Visible to the public Biblio

Filters: Keyword is software quality  [Clear All Filters]
Bourreau, Hugo, Guichet, Emeric, Barrak, Amine, Simon, Benoît, Jaafar, Fehmi.  2022.  On Securing the Communication in IoT Infrastructure using Elliptic Curve Cryptography. 2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C). :758–759.
Internet of Things (IoT) is widely present nowadays, from businesses to connected houses, and more. IoT is considered a part of the Internet of the future and will comprise billions of intelligent communication. These devices transmit data from sensors to entities like servers to perform suitable responses. The problem of securing these data from cyberattacks increases due to the sensitive information it contains. In addition, studies have shown that most of the time data transiting in IoT devices does not apply encrypted communication. Thus, anyone has the ability to listen to or modify the information. Encrypting communications seems mandatory to secure networks and data transiting from sensors to servers. In this paper, we propose an approach to secure the transmission and the storage of data in IoT using Elliptic Curve Cryptography (ECC). The proposed method offers a high level of security at a reasonable computational cost. Indeed, we present an adequate architecture that ensures the use of a state-of-the-art cryptography algorithm to encrypt sensitive data in IoT.
ISSN: 2693-9371
Sun, Haoran, Zhu, Xiaolong, Zhou, Conghua.  2022.  Deep Reinforcement Learning for Video Summarization with Semantic Reward. 2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C). :754–755.

Video summarization aims to improve the efficiency of large-scale video browsing through producting concise summaries. It has been popular among many scenarios such as video surveillance, video review and data annotation. Traditional video summarization techniques focus on filtration in image features dimension or image semantics dimension. However, such techniques can make a large amount of possible useful information lost, especially for many videos with rich text semantics like interviews, teaching videos, in that only the information relevant to the image dimension will be retained. In order to solve the above problem, this paper considers video summarization as a continuous multi-dimensional decision-making process. Specifically, the summarization model predicts a probability for each frame and its corresponding text, and then we designs reward methods for each of them. Finally, comprehensive summaries in two dimensions, i.e. images and semantics, is generated. This approach is not only unsupervised and does not rely on labels and user interaction, but also decouples the semantic and image summarization models to provide more usable interfaces for subsequent engineering use.

ISSN: 2693-9371

Hasegawa, Taichi, Saito, Taiichi, Sasaki, Ryoichi.  2022.  Analyzing Metadata in PDF Files Published by Police Agencies in Japan. 2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C). :145–151.
In recent years, new types of cyber attacks called targeted attacks have been observed. It targets specific organizations or individuals, while usual large-scale attacks do not focus on specific targets. Organizations have published many Word or PDF files on their websites. These files may provide the starting point for targeted attacks if they include hidden data unintentionally generated in the authoring process. Adhatarao and Lauradoux analyzed hidden data found in the PDF files published by security agencies in many countries and showed that many PDF files potentially leak information like author names, details on the information system and computer architecture. In this study, we analyze hidden data of PDF files published on the website of police agencies in Japan and compare the results with Adhatarao and Lauradoux's. We gathered 110989 PDF files. 56% of gathered PDF files contain personal names, organization names, usernames, or numbers that seem to be IDs within the organizations. 96% of PDF files contain software names.
ISSN: 2693-9371
Carvalho, Gonçalo, Medeiros, Nadia, Madeira, Henrique, Cabral, Bruno.  2022.  A Functional FMECA Approach for the Assessment of Critical Infrastructure Resilience. 2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS). :672—681.
The damage or destruction of Critical Infrastructures (CIs) affect societies’ sustainable functioning. Therefore, it is crucial to have effective methods to assess the risk and resilience of CIs. Failure Mode and Effects Analysis (FMEA) and Failure Mode Effects and Criticality Analysis (FMECA) are two approaches to risk assessment and criticality analysis. However, these approaches are complex to apply to intricate CIs and associated Cyber-Physical Systems (CPS). We provide a top-down strategy, starting from a high abstraction level of the system and progressing to cover the functional elements of the infrastructures. This approach develops from FMECA but estimates risks and focuses on assessing resilience. We applied the proposed technique to a real-world CI, predicting how possible improvement scenarios may influence the overall system resilience. The results show the effectiveness of our approach in benchmarking the CI resilience, providing a cost-effective way to evaluate plausible alternatives concerning the improvement of preventive measures.
Bo, Lili, Meng, Xing, Sun, Xiaobing, Xia, Jingli, Wu, Xiaoxue.  2022.  A Comprehensive Analysis of NVD Concurrency Vulnerabilities. 2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS). :9–18.

Concurrency vulnerabilities caused by synchronization problems will occur in the execution of multi-threaded programs, and the emergence of concurrency vulnerabilities often cause great threats to the system. Once the concurrency vulnerabilities are exploited, the system will suffer various attacks, seriously affecting its availability, confidentiality and security. In this paper, we extract 839 concurrency vulnerabilities from Common Vulnerabilities and Exposures (CVE), and conduct a comprehensive analysis of the trend, classifications, causes, severity, and impact. Finally, we obtained some findings: 1) From 1999 to 2021, the number of concurrency vulnerabilities disclosures show an overall upward trend. 2) In the distribution of concurrency vulnerability, race condition accounts for the largest proportion. 3) The overall severity of concurrency vulnerabilities is medium risk. 4) The number of concurrency vulnerabilities that can be exploited for local access and network access is almost equal, and nearly half of the concurrency vulnerabilities (377/839) can be accessed remotely. 5) The access complexity of 571 concurrency vulnerabilities is medium, and the number of concurrency vulnerabilities with high or low access complexity is almost equal. The results obtained through the empirical study can provide more support and guidance for research in the field of concurrency vulnerabilities.

ISSN: 2693-9177

Wang, Ning.  2022.  Resilience Analysis of Urban Rail Transit Network Under Large Passenger Flow. 2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C). :444–446.
Public transportation is an important system of urban passenger transport. The purpose of this article is to explore the impact of network resilience when each station of urban rail transit network was attacked by large passenger flow. Based on the capacity load model, we propose a load redistribution mechanism to simulate the passenger flow propagation after being attacked by large passenger flow. Then, taking Xi'an's rail network as an example, we study the resilience variety of the network after a node is attacked by large passenger flow. Through some attack experiments, the feasibility of the model for studying the resilience of the rail transit system is finally verified.
ISSN: 2693-9371
Haider, Ammar, Bhatti, Wafa.  2022.  Importance of Cyber Security in Software Quality Assurance. 2022 17th International Conference on Emerging Technologies (ICET). :6–11.

The evolving and new age cybersecurity threats has set the information security industry on high alert. This modern age cyberattacks includes malware, phishing, artificial intelligence, machine learning and cryptocurrency. Our research highlights the importance and role of Software Quality Assurance for increasing the security standards that will not just protect the system but will handle the cyber-attacks better. With the series of cyber-attacks, we have concluded through our research that implementing code review and penetration testing will protect our data's integrity, availability, and confidentiality. We gathered user requirements of an application, gained a proper understanding of the functional as well as non-functional requirements. We implemented conventional software quality assurance techniques successfully but found that the application software was still vulnerable to potential issues. We proposed two additional stages in software quality assurance process to cater with this problem. After implementing this framework, we saw that maximum number of potential threats were already fixed before the first release of the software.

Mallouli, Wissam.  2022.  Security Testing as part of Software Quality Assurance: Principles and Challenges. 2022 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :29–29.
Software quality assurance (SQA) is a means and practice of monitoring the software engineering processes and methods used in a project to ensure proper quality of the software. It encompasses the entire software development life-cycle, including requirements engineering, software design, coding, source code reviews, software configuration management, testing , release management, software deployment and software integration. It is organized into goals, commitments, abilities, activities, measurements, verification and validation. In this talk, we will mainly focus on the testing activity part of the software development life-cycle. Its main objective is checking that software is satisfying a set of quality properties that are identified by the "ISO/IEC 25010:2011 System and Software Quality Model" standard [1] .
ISSN: 2159-4848
Trautsch, Alexander, Herbold, Steffen, Grabowski, Jens.  2020.  Static source code metrics and static analysis warnings for fine-grained just-in-time defect prediction. 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME). :127–138.
Software quality evolution and predictive models to support decisions about resource distribution in software quality assurance tasks are an important part of software engineering research. Recently, a fine-grained just-in-time defect prediction approach was proposed which has the ability to find bug-inducing files within changes instead of only complete changes. In this work, we utilize this approach and improve it in multiple places: data collection, labeling and features. We include manually validated issue types, an improved SZZ algorithm which discards comments, whitespaces and refactorings. Additionally, we include static source code metrics as well as static analysis warnings and warning density derived metrics as features. To assess whether we can save cost we incorporate a specialized defect prediction cost model. To evaluate our proposed improvements of the fine-grained just-in-time defect prediction approach we conduct a case study that encompasses 38 Java projects, 492,241 file changes in 73,598 commits and spans 15 years. We find that static source code metrics and static analysis warnings are correlated with bugs and that they can improve the quality and cost saving potential of just-in-time defect prediction models.
Kaneko, Tomoko, Yoshioka, Nobukazu, Sasaki, Ryoichi.  2021.  Cyber-Security Incident Analysis by Causal Analysis using System Theory (CAST). 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :806–815.
STAMP (System Theoretic Accident Model and Processes) is one of the theories that has been attracting attention as a new safety analysis method for complex systems. CAST (Causal Analysis using System Theory) is a causal analysis method based on STAMP theory. The authors investigated an information security incident case, “AIST (National Institute of Advanced Industrial Science and Technology) report on unauthorized access to information systems,” and attempted accident analysis using CAST. We investigated whether CAST could be applied to the cyber security analysis. Since CAST is a safety accident analysis technique, this study was the first to apply CAST to cyber security incidents. Its effectiveness was confirmed from the viewpoint of the following three research questions. Q1:Features of CAST as an accident analysis method Q2:Applicability and impact on security accident analysis Q3:Understanding cyber security incidents with a five-layer model.
Ndemeye, Bosco, Hussain, Shahid, Norris, Boyana.  2021.  Threshold-Based Analysis of the Code Quality of High-Performance Computing Software Packages. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :222—228.
Many popular metrics used for the quantification of the quality or complexity of a codebase (e.g. cyclomatic complexity) were developed in the 1970s or 1980s when source code sizes were significantly smaller than they are today, and before a number of modern programming language features were introduced in different languages. Thus, the many thresholds that were suggested by researchers for deciding whether a given function is lacking in a given quality dimension need to be updated. In the pursuit of this goal, we study a number of open-source high-performance codes, each of which has been in development for more than 15 years—a characteristic which we take to imply good design to score them in terms of their source codes' quality and to relax the above-mentioned thresholds. First, we employ the LLVM/Clang compiler infrastructure and introduce a Clang AST tool to gather AST-based metrics, as well as an LLVM IR pass for those based on a source code's static call graph. Second, we perform statistical analysis to identify the reference thresholds of 22 code quality and callgraph-related metrics at a fine grained level.
Boutaib, Sofien, Elarbi, Maha, Bechikh, Slim, Palomba, Fabio, Said, Lamjed Ben.  2021.  A Possibilistic Evolutionary Approach to Handle the Uncertainty of Software Metrics Thresholds in Code Smells Detection. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS). :574—585.
A code smells detection rule is a combination of metrics with their corresponding crisp thresholds and labels. The goal of this paper is to deal with metrics' thresholds uncertainty; as usually such thresholds could not be exactly determined to judge the smelliness of a particular software class. To deal with this issue, we first propose to encode each metric value into a binary possibility distribution with respect to a threshold computed from a discretization technique; using the Possibilistic C-means classifier. Then, we propose ADIPOK-UMT as an evolutionary algorithm that evolves a population of PK-NN classifiers for the detection of smells under thresholds' uncertainty. The experimental results reveal that the possibility distribution-based encoding allows the implicit weighting of software metrics (features) with respect to their computed discretization thresholds. Moreover, ADIPOK-UMT is shown to outperform four relevant state-of-art approaches on a set of commonly adopted benchmark software systems.
Gao, Xiaotong, Ma, Yanfang, Zhou, Wei.  2021.  The Trustworthiness Measurement Model of Component-based Software Based on the Subjective and Objective Weight Allocation Method. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :478—486.
Software trustworthiness includes many attributes. Reasonable weight allocation of trustworthy attributes plays a key role in the software trustworthiness measurement. In practical application, attribute weight usually comes from experts' evaluation to attributes and hidden information derived from attributes. Therefore, when the weight of attributes is researched, it is necessary to consider weight from subjective and objective aspects. Firstly, a novel weight allocation method is proposed by combining the Fuzzy Analytical Hierarchy Process (FAHP) method and the Criteria Importance Though Intercrieria Correlation (CRITIC) method. Secondly, based on the weight allocation method, the trustworthiness measurement models of component-based software are established according to the four combination structures of components. Thirdly, some metric criteria of the model are proved to verify the reasonability. Finally, a case is used to illustrate the practicality of the model.
Deng, Yuxin, Chen, Zezhong, Du, Wenjie, Mao, Bifei, Liang, Zhizhang, Lin, Qiushi, Li, Jinghui.  2021.  Trustworthiness Derivation Tree: A Model of Evidence-Based Software Trustworthiness. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :487—493.
In order to analyze the trustworthiness of complex software systems, we propose a model of evidence-based software trustworthiness called trustworthiness derivation tree (TDT). The basic idea of constructing a TDT is to refine main properties into key ingredients and continue the refinement until basic facts such as evidences are reached. The skeleton of a TDT can be specified by a set of rules, which is convenient for automated reasoning in Prolog. We develop a visualization tool that can construct the skeleton of a TDT by taking the rules as input, and allow a user to edit the TDT in a graphical user interface. In a software development life cycle, TDTs can serve as a communication means for different stakeholders to agree on the properties about a system in the requirement analysis phase, and they can be used for deductive reasoning so as to verify whether the system achieves trustworthiness in the product validation phase. We have piloted the approach of using TDTs in more than a dozen real scenarios of software development. Indeed, using TDTs helped us to discover and then resolve some subtle problems.
Lv, Tianxiang, Bao, Qihao, Chen, Haibo, Zhang, Chi.  2021.  A Testing Method for Object-oriented Program based on Adaptive Random Testing with Variable Probability. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :1155–1156.
Object-oriented program (OOP) is very popular in these years for its advantages, but the testing method for OOP is still not mature enough. To deal with the problem that it is impossible to generate the probability density function by simply numeralizing a point in the test case caused by the complex structure of the object-oriented test case, we propose the Adaptive Random Testing through Test Profile for Object-Oriented software (ARTTP-OO). It generates a test case at the edge of the input field and calculates the distance between object-oriented test cases using Object and Method Invocation Sequence Similarity (OMISS) metric formula. And the probability density function is generated by the distance to select the test cases, thereby realizing the application of ARTTP algorithm in OOP. The experimental results indicate the proposed ARTTP-OO consumes less time cost without reducing the detection effectiveness.
Li, Qiang, Song, Jinke, Tan, Dawei, Wang, Haining, Liu, Jiqiang.  2021.  PDGraph: A Large-Scale Empirical Study on Project Dependency of Security Vulnerabilities. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :161–173.
The reuse of libraries in software development has become prevalent for improving development efficiency and software quality. However, security vulnerabilities of reused libraries propagated through software project dependency pose a severe security threat, but they have not yet been well studied. In this paper, we present the first large-scale empirical study of project dependencies with respect to security vulnerabilities. We developed PDGraph, an innovative approach for analyzing publicly known security vulnerabilities among numerous project dependencies, which provides a new perspective for assessing security risks in the wild. As a large-scale software collection in dependency, we find 337,415 projects and 1,385,338 dependency relations. In particular, PDGraph generates a project dependency graph, where each node is a project, and each edge indicates a dependency relationship. We conducted experiments to validate the efficacy of PDGraph and characterized its features for security analysis. We revealed that 1,014 projects have publicly disclosed vulnerabilities, and more than 67,806 projects are directly dependent on them. Among these, 42,441 projects still manifest 67,581 insecure dependency relationships, indicating that they are built on vulnerable versions of reused libraries even though their vulnerabilities are publicly known. During our eight-month observation period, only 1,266 insecure edges were fixed, and corresponding vulnerable libraries were updated to secure versions. Furthermore, we uncovered four underlying dependency risks that can significantly reduce the difficulty of compromising systems. We conducted a quantitative analysis of dependency risks on the PDGraph.
Ji, Songyan, Dong, Jian, Qiu, Junfu, Gu, Bowen, Wang, Ye, Wang, Tongqi.  2021.  Increasing Fuzz Testing Coverage for Smart Contracts with Dynamic Taint Analysis. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS). :243–247.
Nowadays, smart contracts manage more and more digital assets and have become an attractive target for adversaries. To prevent smart contracts from malicious attacks, a thorough test is indispensable and must be finished before deployment because smart contracts cannot be modified after being deployed. Fuzzing is an important testing approach, but most existing smart contract fuzzers can hardly solve the constraints which involve deeply nested conditional statements, resulting in low coverage. To address this problem, we propose Targy, an efficient targeted mutation strategy based on dynamic taint analysis. We obtain the taint flow by dynamic taint propagation, and generate a more accurate mutation strategy for the input parameters of functions to simultaneously satisfy all conditional statements. We implemented Targy on sFuzz with 3.6 thousand smart contracts running on Ethereum. The numbers of covered branches and detected vulnerabilities increase by 6% and 7% respectively, and the average time required for covering a branch is reduced by 11 %.
Fursova, Natalia, Dovgalyuk, Pavel, Vasiliev, Ivan, Klimushenkova, Maria, Egorov, Danila.  2021.  Detecting Attack Surface With Full-System Taint Analysis. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :1161–1162.
Attack surface detection for the complex software is needed to find targets for the fuzzing, because testing the whole system with many inputs is not realistic. Researchers that previously applied taint analysis for dealing with different security tasks in the virtual machines did not examined how to apply it for attack surface detection. I.e., getting the program modules and functions, that may be affected by input data. We propose using taint tracking within a virtual machine and virtual machine introspection to create a new approach that can detect the internal module interfaces that can be fuzz tested to assure that software is safe or find the vulnerabilities.
Lin, Wei, Cai, Saihua.  2021.  An Empirical Study on Vulnerability Detection for Source Code Software based on Deep Learning. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :1159–1160.
In recent years, the complexity of software vulnera-bilities has continued to increase. Manual vulnerability detection methods alone no longer meet the demand. With the rapid development of the deep learning, many neural network models have been widely applied to source code vulnerability detection. The variant of recurrent neural network (RNN), bidirectional Long Short-Term Memory (BiLSTM), has been a popular choice in vulnerability detection. However, is BiLSTM the most suitable choice? To answer this question, we conducted a series of experiments to investigate the effectiveness of different neural network models for source code vulnerability detection. The results shows that the variants of RNN, gated recurrent unit (GRU) and bidirectional GRU, are more capable of detecting source code fragments with mixed vulnerability types. And the concatenated convolutional neural network is more capable of detecting source code fragments of single vulnerability types.
Wilhjelm, Carl, Younis, Awad A..  2020.  A Threat Analysis Methodology for Security Requirements Elicitation in Machine Learning Based Systems. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :426–433.
Machine learning (ML) models are now a key component for many applications. However, machine learning based systems (MLBSs), those systems that incorporate them, have proven vulnerable to various new attacks as a result. Currently, there exists no systematic process for eliciting security requirements for MLBSs that incorporates the identification of adversarial machine learning (AML) threats with those of a traditional non-MLBS. In this research study, we explore the applicability of traditional threat modeling and existing attack libraries in addressing MLBS security in the requirements phase. Using an example MLBS, we examined the applicability of 1) DFD and STRIDE in enumerating AML threats; 2) Microsoft SDL AI/ML Bug Bar in ranking the impact of the identified threats; and 3) the Microsoft AML attack library in eliciting threat mitigations to MLBSs. Such a method has the potential to assist team members, even with only domain specific knowledge, to collaboratively mitigate MLBS threats.
Lu, Shuaibing, Kuang, Xiaohui, Nie, Yuanping, Lin, Zhechao.  2020.  A Hybrid Interface Recovery Method for Android Kernels Fuzzing. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). :335–346.
Android kernel fuzzing is a research area of interest specifically for detecting kernel vulnerabilities which may allow attackers to obtain the root privilege. The number of Android mobile phones is increasing rapidly with the explosive growth of Android kernel drivers. Interface aware fuzzing is an effective technique to test the security of kernel driver. Existing researches rely on static analysis with kernel source code. However, in fact, there exist millions of Android mobile phones without public accessible source code. In this paper, we propose a hybrid interface recovery method for fuzzing kernels which can recover kernel driver interface no matter the source code is available or not. In white box condition, we employ a dynamic interface recover method that can automatically and completely identify the interface knowledge. In black box condition, we use reverse engineering to extract the key interface information and use similarity computation to infer argument types. We evaluate our hybrid algorithm on on 12 Android smartphones from 9 vendors. Empirical experimental results show that our method can effectively recover interface argument lists and find Android kernel bugs. In total, 31 vulnerabilities are reported in white and black box conditions. The vulnerabilities were responsibly disclosed to affected vendors and 9 of the reported vulnerabilities have been already assigned CVEs.
Dovgalyuk, Pavel, Vasiliev, Ivan, Fursova, Natalia, Dmitriev, Denis, Abakumov, Mikhail, Makarov, Vladimir.  2020.  Non-intrusive Virtual Machine Analysis and Reverse Debugging with SWAT. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). :196—203.
This paper presents SWAT - System-Wide Analysis Toolkit. It is based on open source emulation and debugging projects and implements the approaches for non-intrusive system-wide analysis and debugging: lightweight OS-agnostic virtual machine introspection, full system execution replay, non-intrusive debugging with WinDbg, and full system reverse debugging. These features are based on novel non-intrusive introspection and reverse debugging methods. They are useful for stealth debugging and analysis of the platforms with custom kernels. SWAT includes multi-platform emulator QEMU with additional instrumentation and debugging features, GUI for convenient QEMU setup and execution, QEMU plugin for non-intrusive introspection, and modified version of GDB. Our toolkit may be useful for the developers of the virtual platforms, emulators, and firmwares/drivers/operating systems. Virtual machine intospection approach does not require loading any guest agents and source code of the OS. Therefore it may be applied to ROM-based guest systems and enables using of record/replay of the system execution. This paper includes the description of SWAT components, analysis methods, and some SWAT use cases.
Phillips, T., McJunkin, T., Rieger, C., Gardner, J., Mehrpouyan, H..  2020.  An Operational Resilience Metric for Modern Power Distribution Systems. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :334—342.

The electrical power system is the backbone of our nations critical infrastructure. It has been designed to withstand single component failures based on a set of reliability metrics which have proven acceptable during normal operating conditions. However, in recent years there has been an increasing frequency of extreme weather events. Many have resulted in widespread long-term power outages, proving reliability metrics do not provide adequate energy security. As a result, researchers have focused their efforts resilience metrics to ensure efficient operation of power systems during extreme events. A resilient system has the ability to resist, adapt, and recover from disruptions. Therefore, resilience has demonstrated itself as a promising concept for currently faced challenges in power distribution systems. In this work, we propose an operational resilience metric for modern power distribution systems. The metric is based on the aggregation of system assets adaptive capacity in real and reactive power. This metric gives information to the magnitude and duration of a disturbance the system can withstand. We demonstrate resilience metric in a case study under normal operation and during a power contingency on a microgrid. In the future, this information can be used by operators to make more informed decisions based on system resilience in an effort to prevent power outages.

Mladenova, T..  2020.  Software Quality Metrics – Research, Analysis and Recommendation. 2020 International Conference Automatics and Informatics (ICAI). :1—5.

Software Quality Testing has always been a crucial part of the software development process and lately, there has been a rise in the usage of testing applications. While a well-planned and performed test, regardless of its nature - automated or manual, is a key factor when deciding on the results of the test, it is often not enough to give a more deep and thorough view of the whole process. That can be achieved with properly selected software metrics that can be used for proper risk assessment and evaluation of the development.This paper considers the most commonly used metrics when measuring a performed test and examines metrics that can be applied in the development process.

Liu, J., Xiao, K., Luo, L., Li, Y., Chen, L..  2020.  An intrusion detection system integrating network-level intrusion detection and host-level intrusion detection. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). :122—129.
With the rapid development of Internet, the issue of cyber security has increasingly gained more attention. An intrusion Detection System (IDS) is an effective technique to defend cyber-attacks and reduce security losses. However, the challenge of IDS lies in the diversity of cyber-attackers and the frequently-changing data requiring a flexible and efficient solution. To address this problem, machine learning approaches are being applied in the IDS field. In this paper, we propose an efficient scalable neural-network-based hybrid IDS framework with the combination of Host-level IDS (HIDS) and Network-level IDS (NIDS). We applied the autoencoders (AE) to NIDS and designed HIDS using word embedding and convolutional neural network. To evaluate the IDS, many experiments are performed on the public datasets NSL-KDD and ADFA. It can detect many attacks and reduce the security risk with high efficiency and excellent scalability.