Visible to the public Biblio

Filters: Keyword is VANET  [Clear All Filters]
2021-08-02
Mustafa, Ahmed Shamil, Hamdi, Mustafa Maad, Mahdi, Hussain Falih, Abood, Mohammed Salah.  2020.  VANET: Towards Security Issues Review. 2020 IEEE 5th International Symposium on Telecommunication Technologies (ISTT). :151–156.
The Ad-hoc vehicle networks (VANETs) recently stressed communications and networking technologies. VANETs vary from MANETs in tasks, obstacles, system architecture and operation. Smart vehicles and RSUs communicate through unsafe wireless media. By nature, they are vulnerable to threats that can lead to life-threatening circumstances. Due to potentially bad impacts, security measures are needed to recognize these VANET assaults. In this review paper of VANET security, the new VANET approaches are summarized by addressing security complexities. Second, we're reviewing these possible threats and literature recognition mechanisms. Finally, the attacks and their effects are identified and clarified and the responses addressed together.
2021-06-28
Dahiya, Rohan, Jiang, Frank, Doss, Robin Ram.  2020.  A Feedback-Driven Lightweight Reputation Scheme for IoV. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1060–1068.
Most applications of Internet of Vehicles (IoVs) rely on collaboration between nodes. Therefore, false information flow in-between these nodes poses the challenging trust issue in rapidly moving IoV nodes. To resolve this issue, a number of mechanisms have been proposed in the literature for the detection of false information and establishment of trust in IoVs, most of which employ reputation scores as one of the important factors. However, it is critical to have a robust and consistent scheme that is suitable to aggregate a reputation score for each node based on the accuracy of the shared information. Such a mechanism has therefore been proposed in this paper. The proposed system utilises the results of any false message detection method to generate and share feedback in the network, this feedback is then collected and filtered to remove potentially malicious feedback in order to produce a dynamic reputation score for each node. The reputation system has been experimentally validated and proved to have high accuracy in the detection of malicious nodes sending false information and is robust or negligibly affected in the presence of spurious feedback.
2021-05-25
Baccari, Sihem, Touati, Haifa, Hadded, Mohamed, Muhlethaler, Paul.  2020.  Performance Impact Analysis of Security Attacks on Cross-Layer Routing Protocols in Vehicular Ad hoc Networks. 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). :1—6.

Recently, several cross-layer protocols have been designed for vehicular networks to optimize data dissemination by ensuring internal communications between routing and MAC layers. In this context, a cross-layer protocol, called TDMA-aware Routing Protocol for Multi-hop communications (TRPM), was proposed in order to efficiently select a relay node based on time slot scheduling information obtained from the MAC layer. However, due to the constant evolution of cyber-attacks on the routing and MAC layers, data dissemination in vehicular networks is vulnerable to several types of attack. In this paper, we identify the different attack models that can disrupt the cross-layer operation of the TRPM protocol and assess their impact on performance through simulation. Several new vulnerabilities related to the MAC slot scheduling process are identified. Exploiting of these vulnerabilities would lead to severe channel capacity wastage where up to half of the free slots could not be reserved.

2021-05-13
Aghabagherloo, Alireza, Mohajeri, Javad, Salmasizadeh, Mahmoud, Feghhi, Mahmood Mohassel.  2020.  An Efficient Anonymous Authentication Scheme Using Registration List in VANETs. 2020 28th Iranian Conference on Electrical Engineering (ICEE). :1—5.

Nowadays, Vehicular Ad hoc Networks (VANETs) are popularly known as they can reduce traffic and road accidents. These networks need several security requirements, such as anonymity, data authentication, confidentiality, traceability and cancellation of offending users, unlinkability, integrity, undeniability and access control. Authentication of the data and sender are most important security requirements in these networks. So many authentication schemes have been proposed up to now. One of the well-known techniques to provide users authentication in these networks is the authentication based on the smartcard (ASC). In this paper, we propose an ASC scheme that not only provides necessary security requirements such as anonymity, traceability and unlinkability in the VANETs but also is more efficient than the other schemes in the literatures.

2021-03-09
Fiade, A., Triadi, A. Yudha, Sulhi, A., Masruroh, S. Ummi, Handayani, V., Suseno, H. Bayu.  2020.  Performance Analysis of Black Hole Attack and Flooding Attack AODV Routing Protocol on VANET (Vehicular Ad-Hoc Network). 2020 8th International Conference on Cyber and IT Service Management (CITSM). :1–5.
Wireless technology is widely used today and is growing rapidly. One of the wireless technologies is VANET where the network can communicate with vehicles (V2V) which can prevent accidents on the road. Energy is also a problem in VANET so it needs to be used efficiently. The presence of malicious nodes or nodes can eliminate and disrupt the process of data communication. The routing protocol used in this study is AODV. The purpose of this study is to analyze the comparison of blackhole attack and flooding attack against energy-efficient AODV on VANET. This research uses simulation methods and several supporting programs such as OpenStreetMap, SUMO, NS2, NAM, and AWK to test the AODV routing protocol. Quality of service (QOS) parameters used in this study are throughput, packet loss, and end to end delay. Energy parameters are also used to examine the energy efficiency used. This study uses the number of variations of nodes consisting of 20 nodes, 40 nodes, 60 nodes, and different network conditions, namely normal network conditions, network conditions with black hole attacks, and network conditions with flooding attacks. The results obtained can be concluded that the highest value of throughput when network conditions are normal, the greatest value of packet loss when there is a black hole attack, the highest end to end delay value and the largest remaining energy when there is a flooding attack.
2020-12-28
Padmapriya, S., Valli, R., Jayekumar, M..  2020.  Monitoring Algorithm in Malicious Vehicular Adhoc Networks. 2020 International Conference on System, Computation, Automation and Networking (ICSCAN). :1—6.

Vehicular Adhoc Networks (VANETs) ensures road safety by communicating with a set of smart vehicles. VANET is a subset of Mobile Adhoc Networks (MANETs). VANET enabled vehicles helps in establishing communication services among one another or with the Road Side Unit (RSU). Information transmitted in VANET is distributed in an open access environment and hence security is one of the most critical issues related to VANET. Although each vehicle is not a source of all communications, most contact depends on the information that other vehicles receive from it. That vehicle must be able to assess, determine and respond locally on the information obtained from other vehicles to protect VANET from malicious act. Of this reason, message verification in VANET is more difficult due to the protection and privacy issues of the participating vehicles. To overcome security threats, we propose Monitoring Algorithm that detects malicious nodes based on the pre-selected threshold value. The threshold value is compared with the distrust value which is inherently tagged with each vehicle. The proposed Monitoring Algorithm not only detects malicious vehicles, but also isolates the malicious vehicles from the network. The proposed technique is simulated using Network Simulator2 (NS2) tool. The simulation result illustrated that the proposed Monitoring Algorithm outperforms the existing algorithms in terms of malicious node detection, network delay, packet delivery ratio and throughput, thereby uplifting the overall performance of the network.

Temurnikar, A., Verma, P., Choudhary, J..  2020.  Securing Vehicular Adhoc Network against Malicious Vehicles using Advanced Clustering Technique. 2nd International Conference on Data, Engineering and Applications (IDEA). :1—9.

VANET is one of most emerging and unique topics among the scientist and researcher. Due to its mobility, high dynamic nature and frequently changing topology not predictable, mobility attracts too much to researchers academic and industry person. In this paper, characteristics of VANET ate discussed along with its architecture, proposed work and its ends simulation with results. There are many nodes in VANET and to avoid the load on every node, clustering is applied in VANET. VANET possess the high dynamic network having continuous changing in the topology. For stability of network, a good clustering algorithm is required for enhancing the network productivity. In proposed work, a novel approach has been proposed to make cluster in VANET network and detect malicious node of network for security network.

2020-12-14
Lim, K., Islam, T., Kim, H., Joung, J..  2020.  A Sybil Attack Detection Scheme based on ADAS Sensors for Vehicular Networks. 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC). :1–5.
Vehicular Ad Hoc Network (VANET) is a promising technology for autonomous driving as it provides many benefits and user conveniences to improve road safety and driving comfort. Sybil attack is one of the most serious threats in vehicular communications because attackers can generate multiple forged identities to disseminate false messages to disrupt safety-related services or misuse the systems. To address this issue, we propose a Sybil attack detection scheme using ADAS (Advanced Driving Assistant System) sensors installed on modern passenger vehicles, without the assistance of trusted third party authorities or infrastructure. Also, a deep learning based object detection technique is used to accurately identify nearby objects for Sybil attack detection and the multi-step verification process minimizes the false positive of the detection.
Quevedo, C. H. O. O., Quevedo, A. M. B. C., Campos, G. A., Gomes, R. L., Celestino, J., Serhrouchni, A..  2020.  An Intelligent Mechanism for Sybil Attacks Detection in VANETs. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Vehicular Ad Hoc Networks (VANETs) have a strategic goal to achieve service delivery in roads and smart cities, considering the integration and communication between vehicles, sensors and fixed road-side components (routers, gateways and services). VANETs have singular characteristics such as fast mobile nodes, self-organization, distributed network and frequently changing topology. Despite the recent evolution of VANETs, security, data integrity and users privacy information are major concerns, since attacks prevention is still open issue. One of the most dangerous attacks in VANETs is the Sybil, which forges false identities in the network to disrupt compromise the communication between the network nodes. Sybil attacks affect the service delivery related to road safety, traffic congestion, multimedia entertainment and others. Thus, VANETs claim for security mechanism to prevent Sybil attacks. Within this context, this paper proposes a mechanism, called SyDVELM, to detect Sybil attacks in VANETs based on artificial intelligence techniques. The SyDVELM mechanism uses Extreme Learning Machine (ELM) with occasional features of vehicular nodes, minimizing the identification time, maximizing the detection accuracy and improving the scalability. The results suggest that the suitability of SyDVELM mechanism to mitigate Sybil attacks and to maintain the service delivery in VANETs.
2020-12-07
Allig, C., Leinmüller, T., Mittal, P., Wanielik, G..  2019.  Trustworthiness Estimation of Entities within Collective Perception. 2019 IEEE Vehicular Networking Conference (VNC). :1–8.
The idea behind collective perception is to improve vehicles' awareness about their surroundings. Every vehicle shares information describing its perceived environment by means of V2X communication. Similar to other information shared using V2X communication, collective perception information is potentially safety relevant, which means there is a need to assess the reliability and quality of received information before further processing. Transmitted information may have been forged by attackers or contain inconsistencies e.g. caused by malfunctions. This paper introduces a novel approach for estimating a belief that a pair of entities, e.g. two remote vehicles or the host vehicle and a remote vehicle, within a Vehicular ad hoc Network (VANET) are both trustworthy. The method updates the belief based on the consistency of the data that both entities provide. The evaluation shows that the proposed method is able to identify forged information.
More, P. H., Dongre, M. M..  2019.  Partially Predictable Vehicular Ad-hoc Network: Trustworthiness and Security. 2019 IEEE 5th International Conference for Convergence in Technology (I2CT). :1–5.
VANET is an emerging technology incorporating ad hoc network to accomplish intelligent communications between vehicles, improvement in road traffic efficiency and safety. In some situations movement of vehicles is in a certain range, over particular distance or just in a specific tendency. Such a network can be called as incompletely or partially predictable network. An efficient use of such network, position and motion of nodes as well as relative history in big data is an open issue in vehicular ad hoc network. A hybrid protocol which provides secure and trustworthiness evaluation based routing can be used in VANET. Here Secure Trustworthiness Evaluation Based Routing Protocol is implemented using NS2 software. Its performance is very good in terms of the Average End to End Delay, Packet Delivery Ratio and Normalized Routing Overhead.
2020-11-02
Ma, Y., Bai, X..  2019.  Comparison of Location Privacy Protection Schemes in VANETs. 2019 12th International Symposium on Computational Intelligence and Design (ISCID). 2:79–83.
Vehicular Ad-hoc Networks (VANETs) is a traditional mobile ad hoc network (MANET) used on traffic roads and it is a special mobile ad hoc network. As an intelligent transportation system, VANETs can solve driving safety and provide value-added services. Therefore, the application of VANETs can improve the safety and efficiency of road traffic. Location services are in a crucial position for the development of VANETs. VANETs has the characteristics of open access and wireless communication. Malicious node attacks may lead to the leakage of user privacy in VANETs, thus seriously affecting the use of VANETs. Therefore, the location privacy issue of VANETs cannot be ignored. This paper classifies the attack methods in VANETs, and summarizes and compares the location privacy protection techniques proposed in the existing research.
Anzer, Ayesha, Elhadef, Mourad.  2018.  A Multilayer Perceptron-Based Distributed Intrusion Detection System for Internet of Vehicles. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). :438—445.

Security of Internet of vehicles (IoV) is critical as it promises to provide with safer and secure driving. IoV relies on VANETs which is based on V2V (Vehicle to Vehicle) communication. The vehicles are integrated with various sensors and embedded systems allowing them to gather data related to the situation on the road. The collected data can be information associated with a car accident, the congested highway ahead, parked car, etc. This information exchanged with other neighboring vehicles on the road to promote safe driving. IoV networks are vulnerable to various security attacks. The V2V communication comprises specific vulnerabilities which can be manipulated by attackers to compromise the whole network. In this paper, we concentrate on intrusion detection in IoV and propose a multilayer perceptron (MLP) neural network to detect intruders or attackers on an IoV network. Results are in the form of prediction, classification reports, and confusion matrix. A thorough simulation study demonstrates the effectiveness of the new MLP-based intrusion detection system.

2020-10-29
Tomar, Ravi, Awasthi, Yogesh.  2019.  Prevention Techniques Employed in Wireless Ad-Hoc Networks. 2019 International Conference on Advanced Science and Engineering (ICOASE). :192—197.
The paper emphasizes the various aspects of ad-hoc networks. The different types of attacks that affect the system and are prevented by various algorithms mentioned in this paper. Since Ad-hoc wireless networks have no infrastructure and are always unreliable therefore they are subject to many attacks. The black hole attack is seen as one of the dangerous attacks of them. In this attack the malicious node usually absorbs each data packets that are similar to separate holes in everything. Likewise all packets in the network are dropped. For this reason various prevention measures should be employed in the form of routing finding first then the optimization followed by the classification.
Kumar, Sushil, Mann, Kulwinder Singh.  2019.  Prevention of DoS Attacks by Detection of Multiple Malicious Nodes in VANETs. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :89—94.

Vehicular Adhoc Network (VANET), a specialized form of MANET in which safety is the major concern as critical information related to driver's safety and assistance need to be disseminated between the vehicle nodes. The security of the nodes can be increased, if the network availability is increased. The availability of the network is decreased, if there is Denial of Service Attacks (DoS) in the network. In this paper, a packet detection algorithm for the prevention of DoS attacks is proposed. This algorithm will be able to detect the multiple malicious nodes in the network which are sending irrelevant packets to jam the network and that will eventually stop the network to send the safety messages. The proposed algorithm was simulated in NS-2 and the quantitative values of packet delivery ratio, packet loss ratio, network throughput proves that the proposed algorithm enhance the security of the network by detecting the DoS attack well in time.

2020-10-26
Li, Qingyuan, Wu, Hao, Liu, Lei, Pan, Bin, Dong, Lan.  2018.  A Group based Dynamic Mix Zone Scheme for Location Privacy Preservation in VANETs. 2018 Third International Conference on Security of Smart Cities, Industrial Control System and Communications (SSIC). :1–5.
Modern vehicles are equipped with wireless communication technologies, allowing them to communicate with each other. Through Dedicated Short Range Communication (DSRC), vehicles periodically broadcast beacons messages for safety applications, which gives rise to disclosure of location privacy. A way to protect vehicles location privacy is to have their pseudonyms changed frequently. With restrict to limited resources (such as computation and storage), we propose a group based dynamic mix zone scheme, in which vehicles form a group when their pseudonyms are close to expire. Simulation results confirm that the proposed scheme can protect location privacy and alleviate the storage burden.
2020-08-13
Xu, Ye, Li, Fengying, Cao, Bin.  2019.  Privacy-Preserving Authentication Based on Pseudonyms and Secret Sharing for VANET. 2019 Computing, Communications and IoT Applications (ComComAp). :157—162.
In this paper, we propose a conditional privacy-preserving authentication scheme based on pseudonyms and (t,n) threshold secret sharing, named CPPT, for vehicular communications. To achieve conditional privacy preservation, our scheme implements anonymous communications based on pseudonyms generated by hash chains. To prevent bad vehicles from conducting framed attacks on honest ones, CPPT introduces Shamir (t,n) threshold secret sharing technique. In addition, through two one-way hash chains, forward security and backward security are guaranteed, and it also optimize the revocation overhead. The size of certificate revocation list (CRL) is only proportional to the number of revoked vehicles and irrelated to how many pseudonymous certificates are held by the revoked vehicles. Extensive simulations demonstrate that CPPT outperforms ECPP, DCS, Hybrid and EMAP schemes in terms of revocation overhead, certificate updating overhead and authentication overhead.
Li, Xincheng, Liu, Yali, Yin, Xinchun.  2019.  An Anonymous Conditional Privacy-Preserving Authentication Scheme for VANETs. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1763—1770.
Vehicular ad hoc networks (VANETs) have been growing rapidly because it can improve traffic safety and efficiency in transportation. In VANETs, messages are broadcast in wireless environment, which is vulnerable to be attacked in many ways. Accordingly, it is essential to authenticate the legitimation of vehicles to guarantee the performance of services. In this paper, we propose an anonymous conditional privacy-preserving authentication scheme based on message authentication code (MAC) for VANETs. With verifiable secret sharing (VSS), vehicles can obtain a group key for message generation and authentication after a mutual authentication phase. Security analysis and performance evaluation show that the proposed scheme satisfies basic security and privacy-preserving requirements and has a better performance compared with some existing schemes in terms of computational cost and communication overhead.
2020-08-03
Shu-fen, NIU, Bo-bin, WANG, You-chen, WANG, Jin-feng, WANG, Jing-min, CHEN.  2019.  Efficient and Secure Proxy re-signature Message Authentication Scheme in Vehicular Ad Hoc Network. 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). :1652–1656.

In order to solve privacy protection problem in the Internet of Vehicles environment, a message authentication scheme based on proxy re-signature is proposed using elliptic curves, which realizes privacy protection by transforming the vehicle's signature of the message into the roadside unit's signature of the same message through the trusted center. And through the trusted center traceability, to achieve the condition of privacy protection, and the use of batch verification technology, greatly improve the efficiency of authentication. It is proved that the scheme satisfies unforgeability in ECDLP hard problem in the random oracle model. The efficiency analysis shows that the scheme meets the security and efficiency requirements of the Internet of Vehicles and has certain practical significance.

Arthi, A., Aravindhan, K..  2019.  Enhancing the Performance Analysis of LWA Protocol Key Agreement in Vehicular Ad hoc Network. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :1070–1074.

Road accidents are challenging threat in the present scenario. In India there are 5, 01,423 road accidents in 2015. A day 400 hundred deaths are forcing to India to take car safety sincerely. The common cause for road accidents is driver's distraction. In current world the people are dominated by the tablet PC and other hand held devices. The VANET technology is a vehicle-to-vehicle communication; here the main challenge will be to deliver qualified communication during mobility. The paper proposes a standard new restricted lightweight authentication protocol utilizing key agreement theme for VANETs. Inside the planned topic, it has three sorts of validations: 1) V2V 2) V2CH; and 3) CH and RSU. Aside from this authentication, the planned topic conjointly keeps up mystery keys between RSUs for the safe communication. Thorough informal security analysis demonstrates the planned subject is skilled to guard different malicious attack. In addition, the NS2 Simulation exhibits the possibility of the proposed plan in VANET background.

Yang, Xiaodong, Liu, Rui, Wang, Meiding, Chen, Guilan.  2019.  Identity-Based Aggregate Signature Scheme in Vehicle Ad-hoc Network. 2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :1046–10463.

Vehicle ad-hoc network (VANET) is the main driving force to alleviate traffic congestion and accelerate the construction of intelligent transportation. However, the rapid growth of the number of vehicles makes the construction of the safety system of the vehicle network facing multiple tests. This paper proposes an identity-based aggregate signature scheme to protect the privacy of vehicle identity, receive messages in time and authenticate quickly in VANET. The scheme uses aggregate signature algorithm to aggregate the signatures of multiple users into one signature, and joins the idea of batch authentication to complete the authentication of multiple vehicular units, thereby improving the verification efficiency. In addition, the pseudoidentity of vehicles is used to achieve the purpose of vehicle anonymity and privacy protection. Finally, the secure storage of message signatures is effectively realized by using reliable cloud storage technology. Compared with similar schemes, this paper improves authentication efficiency while ensuring security, and has lower storage overhead.

2020-07-13
Xiao, Yonggang, Liu, Yanbing.  2019.  BayesTrust and VehicleRank: Constructing an Implicit Web of Trust in VANET. IEEE Transactions on Vehicular Technology. 68:2850–2864.
As Vehicular Ad hoc Network (VANET) features random topology and accommodates freely connected nodes, it is important that the cooperation among the nodes exists. This paper proposes a trust model called Implicit Web of Trust in VANET (IWOT-V) to reason out the trustworthiness of vehicles. Such that untrusted nodes can be identified and avoided when we make a decision regarding whom to follow or cooperate with. Furthermore, the performance of Cooperative Intelligent Transport System (C-ITS) applications improves. The idea of IWOT-V is mainly inspired by web page ranking algorithms such as PageRank. Although there does not exist explicit link structure in VANET because of random topology and dynamic connections, social trust relationship among vehicles exists and an implicit web of trust can be derived. To accomplish the derivation, two algorithms are presented, i.e., BayesTrust and VehicleRank. They are responsible for deriving the local and global trust relationships, respectively. The simulation results show that IWOT-V can accurately identify trusted and untrusted nodes if enough local trust information is collected. The performance of IWOT-V affected by five threat models is demonstrated, and the related discussions are also given.
2020-06-19
Chowdhury, Abdullahi, Karmakar, Gour, Kamruzzaman, Joarder.  2019.  Trusted Autonomous Vehicle: Measuring Trust using On-Board Unit Data. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :787—792.

Vehicular Ad-hoc Networks (VANETs) play an essential role in ensuring safe, reliable and faster transportation with the help of an Intelligent Transportation system. The trustworthiness of vehicles in VANETs is extremely important to ensure the authenticity of messages and traffic information transmitted in extremely dynamic topographical conditions where vehicles move at high speed. False or misleading information may cause substantial traffic congestions, road accidents and may even cost lives. Many approaches exist in literature to measure the trustworthiness of GPS data and messages of an Autonomous Vehicle (AV). To the best of our knowledge, they have not considered the trustworthiness of other On-Board Unit (OBU) components of an AV, along with GPS data and transmitted messages, though they have a substantial relevance in overall vehicle trust measurement. In this paper, we introduce a novel model to measure the overall trustworthiness of an AV considering four different OBU components additionally. The performance of the proposed method is evaluated with a traffic simulation model developed by Simulation of Urban Mobility (SUMO) using realistic traffic data and considering different levels of uncertainty.

2020-05-26
Tiennoy, Sasirom, Saivichit, Chaiyachet.  2018.  Using a Distributed Roadside Unit for the Data Dissemination Protocol in VANET With the Named Data Architecture. IEEE Access. 6:32612–32623.
Vehicular ad hoc network (VANET) has recently become one of the highly active research areas for wireless networking. Since VANET is a multi-hop wireless network with very high mobility and intermittent connection lifetime, it is important to effectively handle the data dissemination issue in this rapidly changing environment. However, the existing TCP/IP implementation may not fit into such a highly dynamic environment because the nodes in the network must often perform rerouting due to their inconsistency of connectivity. In addition, the drivers in the vehicles may want to acquire some data, but they do not know the address/location of such data storage. Hence, the named data networking (NDN) approach may be more desirable here. The NDN architecture is proposed for the future Internet, which focuses on the delivering mechanism based on the message contents instead of relying on the host addresses of the data. In this paper, a new protocol named roadside unit (RSU) assisted of named data network (RA-NDN) is presented. The RSU can operate as a standalone node [standalone RSU (SA-RSU)]. One benefit of deploying SA-RSUs is the improved network connectivity. This study uses the NS3 and SUMO software packages for the network simulator and traffic simulator software, respectively, to verify the performance of the RA-NDN protocol. To reduce the latency under various vehicular densities, vehicular transmission ranges, and number of requesters, the proposed approach is compared with vehicular NDN via a real-world data set in the urban area of Sathorn road in Bangkok, Thailand. The simulation results show that the RA-NDN protocol improves the performance of ad hoc communications with the increase in data received ratio and throughput and the decrease in total dissemination time and traffic load.
Tahir, Muhammad Usman, Rehman, Rana Asif.  2018.  CUIF: Control of Useless Interests Flooding in Vehicular Named Data Networks. 2018 International Conference on Frontiers of Information Technology (FIT). :303–308.
Now-a-days vehicular information network technology is receiving a lot of attention due to its practical as well as safety related applications. By using this technology, participating vehicles can communicate among themselves on the road in order to obtain any interested data or emergency information. In Vehicular Ad-Hoc Network (VANET), due to the fast speed of the vehicles, the traditional host centric approach (i.e. TCP/IP) fails to provide efficient and robust communication between large number of vehicles. Therefore, Named Data Network (NDN) newly proposed Internet architecture is applied in VANET, named as VNDN. In which, the vehicles can communicate with the help of content name rather than vehicle address. In this paper, we explored the concepts and identify the main packet forwarding issues in VNDN. Furthermore, we proposed a protocol, named Control of Useless Interests Flooding (CUIF) in Vehicular Named Data Network. In which, it provides the best and efficient communication environment to users while driving on the highway. CUIF scheme reduces the Interest forwarding storm over the network and control the flooding of useless packets against the direction of a Producer vehicle. Our simulation results show that CUIF scheme decreases the number of outgoing Interest packets as well as data download time in the network.