETs wireless communication between vehicles so attackers violate authenticity, confidentiality and privacy properties which further effect security. The VANET technology is encircled with security challenges these days. This paper presents overview on VANETs architecture, a related survey on VANET with major concern of the security issues. Further, prevention measures of those issues, and comparative analysis is done. From the survey, found out that encryption and authentication plays an important role in VANETS also some research direction defined for future work.

Zhang, L., Li, C., Li, Y., Luo, Q., Zhu, R..  2017.  Group signature based privacy protection algorithm for mobile ad hoc network. 2017 IEEE International Conference on Information and Automation (ICIA). :947–952.

Nowadays, Vehicular ad hoc Network as a special class of Mobile ad hoc Network(MANET), provides plenty of services. However, it also brings the privacy protection issues, and there are conflicts between the privacy protection and the services. In this paper, we will propose a privacy protection algorithm based on group signature including two parts, group signature based anonymous verification and batch verification. The anonymous verification is based on the network model we proposed, which can reduce the trust authority burden by dividing the roadside units into different levels, and the batch verification can reduce the time of message verification in one group. We also prove our algorithm can satisfy the demand of privacy protection. Finally, the simulation shows that the algorithm we proposed is better than the BBS on the length of the signature, time delay and packet loss rate.

2018-06-11
Chen, C. W., Chang, S. Y., Hu, Y. C., Chen, Y. W..  2017.  Protecting vehicular networks privacy in the presence of a single adversarial authority. 2017 IEEE Conference on Communications and Network Security (CNS). :1–9.

In vehicular networks, each message is signed by the generating node to ensure accountability for the contents of that message. For privacy reasons, each vehicle uses a collection of certificates, which for accountability reasons are linked at a central authority. One such design is the Security Credential Management System (SCMS) [1], which is the leading credential management system in the US. The SCMS is composed of multiple components, each of which has a different task for key management, which are logically separated. The SCMS is designed to ensure privacy against a single insider compromise, or against outside adversaries. In this paper, we demonstrate that the current SCMS design fails to achieve its design goal, showing that a compromised authority can gain substantial information about certificate linkages. We propose a solution that accommodates threshold-based detection, but uses relabeling and noise to limit the information that can be learned from a single insider adversary. We also analyze our solution using techniques from differential privacy and validate it using traffic-simulator based experiments. Our results show that our proposed solution prevents privacy information leakage against the compromised authority in collusion with outsider attackers.

Zhang, X., Li, R., Zhao, W., Wu, R..  2017.  Detection of malicious nodes in NDN VANET for Interest Packet Popple Broadcast Diffusion Attack. 2017 11th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID). :114–118.

As one of the next generation network architectures, Named Data Networking(NDN) which features location-independent addressing and content caching makes it more suitable to be deployed into Vehicular Ad-hoc Network(VANET). However, a new attack pattern is found when NDN and VANET combine. This new attack is Interest Packet Popple Broadcast Diffusion Attack (PBDA). There is no mitigation strategies to mitigate PBDA. In this paper a mitigation strategies called RVMS based on node reputation value (RV) is proposed to detect malicious nodes. The node calculates the neighbor node RV by direct and indirect RV evaluation and uses Markov chain predict the current RV state of the neighbor node according to its historical RV. The RV state is used to decide whether to discard the interest packet. Finally, the effectiveness of the RVMS is verified through modeling and experiment. The experimental results show that the RVMS can mitigate PBDA.

2018-05-30
Lin, B., Chen, X., Wang, L..  2017.  A Cloud-Based Trust Evaluation Scheme Using a Vehicular Social Network Environment. 2017 24th Asia-Pacific Software Engineering Conference (APSEC). :120–129.

New generation communication technologies (e.g., 5G) enhance interactions in mobile and wireless communication networks between devices by supporting a large-scale data sharing. The vehicle is such kind of device that benefits from these technologies, so vehicles become a significant component of vehicular networks. Thus, as a classic application of Internet of Things (IoT), the vehicular network can provide more information services for its human users, which makes the vehicular network more socialized. A new concept is then formed, namely "Vehicular Social Networks (VSNs)", which bring both benefits of data sharing and challenges of security. Traditional public key infrastructures (PKI) can guarantee user identity authentication in the network; however, PKI cannot distinguish untrustworthy information from authorized users. For this reason, a trust evaluation mechanism is required to guarantee the trustworthiness of information by distinguishing malicious users from networks. Hence, this paper explores a trust evaluation algorithm for VSNs and proposes a cloud-based VSN architecture to implement the trust algorithm. Experiments are conducted to investigate the performance of trust algorithm in a vehicular network environment through building a three-layer VSN model. Simulation results reveal that the trust algorithm can be efficiently implemented by the proposed three-layer model.

2018-05-02
Gu, P., Khatoun, R., Begriche, Y., Serhrouchni, A..  2017.  Support Vector Machine (SVM) Based Sybil Attack Detection in Vehicular Networks. 2017 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.

Vehicular networks have been drawing special atten- tion in recent years, due to its importance in enhancing driving experience and improving road safety in future smart city. In past few years, several security services, based on cryptography, PKI and pseudonymous, have been standardized by IEEE and ETSI. However, vehicular networks are still vulnerable to various attacks, especially Sybil attack. In this paper, a Support Vector Machine (SVM) based Sybil attack detection method is proposed. We present three SVM kernel functions based classifiers to distinguish the malicious nodes from benign ones via evaluating the variance in their Driving Pattern Matrices (DPMs). The effectiveness of our proposed solution is evaluated through extensive simulations based on SUMO simulator and MATLAB. The results show that the proposed detection method can achieve a high detection rate with low error rate even under a dynamic traffic environment.

Yao, Y., Xiao, B., Wu, G., Liu, X., Yu, Z., Zhang, K., Zhou, X..  2017.  Voiceprint: A Novel Sybil Attack Detection Method Based on RSSI for VANETs. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :591–602.

Vehicular Ad Hoc Networks (VANETs) enable vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications that bring many benefits and conveniences to improve the road safety and drive comfort in future transportation systems. Sybil attack is considered one of the most risky threats in VANETs since a Sybil attacker can generate multiple fake identities with false messages to severely impair the normal functions of safety-related applications. In this paper, we propose a novel Sybil attack detection method based on Received Signal Strength Indicator (RSSI), Voiceprint, to conduct a widely applicable, lightweight and full-distributed detection for VANETs. To avoid the inaccurate position estimation according to predefined radio propagation models in previous RSSI-based detection methods, Voiceprint adopts the RSSI time series as the vehicular speech and compares the similarity among all received time series. Voiceprint does not rely on any predefined radio propagation model, and conducts independent detection without the support of the centralized infrastructure. It has more accurate detection rate in different dynamic environments. Extensive simulations and real-world experiments demonstrate that the proposed Voiceprint is an effective method considering the cost, complexity and performance.

Garip, M. T., Kim, P. H., Reiher, P., Gerla, M..  2017.  INTERLOC: An interference-aware RSSI-based localization and sybil attack detection mechanism for vehicular ad hoc networks. 2017 14th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–6.

Vehicular ad hoc networks (VANETs) are designed to provide traffic safety by exploiting the inter-vehicular communications. Vehicles build awareness of traffic in their surroundings using information broadcast by other vehicles, such as speed, location and heading, to proactively avoid collisions. The effectiveness of these VANET traffic safety applications is particularly dependent on the accuracy of the location information advertised by each vehicle. Therefore, traffic safety can be compromised when Sybil attackers maliciously advertise false locations or other inaccurate GPS readings are sent. The most effective way to detect a Sybil attack or correct the noise in the GPS readings is localizing vehicles based on the physical features of their transmission signals. The current localization techniques either are designed for networks where the nodes are immobile or suffer from inaccuracy in high-interference environments. In this paper, we present a RSSI-based localization technique that uses mobile nodes for localizing another mobile node and adjusts itself based on the heterogeneous interference levels in the environment. We show via simulation that our localization mechanism is more accurate than the other mechanisms and more resistant to environments with high interference and mobility.

2018-03-05
Khan, J..  2017.  Vehicle Network Security Testing. 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS). :119–123.

In-vehicle networks like Controller Area Network, FlexRay, Ethernet are now subjected to huge security threats where unauthorized entities can take control of the whole vehicle. This can pose very serious threats including accidents. Security features like encryption, message authentication are getting implemented in vehicle networks to counteract these issues. This paper is proposing a set of novel validation techniques to ensure that vehicle network security is fool proof. Security validation against requirements, security validation using white box approach, black box approach and grey box approaches are put forward. Test system architecture, validation of message authentication, decoding the patterns from vehicle network data, using diagnostics as a security loophole, V2V V2X loopholes, gateway module security testing are considered in detail. Aim of this research paper is to put forward a set of tools and methods for finding and reporting any security loopholes in the in-vehicle network security implementation.

2018-02-02
Chowdhury, M., Gawande, A., Wang, L..  2017.  Secure Information Sharing among Autonomous Vehicles in NDN. 2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI). :15–26.

Autonomous vehicles must communicate with each other effectively and securely to make robust decisions. However, today's Internet falls short in supporting efficient data delivery and strong data security, especially in a mobile ad-hoc environment. Named Data Networking (NDN), a new data-centric Internet architecture, provides a better foundation for secure data sharing among autonomous vehicles. We examine two potential threats, false data dissemination and vehicle tracking, in an NDN-based autonomous vehicular network. To detect false data, we propose a four-level hierarchical trust model and the associated naming scheme for vehicular data authentication. Moreover, we address vehicle tracking concerns using a pseudonym scheme to anonymize vehicle names and certificate issuing proxies to further protect vehicle identity. Finally, we implemented and evaluated our AutoNDN application on Raspberry Pi-based mini cars in a wireless environment.