Visible to the public Biblio

Filters: Keyword is data encryption  [Clear All Filters]
2021-02-15
Chen, Z., Chen, J., Meng, W..  2020.  A New Dynamic Conditional Proxy Broadcast Re-Encryption Scheme for Cloud Storage and Sharing. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :569–576.
Security of cloud storage and sharing is concerned for years since a semi-trusted party, Cloud Server Provider (CSP), has access to user data on cloud server that may leak users' private data without constraint. Intuitively, an efficient solution of protecting cloud data is to encrypt it before uploading to the cloud server. However, a new requirement, data sharing, makes it difficult to manage secret keys among data owners and target users. Therefore conditional proxy broadcast re-encryption technology (CPBRE) is proposed in recent years to provide data encryption and sharing approaches for cloud environment. It enables a data owner to upload encrypted data to the cloud server and a third party proxy can re-encrypted cloud data under certain condition to a new ciphertext so that target users can decrypt re-encrypted data using their own private key. But few CPBRE schemes are applicable for a dynamic cloud environment. In this paper, we propose a new dynamic conditional proxy broadcast reencryption scheme that can be dynamic in system user setting and target user group. The initialization phase does not require a fixed system user setup so that users can join or leave the system in any time. And data owner can dynamically change the group of user he wants to share data with. We also provide security analysis which proves our scheme to be secure against CSP, and performance analysis shows that our scheme exceeds other schemes in terms of functionality and resource cost.
Reshma, S., Shaila, K., Venugopal, K. R..  2020.  DEAVD - Data Encryption and Aggregation using Voronoi Diagram for Wireless Sensor Networks. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :635–638.
Wireless Sensor Networks (WSNs) are applied in environmental monitoring, military surveillance, etc., whereas these applications focuses on providing security for sensed data and the nodes are available for a long time. Hence, we propose DEAVD protocol for secure data exchange with limited usage of energy. The DEAVD protocol compresses data to reduces the energy consumption and implements an energy efficient encryption and decryption technique using voronoi diagram paradigm. Thus, there is an improvement in the proposed protocol with respect to security due to the concept adapted during data encryption and aggregation.
2021-02-01
Sendhil, R., Amuthan, A..  2020.  A Descriptive Study on Homomorphic Encryption Schemes for Enhancing Security in Fog Computing. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :738–743.
Nowadays, Fog Computing gets more attention due to its characteristics. Fog computing provides more advantages in related to apply with the latest technology. On the other hand, there is an issue about the data security over processing of data. Fog Computing encounters many security challenges like false data injection, violating privacy in edge devices and integrity of data, etc. An encryption scheme called Homomorphic Encryption (HME) technique is used to protect the data from the various security threats. This homomorphic encryption scheme allows doing manipulation over the encrypted data without decrypting it. This scheme can be implemented in many systems with various crypto-algorithms. This homomorphic encryption technique is mainly used to retain the privacy and to process the stored encrypted data on a remote server. This paper addresses the terminologies of Fog Computing, work flow and properties of the homomorphic encryption algorithm, followed by exploring the application of homomorphic encryption in various public key cryptosystems such as RSA and Pailier. It focuses on various homomorphic encryption schemes implemented by various researchers such as Brakerski-Gentry-Vaikuntanathan model, Improved Homomorphic Cryptosystem, Upgraded ElGamal based Algebric homomorphic encryption scheme, In-Direct rapid homomorphic encryption scheme which provides integrity of data.
2021-01-28
Kumar, B. S., Daniya, T., Sathya, N., Cristin, R..  2020.  Investigation on Privacy Preserving using K-Anonymity Techniques. 2020 International Conference on Computer Communication and Informatics (ICCCI). :1—7.

In the current world, day by day the data growth and the investigation about that information increased due to the pervasiveness of computing devices, but people are reluctant to share their information on online portals or surveys fearing safety because sensitive information such as credit card information, medical conditions and other personal information in the wrong hands can mean danger to the society. These days privacy preserving has become a setback for storing data in data repository so for that reason data in the repository should be made undistinguishable, data is encrypted while storing and later decrypted when needed for analysis purpose in data mining. While storing the raw data of the individuals it is important to remove person-identifiable information such as name, employee id. However, the other attributes pertaining to the person should be encrypted so the methodologies used to implement. These methodologies can make data in the repository secure and PPDM task can made easier.

2021-01-25
Thinn, A. A., Thwin, M. M. S..  2020.  A Hybrid Solution for Confidential Data Transfer Using PKI, Modified AES Algorithm and Image as a Secret Key. 2020 IEEE Conference on Computer Applications(ICCA). :1–4.
Nowadays the provision of online services by government or business organizations has become a standard and necessary operation. Transferring data including the confidential or sensitive information via Internet or insecure network and exchange of them is also increased day by day. As a result, confidential information leakage and cyber threats are also heightened. Confidential information trading became one of the most profitable businesses. Encrypting the data is a solution to secure the data from being exposed. In this paper, we would like to propose a solution for the secure transfer of data using symmetric encryption, asymmetric encryption technologies and Key Generation Server as a mixed hybrid solution. A Symmetric encryption, modified AES algorithm, is used to encrypt data. Digital certificate is used both for data encryption and digital signing to assure data integrity. Key generation server is used to generate the second secret key from the publicly recognized information of a person and this key is used as a second secret key in the modified AES. The proposed hybrid solution can be utilized in any applications that require high confidentiality, integrity of data and non-repudiation.
2021-01-18
Yadav, M. K., Gugal, D., Matkar, S., Waghmare, S..  2019.  Encrypted Keyword Search in Cloud Computing using Fuzzy Logic. 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT). :1–4.
Research and Development, and information management professionals routinely employ simple keyword searches or more complex Boolean queries when using databases such as PubMed and Ovid and search engines like Google to find the information they need. While satisfying the basic needs of the researcher, basic search is limited which can adversely affect both precision and recall, decreasing productivity and damaging the researchers' ability to discover new insights. The cloud service providers who store user's data may access sensitive information without any proper authority. A basic approach to save the data confidentiality is to encrypt the data. Data encryption also demands the protection of keyword privacy since those usually contain very vital information related to the files. Encryption of keywords protects keyword safety. Fuzzy keyword search enhances system usability by matching the files perfectly or to the nearest possible files against the keywords entered by the user based on similar semantics. Encrypted keyword search in cloud using this logic provides the user, on entering keywords, to receive best possible files in a more secured manner, by protecting the user's documents.
2020-11-20
Wang, X., Herwono, I., Cerbo, F. D., Kearney, P., Shackleton, M..  2018.  Enabling Cyber Security Data Sharing for Large-scale Enterprises Using Managed Security Services. 2018 IEEE Conference on Communications and Network Security (CNS). :1—7.
Large enterprises and organizations from both private and public sectors typically outsource a platform solution, as part of the Managed Security Services (MSSs), from 3rd party providers (MSSPs) to monitor and analyze their data containing cyber security information. Sharing such data among these large entities is believed to improve their effectiveness and efficiency at tackling cybercrimes, via improved analytics and insights. However, MSS platform customers currently are not able or not willing to share data among themselves because of multiple reasons, including privacy and confidentiality concerns, even when they are using the same MSS platform. Therefore any proposed mechanism or technique to address such a challenge need to ensure that sharing is achieved in a secure and controlled way. In this paper, we propose a new architecture and use case driven designs to enable confidential, flexible and collaborative data sharing among such organizations using the same MSS platform. MSS platform is a complex environment where different stakeholders, including authorized MSSP personnel and customers' own users, have access to the same platform but with different types of rights and tasks. Hence we make every effort to improve the usability of the platform supporting sharing while keeping the existing rights and tasks intact. As an innovative and pioneering attempt to address the challenge of data sharing in the MSS platform, we hope to encourage further work to follow so that confidential and collaborative sharing eventually happens among MSS platform customers.
2020-10-26
Almalkawi, Islam T., Raed, Jafar, Alghaeb, Nawaf, Zapata, Manel Guerrero.  2019.  An Efficient Location Privacy Scheme for Wireless Multimedia Sensor Networks. 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1615–1618.
Most of the security algorithms proposed for the sensor networks such as secure routing, data encryption and authentication, and intrusion detection target protecting the content of the collected data from being exposed to different types of attacks. However, the context of the collected data, such as event occurrence, event time, and event location, is not addressed by these security mechanisms and can still be leaked to the adversaries. Therefore, we propose in this paper a novel and efficient unobservability scheme for source/sink location privacy for wireless multimedia sensor networks. The proposed privacy scheme is based on a cross-layer design between the application and routing layers in order to exploit the multimedia processing technique with multipath routing to hide the event occurrences and locations of important nodes without degrading the network performance. Simulation analysis shows that our proposed scheme satisfies the privacy requirements and has better performance compared to other existing techniques.
2020-08-28
Zobaed, S.M., ahmad, sahan, Gottumukkala, Raju, Salehi, Mohsen Amini.  2019.  ClustCrypt: Privacy-Preserving Clustering of Unstructured Big Data in the Cloud. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :609—616.
Security and confidentiality of big data stored in the cloud are important concerns for many organizations to adopt cloud services. One common approach to address the concerns is client-side encryption where data is encrypted on the client machine before being stored in the cloud. Having encrypted data in the cloud, however, limits the ability of data clustering, which is a crucial part of many data analytics applications, such as search systems. To overcome the limitation, in this paper, we present an approach named ClustCrypt for efficient topic-based clustering of encrypted unstructured big data in the cloud. ClustCrypt dynamically estimates the optimal number of clusters based on the statistical characteristics of encrypted data. It also provides clustering approach for encrypted data. We deploy ClustCrypt within the context of a secure cloud-based semantic search system (S3BD). Experimental results obtained from evaluating ClustCrypt on three datasets demonstrate on average 60% improvement on clusters' coherency. ClustCrypt also decreases the search-time overhead by up to 78% and increases the accuracy of search results by up to 35%.
2020-08-24
Al-Odat, Zeyad A., Khan, Samee U..  2019.  Anonymous Privacy-Preserving Scheme for Big Data Over the Cloud. 2019 IEEE International Conference on Big Data (Big Data). :5711–5717.
This paper introduces an anonymous privacy-preserving scheme for big data over the cloud. The proposed design helps to enhance the encryption/decryption time of big data by utilizing the MapReduce framework. The Hadoop distributed file system and the secure hash algorithm are employed to provide the anonymity, security and efficiency requirements for the proposed scheme. The experimental results show a significant enhancement in the computational time of data encryption and decryption.
2020-08-17
Garg, Hittu, Dave, Mayank.  2019.  Securing User Access at IoT Middleware Using Attribute Based Access Control. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
IoT middleware is an additional layer between IoT devices and the cloud applications that reduces computation and data handling on the cloud. In a typical IoT system model, middleware primarily connects to different IoT devices via IoT gateway. Device data stored on middleware is sensitive and private to a user. Middleware must have built-in mechanisms to address these issues, as well as the implementation of user authentication and access control. This paper presents the current methods used for access control on middleware and introduces Attribute-based encryption (ABE) on middleware for access control. ABE combines access control with data encryption for ensuring the integrity of data. In this paper, we propose Ciphertext-policy attribute-based encryption, abbreviated CP-ABE scheme on the middleware layer in the IoT system architecture for user access control. The proposed scheme is aimed to provide security and efficiency while reducing complexity on middleware. We have used the AVISPA tool to strengthen the proposed scheme.
Fischer, Marten, Scheerhorn, Alfred, Tönjes, Ralf.  2019.  Using Attribute-Based Encryption on IoT Devices with instant Key Revocation. 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :126–131.
The Internet of Things (IoT) relies on sensor devices to measure real-world phenomena in order to provide IoT services. The sensor readings are shared with multiple entities, such as IoT services, other IoT devices or other third parties. The collected data may be sensitive and include personal information. To protect the privacy of the users, the data needs to be protected through an encryption algorithm. For sharing cryptographic cipher-texts with a group of users Attribute-Based Encryption (ABE) is well suited, as it does not require to create group keys. However, the creation of ABE cipher-texts is slow when executed on resource constraint devices, such as IoT sensors. In this paper, we present a modification of an ABE scheme, which not only allows to encrypt data efficiently using ABE but also reduces the size of the cipher-text, that must be transmitted by the sensor. We also show how our modification can be used to realise an instantaneous key revocation mechanism.
2020-06-22
Long, Yihong, Cheng, Minyang.  2019.  Secret Sharing Based SM2 Digital Signature Generation using Homomorphic Encryption. 2019 15th International Conference on Computational Intelligence and Security (CIS). :252–256.
SM2 is an elliptic curve public key cryptography algorithm released by the State Cryptography Administration of China. It includes digital signature, data encryption and key exchange schemes. To meet specific application requirements, such as to protect the user's private key in software only implementation, and to facilitate secure cloud cryptography computing, secret sharing based SM2 signature generation schemes have been proposed in the literature. In this paper a new such kind of scheme based upon additively homomorphic encryption is proposed. The proposed scheme overcomes the drawback that the existing schemes have and is more secure. It is useful in various application scenarios.
2020-06-01
Parikh, Sarang, Sanjay, H A, Shastry, K. Aditya, Amith, K K.  2019.  Multimodal Data Security Framework Using Steganography Approaches. 2019 International Conference on Communication and Electronics Systems (ICCES). :1997–2002.
Information or data is a very crucial resource. Hence securing the information becomes a critical task. Transfer and Communication mediums via which we send this information do not provide data security natively. Therefore, methods for data security have to be devised to protect the information from third party and unauthorized users. Information hiding strategies like steganography provide techniques for data encryption so that the unauthorized users cannot read it. This work is aimed at creating a novel method of Augmented Reality Steganography (ARSteg). ARSteg uses cloud for image and key storage that does not alter any attributes of an image such as size and colour scheme. Unlike, traditional algorithms such as Least Significant Bit (LSB) which changes the attributes of images, our approach uses well established encryption algorithm such as Advanced Encryption Standard (AES) for encryption and decryption. This system is further secured by many alternative means such as honey potting, tracking and heuristic intrusion detection that ensure that the transmitted messages are completely secure and no intrusions are allowed. The intrusions are prevented by detecting them immediately and neutralizing them.
2020-05-15
Krishnamoorthy, Raja, Kalaivaani, P.T., Jackson, Beulah.  2019.  Test methodology for detecting short-channel faults in network on- chip networks using IOT. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :1406—1417.
The NOC Network on chip provides better performance and scalability communication structures point-to-point signal node, shared through bus architecture. Information analysis of method using the IOT termination, as the energy consumed in this regard reduces and reduces the network load but it also displays safety concerns because the valuation data is stored or transmitted to the network in various stages of the node. Using encryption to protect data on the area of network-on-chip Analysis Machine is a way to solve data security issues. We propose a Network on chip based on a combined multicore cluster with special packages for computing-intensive data processing and encryption functionality and support for software, in a tight power envelope for analyzing and coordinating integrated encryption. Programming for regular computing tasks is the challenge of efficient and secure data analysis for IOT end-end applications while providing full-functionality with high efficiency and low power to satisfy the needs of multiple processing applications. Applications provide a substantial parallel, so they can also use NOC's ability. Applications must compose in. This system controls the movement of the packets through the network. As network on chip (NOC) systems become more prevalent in the processing unit. Routers and interconnection networks are the main components of NOC. This system controls the movement of packets over the network. Chip (NOC) networks are very backward for the network processing unit. Guides and Link Networks are critical elements of the NOC. Therefore, these areas require less access and power consumption, so we can better understand environmental and energy transactions. In this manner, a low-area and efficient NOC framework were proposed by removing virtual channels.
2020-03-18
Hłobaż, Artur.  2019.  Statistical Analysis of Enhanced SDEx Encryption Method Based on SHA-256 Hash Function. 2019 IEEE 44th Conference on Local Computer Networks (LCN). :238–241.
In the paper, the author provides a statistical analysis of the enhanced SDEx method based on SHA-256 hash function, which is used to secure end-to-end encryption in data transferring. To examine the quality of the enhanced SDEx encryption algorithm, the ciphertext files were tested to check if they fulfill the conditions of pseudo-randomness. To test the pseudo-randomness of the encrypted files, a test package shared by NIST was used for this purpose. In addition, compression tests on ciphertext files were performed using the WinRAR software.
2020-01-20
Zhu, Yan, Zhang, Yi, Wang, Jing, Song, Weijing, Chu, Cheng-Chung, Liu, Guowei.  2019.  From Data-Driven to Intelligent-Driven: Technology Evolution of Network Security in Big Data Era. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 2:103–109.

With the advent of the big data era, information systems have exhibited some new features, including boundary obfuscation, system virtualization, unstructured and diversification of data types, and low coupling among function and data. These features not only lead to a big difference between big data technology (DT) and information technology (IT), but also promote the upgrading and evolution of network security technology. In response to these changes, in this paper we compare the characteristics between IT era and DT era, and then propose four DT security principles: privacy, integrity, traceability, and controllability, as well as active and dynamic defense strategy based on "propagation prediction, audit prediction, dynamic management and control". We further discuss the security challenges faced by DT and the corresponding assurance strategies. On this basis, the big data security technologies can be divided into four levels: elimination, continuation, improvement, and innovation. These technologies are analyzed, combed and explained according to six categories: access control, identification and authentication, data encryption, data privacy, intrusion prevention, security audit and disaster recovery. The results will support the evolution of security technologies in the DT era, the construction of big data platforms, the designation of security assurance strategies, and security technology choices suitable for big data.

2020-01-13
Durgapu, Swetha, Kiran, L. Venkateshwara, Madhavi, Valli.  2019.  A Novel Approach on Mobile Devices Fast Authentication and Key Agreement. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–4.
Mechanism to-Rube Goldberg invention accord is normal habituated to for apartment phones and Internet of Things. Agree and central knowledge are open to meet an unfailing turning between twosome gadgets. In ignoble fracas, factual methodologies many a time eon wait on a prefabricated solitarily pronunciation database and bear the ill effects of serene age rate. We verifiable GeneWave, a brusque gadget inspection and root assention convention for item cell phones. GeneWave mischievous accomplishes bidirectional ingenious inspection office on the physical reaction meantime between two gadgets. To evade the resolution of interim in compliance, we overshadow overseas time fragility on ware gadgets skim through steep flag location and excess time crossing out. At zigzag goal, we success out the elementary acoustic channel reaction for gadget verification. We combination an extraordinary coding pointing for virtual key assention while guaranteeing security. Consequently, two gadgets heart signal couple choice and safely concur on a symmetric key.
2019-11-25
Wu, Songrui, Li, Qi, Li, Guoliang, Yuan, Dong, Yuan, Xingliang, Wang, Cong.  2019.  ServeDB: Secure, Verifiable, and Efficient Range Queries on Outsourced Database. 2019 IEEE 35th International Conference on Data Engineering (ICDE). :626–637.

Data outsourcing to cloud has been a common IT practice nowadays due to its significant benefits. Meanwhile, security and privacy concerns are critical obstacles to hinder the further adoption of cloud. Although data encryption can mitigate the problem, it reduces the functionality of query processing, e.g., disabling SQL queries. Several schemes have been proposed to enable one-dimensional query on encrypted data, but multi-dimensional range query has not been well addressed. In this paper, we propose a secure and scalable scheme that can support multi-dimensional range queries over encrypted data. The proposed scheme has three salient features: (1) Privacy: the server cannot learn the contents of queries and data records during query processing. (2) Efficiency: we utilize hierarchical cubes to encode multi-dimensional data records and construct a secure tree index on top of such encoding to achieve sublinear query time. (3) Verifiability: our scheme allows users to verify the correctness and completeness of the query results to address server's malicious behaviors. We perform formal security analysis and comprehensive experimental evaluations. The results on real datasets demonstrate that our scheme achieves practical performance while guaranteeing data privacy and result integrity.

2019-10-08
Hajomer, A. A. E., Yang, X., Sultan, A., Sun, W., Hu, W..  2018.  Key Generation and Distribution Using Phase Fluctuation in Classical Fiber Channel. 2018 20th International Conference on Transparent Optical Networks (ICTON). :1–3.

We propose a secure key generation and distribution scheme for data encryption in classical optical fiber channel. A Delay interferometer (DI) is used to track the random phase fluctuation inside fiber, while the reconfigurable lengths of polarization-maintaining (PM) fiber are set as the source of optical phase fluctuations. The output signals from DI are extracted as the secret key and shared between the two-legal transmitter and receiver. Because of the randomness of local environment and the uniqueness of fiber channel, the phase fluctuation between orthogonal polarization modes (OPMs) can be used as secure keys to enhance the level of security in physical layer. Experimentally, we realize the random key generation and distribution over 25-km standard single-mode fiber (SSMF). Moreover, the proposed key generation scheme has the advantages of low cost, compatible with current optical fiber networks and long distance transmission with optical amplifiers.

2019-02-13
Won, J., Bertino, E..  2018.  Securing Mobile Data Collectors by Integrating Software Attestation and Encrypted Data Repositories. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). :26–35.
Drones are increasingly being used as mobile data collectors for various monitoring services. However, since they may move around in unattended hostile areas with valuable data, they can be the targets of malicious physical/cyber attacks. These attacks may aim at stealing privacy-sensitive data, including secret keys, and eavesdropping on communications between the drones and the ground station. To detect tampered drones, a code attestation technique is required. However, since attestation itself does not guarantee that the data in the drones' memory are not leaked, data collected by the drones must be protected and secret keys for secure communications must not be leaked. In this paper, we present a solution integrating techniques for software-based attestation, data encryption and secret key protection. We propose an attestation technique that fills up free memory spaces with data repositories. Data repositories consist of pseudo-random numbers that are also used to encrypt collected data. We also propose a group attestation scheme to efficiently verify the software integrity of multiple drones. Finally, to prevent secret keys from being leaked, we utilize a technique that converts short secret keys into large look-up tables. This technique prevents attackers from abusing free space in the data memory by filling up the space with the look-up tables. To evaluate the integrated solution, we implemented it on AR.Drone and Raspberry Pi.
2018-09-28
Song, Youngho, Shin, Young-sung, Jang, Miyoung, Chang, Jae-Woo.  2017.  Design and implementation of HDFS data encryption scheme using ARIA algorithm on Hadoop. 2017 IEEE International Conference on Big Data and Smart Computing (BigComp). :84–90.

Hadoop is developed as a distributed data processing platform for analyzing big data. Enterprises can analyze big data containing users' sensitive information by using Hadoop and utilize them for their marketing. Therefore, researches on data encryption have been widely done to protect the leakage of sensitive data stored in Hadoop. However, the existing researches support only the AES international standard data encryption algorithm. Meanwhile, the Korean government selected ARIA algorithm as a standard data encryption scheme for domestic usages. In this paper, we propose a HDFS data encryption scheme which supports both ARIA and AES algorithms on Hadoop. First, the proposed scheme provides a HDFS block-splitting component that performs ARIA/AES encryption and decryption under the Hadoop distributed computing environment. Second, the proposed scheme provides a variable-length data processing component that can perform encryption and decryption by adding dummy data, in case when the last data block does not contains 128-bit data. Finally, we show from performance analysis that our proposed scheme is efficient for various applications, such as word counting, sorting, k-Means, and hierarchical clustering.

2018-09-05
Buttigieg, R., Farrugia, M., Meli, C..  2017.  Security issues in controller area networks in automobiles. 2017 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). :93–98.
Modern vehicles may contain a considerable number of ECUs (Electronic Control Units) which are connected through various means of communication, with the CAN (Controller Area Network) protocol being the most widely used. However, several vulnerabilities such as the lack of authentication and the lack of data encryption have been pointed out by several authors, which ultimately render vehicles unsafe to their users and surroundings. Moreover, the lack of security in modern automobiles has been studied and analyzed by other researchers as well as several reports about modern car hacking have (already) been published. The contribution of this work aimed to analyze and test the level of security and how resilient is the CAN protocol by taking a BMW E90 (3-series) instrument cluster as a sample for a proof of concept study. This investigation was carried out by building and developing a rogue device using cheap commercially available components while being connected to the same CAN-Bus as a man in the middle device in order to send spoofed messages to the instrument cluster.
2018-06-11
Rafique, Ansar, Van Landuyt, Dimitri, Reniers, Vincent, Joosen, Wouter.  2017.  Towards Scalable and Dynamic Data Encryption for Multi-tenant SaaS. Proceedings of the Symposium on Applied Computing. :411–416.
Application-level data management middleware solutions are becoming increasingly compelling to deal with the complexity of a multi-cloud or federated cloud storage and multitenant storage architecture. However, these systems typically support traditional data mapping strategies that are created under the assumption of a fixed and rigorous database schema, and mapping data objects while supporting varying data confidentiality requirements therefore leads to fragmentation of data over distributed storage nodes. This introduces performance over-head at the level of individual database transactions and negatively affects the overall scalability. This paper discusses these challenges and highlights the potential of leveraging the data schema flexibility of NoSQL databases to accomplish dynamic and fine-grained data encryption in a more efficient and scalable manner. We illustrate these ideas in the context of an industrial multi-tenant SaaS application.
2018-03-19
Jacob, C., Rekha, V. R..  2017.  Secured and Reliable File Sharing System with De-Duplication Using Erasure Correction Code. 2017 International Conference on Networks Advances in Computational Technologies (NetACT). :221–228.
An effective storage and management of file systems is very much essential now a days to avoid the wastage of storage space provided by the cloud providers. Data de-duplication technique has been used widely which allows only to store a single copy of a file and thus avoids duplication of file in the cloud storage servers. It helps to reduce the amount of storage space and save bandwidth of cloud service and thus in high cost savings for the cloud service subscribers. Today data that we need to store are in encrypted format to ensure the security. So data encryption by data owners with their own keys makes the de-duplication impossible for the cloud service subscriber as the data encryption with a key converts data into an unidentifiable format called cipher text thus encrypting, even the same data, with different keys may result in different cipher texts. But de-duplication and encryption need to work in hand to hand to ensure secure, authorized and optimized storage. In this paper, we propose a scheme for file-level de-duplication on encrypted files like text, images and even on video files stored in cloud based on the user's privilege set and file privilege set. This paper proposed a de-duplication system which distributes the files across different servers. The system uses an Erasure Correcting Code technique to re-construct the files even if the parts of the files are lost by attacking any server. Thus the proposed system can ensure both the security and reliability of encrypted files.