Visible to the public Biblio

Filters: Keyword is online social media  [Clear All Filters]
Hirlekar, V. V., Kumar, A..  2020.  Natural Language Processing based Online Fake News Detection Challenges – A Detailed Review. 2020 5th International Conference on Communication and Electronics Systems (ICCES). :748–754.
Online social media plays an important role during real world events such as natural calamities, elections, social movements etc. Since the social media usage has increased, fake news has grown. The social media is often used by modifying true news or creating fake news to spread misinformation. The creation and distribution of fake news poses major threats in several respects from a national security point of view. Hence Fake news identification becomes an essential goal for enhancing the trustworthiness of the information shared on online social network. Over the period of time many researcher has used different methods, algorithms, tools and techniques to identify fake news content from online social networks. The aim of this paper is to review and examine these methodologies, different tools, browser extensions and analyze the degree of output in question. In addition, this paper discuss the general approach of fake news detection as well as taxonomy of feature extraction which plays an important role to achieve maximum accuracy with the help of different Machine Learning and Natural Language Processing algorithms.
Khurana, N., Mittal, S., Piplai, A., Joshi, A..  2019.  Preventing Poisoning Attacks On AI Based Threat Intelligence Systems. 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP). :1—6.

As AI systems become more ubiquitous, securing them becomes an emerging challenge. Over the years, with the surge in online social media use and the data available for analysis, AI systems have been built to extract, represent and use this information. The credibility of this information extracted from open sources, however, can often be questionable. Malicious or incorrect information can cause a loss of money, reputation, and resources; and in certain situations, pose a threat to human life. In this paper, we use an ensembled semi-supervised approach to determine the credibility of Reddit posts by estimating their reputation score to ensure the validity of information ingested by AI systems. We demonstrate our approach in the cybersecurity domain, where security analysts utilize these systems to determine possible threats by analyzing the data scattered on social media websites, forums, blogs, etc.

Ramezanian, Sara, Niemi, Valtteri.  2019.  Privacy Preserving Cyberbullying Prevention with AI Methods in 5G Networks. 2019 25th Conference of Open Innovations Association (FRUCT). :265—271.
Children and teenagers that have been a victim of bullying can possibly suffer its psychological effects for a lifetime. With the increase of online social media, cyberbullying incidents have been increased as well. In this paper we discuss how we can detect cyberbullying with AI techniques, using term frequency-inverse document frequency. We label messages as benign or bully. We want our method of cyberbullying detection to be privacy-preserving, such that the subscribers' benign messages should not be revealed to the operator. Moreover, the operator labels subscribers as normal, bully and victim. The operator utilizes policy control in 5G networks, to protect victims of cyberbullying from harmful traffic.