Visible to the public Biblio

Found 2292 results

Filters: Keyword is Scalability  [Clear All Filters]
2020-01-20
Jasim, Anwar Chitheer, Hassoon, Imad Ali, Tapus, Nicolae.  2019.  Cloud: privacy For Locations Based-services' through Access Control with dynamic multi-level policy. 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT). :1911–1916.
LBSs are Location-Based Services that provide certain service based on the current or past user's location. During the past decade, LBSs have become more popular as a result of the widespread use of mobile devices with position functions. Location information is a secondary information that can provide personal insight about one's life. This issue associated with sharing of data in cloud-based locations. For example, a hospital is a public space and the actual location of the hospital does not carry any sensitive information. However, it may become sensitive if the specialty of the hospital is analyzed. In this paper we proposed design presents a combination of methods for providing data privacy protection for location-based services (LBSs) with the use of cloud service. The work built in zero trust and we start to manage the access to the system through different levels. The proposal is based on a model that stores user location data in supplementary servers and not in non-trustable third-party applications. The approach of the present research is to analyze the privacy protection possibilities through data partitioning. The data collected from the different recourses are distributed into different servers according to the partitioning model based on multi-level policy. Access is granted to third party applications only to designated servers and the privacy of the user profile is also ensured in each server, as they are not trustable.
Rasheed, Amar, Hashemi, Ray R., Bagabas, Ayman, Young, Jeffrey, Badri, Chanukya, Patel, Keyur.  2019.  Configurable Anonymous Authentication Schemes For The Internet of Things (IoT). 2019 IEEE International Conference on RFID (RFID). :1–8.
The Internet of Things (IoT) has revolutionized the way of how pervasive computing devices communicate and disseminate information over the global network. A plethora of user data is collected and logged daily into cloud-based servers. Such data can be analyzed by the IoT infrastructure to capture users' behaviors (e.g. users' location, tagging of smart home occupancy). This brings a new set of security challenges, specifically user anonymity. Existing access control and authentication technologies failed to support user anonymity. They relied on the surrendering of the device/user authentication parameters to the trusted server, which hence could be utilized by the IoT infrastructure to track users' behavioral patterns. This paper, presents two novel configurable privacy-preserving authentication schemes. User anonymity capabilities were incorporated into our proposed authentication schemes through the implementation of two crypto-based approaches (i) Zero Knowledge Proof (ZKP) and (ii) Verifiable Common Secret Encoding (VCSE). We consider a user-oriented approach when determining user anonymity. The proposed authentication schemes are dynamically capable of supporting various levels of user privacy based on the user preferences. To validate the two schemes, they were fully implemented and deployed on an IoT testbed. We have tested the performance of each proposed schemes in terms of power consumption and computation time. Based on our performance evaluation results, the proposed ZKP-based approach provides better performance compared to the VCSE-based approach.
Mei, Shijia, Liu, Zhihong, Zeng, Yong, Yang, Lin, Ma, Jian Feng.  2019.  Listen!: Audio-based Smart IoT Device Pairing Protocol. 2019 IEEE 19th International Conference on Communication Technology (ICCT). :391–397.
Context-based zero-interaction has become the trend for smart IoT device pairing. In this paper, we propose a secure and usable mechanism to authenticate devices co-located in smart home scenario, and build a secure communication channel between legitimate devices by utilizing on-board microphones to capture a common audio context. After receiving randomly generated sound signals, smart IoT device uses the time intervals between salient sound signals to derive audio fingerprint which can be matched among co-present devices and then be used to bootstrap trust of the devices. The protocol is based on the idea that devices co-located within a physical security boundary (e.g., single family house) can hear similar sounds, and the devices outside would miss parts of sound signals due to the attenuation when sounds pass through the wall. To accelerate the generation rate of audio fingerprint, an extra sound source is introduced. We implement our protocol on Android devices, and the experiment results show that the protocol can distinguish the malicious devices outside from the legitimate devices located inside a security boundary and can quickly establish a strong secret-key between legitimate devices.
Zhu, Lipeng, Fu, Xiaotong, Yao, Yao, Zhang, Yuqing, Wang, He.  2019.  FIoT: Detecting the Memory Corruption in Lightweight IoT Device Firmware. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :248–255.
The IoT industry has developed rapidly in recent years, which has attracted the attention of security researchers. However, the researchers are hampered by the wide variety of IoT device operating systems and their hardware architectures. Especially for the lightweight IoT devices, many manufacturers do not provide the device firmware images, embedded firmware source code or even the develop documents. As a result, it hinders traditional static analysis and dynamic analysis techniques. In this paper, we propose a novel dynamic analysis framework, called FIoT, which aims at finding memory corruption vulnerabilities in lightweight IoT device firmware images. The key idea is dynamically run the binary code snippets through symbolic execution with carrying out a fuzzing test. Specifically, we generate code snippets through traversing the control-flow graph (CFG) in a backward manner. We improved the CFG recovery approach and backward slice approach for better performance. To reduce the influence of the binary firmware, FIoT leverages loading address determination analysis and library function identification approach. We have implemented a prototype of FIoT and conducted experiments. Our results show that FIoT can complete the Fuzzing test within 40 seconds in average. Considering 170 seconds for static analysis, FIoT can load and analyze a lightweight IoT firmware within 210 seconds in total. Furthermore, we illustrate the effectiveness of FIoT by applying it over 115 firmware images from 17 manufacturers. We have found 35 images exist memory corruptions, which are all zero-day vulnerabilities.
Ren, Zhengwei, Zha, Xianye, Zhang, Kai, Liu, Jing, Zhao, Heng.  2019.  Lightweight Protection of User Identity Privacy Based on Zero-knowledge Proof. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). :2549–2554.
A number of solutions have been proposed to tackle the user privacy-preserving issue. Most of existing schemes, however, focus on methodology and techniques from the perspective of data processing. In this paper, we propose a lightweight privacy-preserving scheme for user identity from the perspective of data user and applied cryptography. The basic idea is to break the association relationships between User identity and his behaviors and ensure that User can access data or services as usual while the real identity will not be revealed. To this end, an interactive zero-knowledge proof protocol of identity is executed between CSP and User. Besides, a trusted third-party is introduced to manage user information, help CSP to validate User identity and establish secure channel between CSP and User via random shared key. After passing identity validation, User can log into cloud platform as usual without changing existing business process using random temporary account and password generated by CSP and sent to User by the secure channel which can further obscure the association relationships between identity and behaviors. Formal security analysis and theoretic and experimental evaluations are conducted, showing that the proposal is efficient and practical.
Huang, Yongjie, Yang, Qiping, Qin, Jinghui, Wen, Wushao.  2019.  Phishing URL Detection via CNN and Attention-Based Hierarchical RNN. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :112–119.
Phishing websites have long been a serious threat to cyber security. For decades, many researchers have been devoted to developing novel techniques to detect phishing websites automatically. While state-of-the-art solutions can achieve superior performances, they require substantial manual feature engineering and are not adept at detecting newly emerging phishing attacks. Therefore, developing techniques that can detect phishing websites automatically and handle zero-day phishing attacks swiftly is still an open challenge in this area. In this work, we propose PhishingNet, a deep learning-based approach for timely detection of phishing Uniform Resource Locators (URLs). Specifically, we use a Convolutional Neural Network (CNN) module to extract character-level spatial feature representations of URLs; meanwhile, we employ an attention-based hierarchical Recurrent Neural Network(RNN) module to extract word-level temporal feature representations of URLs. We then fuse these feature representations via a three-layer CNN to build accurate feature representations of URLs, on which we train a phishing URL classifier. Extensive experiments on a verified dataset collected from the Internet demonstrate that the feature representations extracted automatically are conducive to the improvement of the generalization ability of our approach on newly emerging URLs, which makes our approach achieve competitive performance against other state-of-the-art approaches.
Guha, Krishnendu, Saha, Debasri, Chakrabarti, Amlan.  2019.  Zero Knowledge Authentication for Reuse of IPs in Reconfigurable Platforms. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :2040–2045.
A key challenge of the embedded era is to ensure trust in reuse of intellectual properties (IPs), which facilitates reduction of design cost and meeting of stringent marketing deadlines. Determining source of the IPs or their authenticity is a key metric to facilitate safe reuse of IPs. Though physical unclonable functions solves this problem for application specific integrated circuit (ASIC) IPs, authentication strategies for reconfigurable IPs (RIPs) or IPs of reconfigurable hardware platforms like field programmable gate arrays (FPGAs) are still in their infancy. Existing authentication techniques for RIPs that relies on verification of proof of authentication (PoA) mark embedded in the RIP by the RIP producers, leak useful clues about the PoA mark. This results in replication and implantation of the PoA mark in fake RIPs. This not only causes loss to authorized second hand RIP users, but also poses risk to the reputation of the RIP producers. We propose a zero knowledge authentication strategy for safe reusing of RIPs. The PoA of an RIP producer is kept secret and verification is carried out based on traversal times from the initial point to several intermediate points of the embedded PoA when the RIPs configure an FPGA. Such delays are user specific and cannot be replicated as these depend on intrinsic properties of the base semiconductor material of the FPGA, which is unique and never same as that of another FPGA. Experimental results validate our proposed mechanism. High strength even for low overhead ISCAS benchmarks, considered as PoA for experimentation depict the prospects of our proposed methodology.
Harikrishnan, M., Lakshmy, K.V..  2019.  Secure Digital Service Payments using Zero Knowledge Proof in Distributed Network. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :307–312.
Performing a fair exchange without a Trusted Third Party (TTP) was considered to be impossible. With multi party computation and practices like Proof-of-Work (PoW), blockchain accomplishes a fair exchange in a trustless network. Data confidentiality is a key challenge that has to be resolved before adopting blockchain for enterprise applications where tokenized assets will be transferred. Protocols like Zcash are already providing the same for financial transactions but lacks flexibility required to apply in most of the potential use cases of blockchain. Most of the real world application work in a way where a transaction is carried out when a particular action is performed. Also, the zero knowledge proof method used in Zcash, ZKSNARK has certain weaknesses restricting its adoption. One of the major drawbacks of ZKSNARK is that it requires an initial trust setup phase which is difficult to achieve in blockchain ecosystem. ZKSTARK, an interactive zero knowledge proof does not require this phase and also provides security against post quantum attacks. We propose a system that uses two indistinguishable hash functions along with ZKSTARK to improve the flexibility of blockchain platforms. The two indistinguishable hash functions are chosen from SHA3-finalists based on their security, performance and inner designs.
He, Zecheng, Raghavan, Aswin, Hu, Guangyuan, Chai, Sek, Lee, Ruby.  2019.  Power-Grid Controller Anomaly Detection with Enhanced Temporal Deep Learning. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :160–167.
Controllers of security-critical cyber-physical systems, like the power grid, are a very important class of computer systems. Attacks against the control code of a power-grid system, especially zero-day attacks, can be catastrophic. Earlier detection of the anomalies can prevent further damage. However, detecting zero-day attacks is extremely challenging because they have no known code and have unknown behavior. Furthermore, if data collected from the controller is transferred to a server through networks for analysis and detection of anomalous behavior, this creates a very large attack surface and also delays detection. In order to address this problem, we propose Reconstruction Error Distribution (RED) of Hardware Performance Counters (HPCs), and a data-driven defense system based on it. Specifically, we first train a temporal deep learning model, using only normal HPC readings from legitimate processes that run daily in these power-grid systems, to model the normal behavior of the power-grid controller. Then, we run this model using real-time data from commonly available HPCs. We use the proposed RED to enhance the temporal deep learning detection of anomalous behavior, by estimating distribution deviations from the normal behavior with an effective statistical test. Experimental results on a real power-grid controller show that we can detect anomalous behavior with high accuracy (\textbackslashtextgreater99.9%), nearly zero false positives and short (\textbackslashtextless; 360ms) latency.
Vu, Thang X., Vu, Trinh Anh, Lei, Lei, Chatzinotas, Symeon, Ottersten, Björn.  2019.  Linear Precoding Design for Cache-aided Full-duplex Networks. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Edge caching has received much attention as a promising technique to overcome the stringent latency and data hungry challenges in the future generation wireless networks. Meanwhile, full-duplex (FD) transmission can potentially double the spectral efficiency by allowing a node to receive and transmit simultaneously. In this paper, we study a cache-aided FD system via delivery time analysis and optimization. In the considered system, an edge node (EN) operates in FD mode and serves users via wireless channels. Two optimization problems are formulated to minimize the largest delivery time based on the two popular linear beamforming zero-forcing and minimum mean square error designs. Since the formulated problems are non-convex due to the self-interference at the EN, we propose two iterative optimization algorithms based on the inner approximation method. The convergence of the proposed iterative algorithms is analytically guaranteed. Finally, the impacts of caching and the advantages of the FD system over the half-duplex (HD) counterpart are demonstrated via numerical results.
Thiemann, Benjamin, Feiten, Linus, Raiola, Pascal, Becker, Bernd, Sauer, Matthias.  2019.  On Integrating Lightweight Encryption in Reconfigurable Scan Networks. 2019 IEEE European Test Symposium (ETS). :1–6.

Reconfigurable Scan Networks (RSNs) are a powerful tool for testing and maintenance of embedded systems, since they allow for flexible access to on-chip instrumentation such as built-in self-test and debug modules. RSNs, however, can be also exploited by malicious users as a side-channel in order to gain information about sensitive data or intellectual property and to recover secret keys. Hence, implementing appropriate counter-measures to secure the access to and data integrity of embedded instrumentation is of high importance. In this paper we present a novel hardware and software combined approach to ensure data privacy in IEEE Std 1687 (IJTAG) RSNs. To do so, both a secure IJTAG compliant plug-and-play instrument wrapper and a versatile software toolchain are introduced. The wrapper demonstrates the necessary architectural adaptations required when using a lightweight stream cipher, whereas the software toolchain provides a seamless integration of the testing workflow with stream cipher. The applicability of the method is demonstrated by an FPGA-based implementation. We report on the performance of the developed instrument wrapper, which is empirically shown to have only a small impact on the workflow in terms of hardware overhead, operational costs and test time overhead.

Thapliyal, Sourav, Gupta, Himanshu, Khatri, Sunil Kumar.  2019.  An Innovative Model for the Enhancement of IoT Device Using Lightweight Cryptography. 2019 Amity International Conference on Artificial Intelligence (AICAI). :887–892.

The problem statement is that at present there is no stable algorithm which provides security for resource constrained devices because classic cryptography algorithms are too heavy to be implemented. So we will provide a model about the various cryptographic algorithms in this field which can be modified to be implement on constrained devices. The advantages and disadvantages of IOT devices will be taken into consideration to develop a model. Mainly IOT devices works on three layers which are physical layer, application and commutation layer. We have discuss how IOT devices individually works on these layers and how security is compromised. So, we can build a model where minimum intervention of third party is involved i.e. hackers and we can have higher and tight privacy and security system [1].we will discuss about the different ciphers(block and stream) and functions(hash algorithms) through which we can achieve cryptographic algorithms which can be implemented on resource constrained devices. Cost, safety and productivity are the three parameters which determines the ratio for block cipher. Mostly programmers are forced to choose between these two; either cost and safety, safety and productivity, cost and productivity. The main challenge is to optimize or balance between these three factors which is extremely a difficult task to perform. In this paper we will try to build a model which will optimize these three factors and will enhance the security of IOT devices.

Gay, Maël, Paxian, Tobias, Upadhyaya, Devanshi, Becker, Bernd, Polian, Ilia.  2019.  Hardware-Oriented Algebraic Fault Attack Framework with Multiple Fault Injection Support. 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC). :25–32.

The evaluation of fault attacks on security-critical hardware implementations of cryptographic primitives is an important concern. In such regards, we have created a framework for automated construction of fault attacks on hardware realization of ciphers. The framework can be used to quickly evaluate any cipher implementations, including any optimisations. It takes the circuit description of the cipher and the fault model as input. The output of the framework is a set of algebraic equations, such as conjunctive normal form (CNF) clauses, which is then fed to a SAT solver. We consider both attacking an actual implementation of a cipher on an field-programmable gate array (FPGA) platform using a fault injector and the evaluation of an early design of the cipher using idealized fault models. We report the successful application of our hardware-oriented framework to a collection of ciphers, including the advanced encryption standard (AES), and the lightweight block ciphers LED and PRESENT. The corresponding results and a discussion of the impact to different fault models on our framework are shown. Moreover, we report significant improvements compared to similar frameworks, such as speedups or more advanced features. Our framework is the first algebraic fault attack (AFA) tool to evaluate the state-of-the art cipher LED-64, PRESENT and full-scale AES using only hardware-oriented structural cipher descriptions.

Noura, Hassan, Couturier, Raphael, Pham, Congduc, Chehab, Ali.  2019.  Lightweight Stream Cipher Scheme for Resource-Constrained IoT Devices. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–8.

The Internet of Things (IoT) systems are vulnerable to many security threats that may have drastic impacts. Existing cryptographic solutions do not cater for the limitations of resource-constrained IoT devices, nor for real-time requirements of some IoT applications. Therefore, it is essential to design new efficient cipher schemes with low overhead in terms of delay and resource requirements. In this paper, we propose a lightweight stream cipher scheme, which is based, on one hand, on the dynamic key-dependent approach to achieve a high security level, and on the other hand, the scheme involves few simple operations to minimize the overhead. In our approach, cryptographic primitives change in a dynamic lightweight manner for each input block. Security and performance study as well as experimentation are performed to validate that the proposed cipher achieves a high level of efficiency and robustness, making it suitable for resource-constrained IoT devices.

Chawla, Nikhil, Singh, Arvind, Rahman, Nael Mizanur, Kar, Monodeep, Mukhopadhyay, Saibal.  2019.  Extracting Side-Channel Leakage from Round Unrolled Implementations of Lightweight Ciphers. 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :31–40.

Energy efficiency and security is a critical requirement for computing at edge nodes. Unrolled architectures for lightweight cryptographic algorithms have been shown to be energy-efficient, providing higher performance while meeting resource constraints. Hardware implementations of unrolled datapaths have also been shown to be resistant to side channel analysis (SCA) attacks due to a reduction in signal-to-noise ratio (SNR) and an increased complexity in the leakage model. This paper demonstrates optimal leakage models and an improved CFA attack which makes it feasible to extract first-order side-channel leakages from combinational logic in the initial rounds of unrolled datapaths. Several leakage models, targeting initial rounds, are explored and 1-bit hamming weight (HW) based leakage model is shown to be an optimal choice. Additionally, multi-band narrow bandpass filtering techniques in conjunction with correlation frequency analysis (CFA) is demonstrated to improve SNR by up to 4×, attributed to the removal of the misalignment effect in combinational logics and signal isolation. The improved CFA attack is performed on side channel signatures acquired for 7-round unrolled SIMON datapaths, implemented on Sakura-G (XILINX spartan 6, 45nm) based FPGA platform and a 24× reduction in minimum-traces-to-disclose (MTD) for revealing 80% of the key bits is demonstrated with respect to conventional time domain correlation power analysis (CPA). Finally, the proposed method is successfully applied to a fully-unrolled datapath for PRINCE and a parallel round-based datapath for Advanced Encryption Standard (AES) algorithm to demonstrate its general applicability.

Bauer, Sergei, Brunner, Martin, Schartner, Peter.  2019.  Lightweight Authentication for Low-End Control Units with Hardware Based Individual Keys. 2019 Third IEEE International Conference on Robotic Computing (IRC). :425–426.

In autonomous driving, security issues from robotic and automotive applications are converging toward each other. A novel approach for deriving secret keys using a lightweight cipher in the firmware of low-end control units is introduced. By evaluating the method on a typical low-end automotive platform, we demonstrate the reusability of the cipher for message authentication. The proposed solution counteracts a known security issue in the robotics and automotive domain.

Khairullin, Ilias, Bobrov, Vladimir.  2019.  On Cryptographic Properties of Some Lightweight Algorithms and its Application to the Construction of S-Boxes. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1807–1810.

We consider some approaches to the construction of lightweight block ciphers and introduce the definitions for "index of strong nonlinearity" and "index of perfection". For PRESENT, MIDORI, SKINNY, CLEFIA, LILLIPUT mixing and nonlinear properties were evaluated. We obtain the exact values of the exponents for mixing matrices of round functions and the upper bounds for indexes of perfection and strong nonlinearity. It was determined by the experiment that each coordinate function of output block is nonlinear during 500 rounds. We propose the algorithmic realization of 16×16 S-box based on the modified additive generator with lightweight cipher SPECK as a modification which does not demand memory for storage huge substitution tables. The best value of the differential characteristic of such S-box is 18/216, the minimal nonlinearity degree of coordinate functions is equal to 15 and the minimal linear characteristic is 788/215.

Elaguech, Amira, Kchaou, Afef, El Hadj Youssef, Wajih, Ben Othman, Kamel, Machhout, Mohsen.  2019.  Performance evaluation of lightweight Block Ciphers in soft-core processor. 2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). :101–105.

The Internet of Things (IoT) and RFID devices are essential parts of the new information technology generation. They are mostly characterized by their limited power and computing resources. In order to ensure their security under computing and power constraints, a number of lightweight cryptography algorithms has emerged. This paper outlines the performance analysis of six lightweight blocks crypto ciphers with different structures - LED, PRESENT, HIGHT, LBlock, PICCOLO and TWINE on a LEON3 open source processor. We have implemented these crypto ciphers on the FPGA board using the C language and the LEON3 processor. Analysis of these crypto ciphers is evaluated after considering various benchmark parameters like throughput, execution time, CPU performance, AHB bandwidth, Simulator performance, and speed. These metrics are tested with different key sizes provided by each crypto algorithm.

Noura, Hassan, Chehab, Ali, Couturier, Raphael.  2019.  Lightweight Dynamic Key-Dependent and Flexible Cipher Scheme for IoT Devices. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–8.

Security attacks against Internet of Things (IoT) are on the rise and they lead to drastic consequences. Data confidentiality is typically based on a strong symmetric-key algorithm to guard against confidentiality attacks. However, there is a need to design an efficient lightweight cipher scheme for a number of applications for IoT systems. Recently, a set of lightweight cryptographic algorithms have been presented and they are based on the dynamic key approach, requiring a small number of rounds to minimize the computation and resource overhead, without degrading the security level. This paper follows this logic and provides a new flexible lightweight cipher, with or without chaining operation mode, with a simple round function and a dynamic key for each input message. Consequently, the proposed cipher scheme can be utilized for real-time applications and/or devices with limited resources such as Multimedia Internet of Things (MIoT) systems. The importance of the proposed solution is that it produces dynamic cryptographic primitives and it performs the mixing of selected blocks in a dynamic pseudo-random manner. Accordingly, different plaintext messages are encrypted differently, and the avalanche effect is also preserved. Finally, security and performance analysis are presented to validate the efficiency and robustness of the proposed cipher variants.

Sehrawat, Deepti, Gill, Nasib Singh, Devi, Munisha.  2019.  Comparative Analysis of Lightweight Block Ciphers in IoT-Enabled Smart Environment. 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN). :915–920.

With the rapid technological growth in the present context, Internet of Things (IoT) has attracted the worldwide attention and has become pivotal technology in the smart computing environment of 21st century. IoT provides a virtual view of real-life things in resource-constrained environment where security and privacy are of prime concern. Lightweight cryptography provides security solutions in resource-constrained environment of IoT. Several software and hardware implementation of lightweight ciphers have been presented by different researchers in this area. This paper presents a comparative analysis of several lightweight cryptographic solutions along with their pros and cons, and their future scope. The comparative analysis may further help in proposing a 32-bit ultra-lightweight block cipher security model for IoT enabled applications in the smart environment.

Giaretta, Alberto, Dragoni, Nicola, Massacci, Fabio.  2019.  Protecting the Internet of Things with Security-by-Contract and Fog Computing. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :1–6.

Nowadays, the Internet of Things (IoT) is a consolidated reality. Smart homes are equipped with a growing number of IoT devices that capture more and more information about human beings lives. However, manufacturers paid little or no attention to security, so that various challenges are still in place. In this paper, we propose a novel approach to secure IoT systems that combines the concept of Security-by-Contract (S×C) with the Fog computing distributed paradigm. We define the pillars of our approach, namely the notions of IoT device contract, Fog node policy and contract-policy matching, the respective life-cycles, and the resulting S×C workflow. To better understand all the concepts of the S×C framework, and highlight its practical feasibility, we use a running case study based on a context-aware system deployed in a real smart home.

Tedeschi, Pietro, Sciancalepore, Savio.  2019.  Edge and Fog Computing in Critical Infrastructures: Analysis, Security Threats, and Research Challenges. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :1–10.

The increasing integration of information and communication technologies has undoubtedly boosted the efficiency of Critical Infrastructures (CI). However, the first wave of IoT devices, together with the management of enormous amount of data generated by modern CIs, has created serious architectural issues. While the emerging Fog and Multi-Access Edge Computing (FMEC) paradigms can provide a viable solution, they also bring inherent security issues, that can cause dire consequences in the context of CIs. In this paper, we analyze the applications of FMEC solutions in the context of CIs, with a specific focus on related security issues and threats for the specific while broad scenarios: a smart airport, a smart port, and a smart offshore oil and gas extraction field. Leveraging these scenarios, a set of general security requirements for FMEC is derived, together with crucial research challenges whose further investigation is cornerstone for a successful adoption of FMEC in CIs.

Almehmadi, Tahani, Alshehri, Suhair, Tahir, Sabeen.  2019.  A Secure Fog-Cloud Based Architecture for MIoT. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–6.

Medical Internet of Things (MIoT) offers innovative solutions to a healthier life, making radical changes in people's lives. Healthcare providers are enabled to continuously and remotely monitor their patients for many medial issues outside hospitals and healthcare providers' offices. MIoT systems and applications lead to increase availability, accessibility, quality and cost-effectiveness of healthcare services. On the other hand, MIoT devices generate a large amount of diverse real-time data, which is highly sensitive. Thus, securing medical data is an essential requirement when developing MIoT architectures. However, the MIoT architectures being developed in the literature have many security issues. To address the challenge of data security in MIoT, the integration of fog computing and MIoT is studied as an emerging and appropriate solution. By data security, it means that medial data is stored in fog nodes and transferred to the cloud in a secure manner to prevent any unauthorized access. In this paper, we propose a design for a secure fog-cloud based architecture for MIoT.

Jamil, Syed Usman, Khan, M. Arif, Ali, Mumtaz.  2019.  Security Embedded Offloading Requirements for IoT-Fog Paradigm. 2019 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW). 1:47–51.

The paper presents a conceptual framework for security embedded task offloading requirements for IoT-Fog based future communication networks. The focus of the paper is to enumerate the need of embedded security requirements in this IoT-Fog paradigm including the middleware technologies in the overall architecture. Task offloading plays a significant role in the load balancing, energy and data management, security, reducing information processing and propagation latencies. The motivation behind introducing the embedded security is to meet the challenges of future smart networks including two main reasons namely; to improve the data protection and to minimize the internet disturbance and intrusiveness. We further discuss the middleware technologies such as cloudlets, mobile edge computing, micro datacenters, self-healing infrastructures and delay tolerant networks for security provision, optimized energy consumption and to reduce the latency. The paper introduces concepts of system virtualization and parallelism in IoT-Fog based systems and highlight the security features of the system. Some research opportunities and challenges are discussed to improve secure offloading from IoT into fog.

Wang, Qihua, Lv, Gaoyan, Sun, Xiuling.  2019.  Distributed Access Control with Outsourced Computation in Fog Computing. 2019 Chinese Control And Decision Conference (CCDC). :2446–2450.

With the rapid development of Internet of things (IOT) and big data, the number of network terminal devices and big data transmission are increasing rapidly. Traditional cloud computing faces a great challenge in dealing with this massive amount of data. Fog computing which extends the computing at the edge of the network can provide computation and data storage. Attribute based-encryption can effectively achieve the fine-grained access control. However, the computational complexity of the encryption and decryption is growing linearly with the increase of the number of attributes. In order to reduce the computational cost and guarantee the confidentiality of data, distributed access control with outsourced computation in fog computing is proposed in this paper. In our proposed scheme, fog device takes most of computational cost in encryption and decryption phase. The computational cost of the receiver and sender can be reduced. Moreover, the private key of the user is generated by multi-authority which can enhance the security of data. The analysis of security and performance shows that our proposed scheme proves to be effective and secure.