Visible to the public Biblio

Filters: Keyword is firewalls  [Clear All Filters]
2022-04-01
Rezaei, Ghazal, Hashemi, Massoud Reza.  2021.  An SDN-based Firewall for Networks with Varying Security Requirements. 2021 26th International Computer Conference, Computer Society of Iran (CSICC). :1–7.
With the new coronavirus crisis, medical devices' workload has increased dramatically, leaving them growingly vulnerable to security threats and in need of a comprehensive solution. In this work, we take advantage of the flexible and highly manageable nature of Software Defined Networks (SDN) to design a thoroughgoing security framework that covers a health organization's various security requirements. Our solution comes to be an advanced SDN firewall that solves the issues facing traditional firewalls. It enables the partitioning of the organization's network and the enforcement of different filtering and monitoring behaviors on each partition depending on security conditions. We pursued the network's efficient and dynamic security management with the least human intervention in designing our model which makes it generally qualified to use in networks with different security requirements.
2022-02-07
Chkirbene, Zina, Hamila, Ridha, Erbad, Aiman, Kiranyaz, Serkan, Al-Emadi, Nasser, Hamdi, Mounir.  2021.  Cooperative Machine Learning Techniques for Cloud Intrusion Detection. 2021 International Wireless Communications and Mobile Computing (IWCMC). :837–842.
Cloud computing is attracting a lot of attention in the past few years. Although, even with its wide acceptance, cloud security is still one of the most essential concerns of cloud computing. Many systems have been proposed to protect the cloud from attacks using attack signatures. Most of them may seem effective and efficient; however, there are many drawbacks such as the attack detection performance and the system maintenance. Recently, learning-based methods for security applications have been proposed for cloud anomaly detection especially with the advents of machine learning techniques. However, most researchers do not consider the attack classification which is an important parameter for proposing an appropriate countermeasure for each attack type. In this paper, we propose a new firewall model called Secure Packet Classifier (SPC) for cloud anomalies detection and classification. The proposed model is constructed based on collaborative filtering using two machine learning algorithms to gain the advantages of both learning schemes. This strategy increases the learning performance and the system's accuracy. To generate our results, a publicly available dataset is used for training and testing the performance of the proposed SPC. Our results show that the accuracy of the SPC model increases the detection accuracy by 20% compared to the existing machine learning algorithms while keeping a high attack detection rate.
2021-09-21
Zhao, Quanling, Sun, Jiawei, Ren, Hongjia, Sun, Guodong.  2020.  Machine-Learning Based TCP Security Action Prediction. 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :1329–1333.
With the continuous growth of Internet technology and the increasingly broadening applications of The Internet, network security incidents as well as cyber-attacks are also showing a growing trend. Consequently, computer network security is becoming increasingly important. TCP firewall is a computer network security system, and it allows or denies the transmission of data according to specific rules for providing security for the computer network. Traditional firewalls rely on network administrators to set security rules for them, and network administrators sometimes need to choose to allow and deny packets to keep computer networks secure. However, due to the huge amount of data on the Internet, network administrators have a huge task. Therefore, it is particularly important to solve this problem by using the machine learning method of computer technology. This study aims to predict TCP security action based on the TCP transmission characteristics dataset provided by UCI machine learning repository by implementing machine learning models such as neural network, support vector machine (SVM), AdaBoost, and Logistic regression. Processes including evaluating various models and interpretability analysis. By utilizing the idea of ensemble-learning, the final result has an accuracy score of over 98%.
2021-03-15
Lin, P., Jinshuang, W., Ping, C., Lanjuan, Y..  2020.  SQL Injection Attack and Detection Based on GreenSQL Pattern Input Whitelist. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :187—190.

With the rapid development of Internet technology, the era of big data is coming. SQL injection attack is the most common and the most dangerous threat to database. This paper studies the working mode and workflow of the GreenSQL database firewall. Based on the analysis of the characteristics and patterns of SQL injection attack command, the input model of GreenSQL learning is optimized by constructing the patterned input and optimized whitelist. The research method can improve the learning efficiency of GreenSQL and intercept samples in IPS mode, so as to effectively maintain the security of background database.

2021-02-23
Alshamrani, A..  2020.  Reconnaissance Attack in SDN based Environments. 2020 27th International Conference on Telecommunications (ICT). :1—5.
Software Defined Networking (SDN) is a promising network architecture that aims at providing high flexibility through the separation between network logic (control plane) and forwarding functions (data plane). This separation provides logical centralization of controllers, global network overview, ease of programmability, and a range of new SDN-compliant services. In recent years, the adoption of SDN in enterprise networks has been constantly increasing. In the meantime, new challenges arise in different levels such as scalability, management, and security. In this paper, we elaborate on complex security issues in the current SDN architecture. Especially, reconnaissance attack where attackers generate traffic for the goal of exploring existing services, assets, and overall network topology. To eliminate reconnaissance attack in SDN environment, we propose SDN-based solution by utilizing distributed firewall application, security policy, and OpenFlow counters. Distributed firewall application is capable of tracking the flow based on pre-defined states that would monitor the connection to sensitive nodes toward malicious activity. We utilize Mininet to simulate the testing environment. We are able to detect and mitigate this type of attack at early stage and in average around 7 second.
2021-01-25
More, S., Jamadar, I., Kazi, F..  2020.  Security Visualization and Active Querying for OT Network. :1—6.

Traditionally Industrial Control System(ICS) used air-gap mechanism to protect Operational Technology (OT) networks from cyber-attacks. As internet is evolving and so are business models, customer supplier relationships and their needs are changing. Hence lot of ICS are now connected to internet by providing levels of defense strategies in between OT network and business network to overcome the traditional mechanism of air-gap. This upgrade made OT networks available and accessible through internet. OT networks involve number of physical objects and computer networks. Physical damages to system have become rare but the number of cyber-attacks occurring are evidently increasing. To tackle cyber-attacks, we have a number of measures in place like Firewalls, Intrusion Detection System (IDS) and Intrusion Prevention System (IPS). To ensure no attack on or suspicious behavior within network takes place, we can use visual aids like creating dashboards which are able to flag any such activity and create visual alert about same. This paper describes creation of parser object to convert Common Event Format(CEF) to Comma Separated Values(CSV) format and dashboard to extract maximum amount of data and analyze network behavior. And working of active querying by leveraging packet level data from network to analyze network inclusion in real-time. The mentioned methodology is verified on data collected from Waste Water Treatment Plant and results are presented.,} booktitle = {2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT)

2021-01-11
Nyasore, O. N., Zavarsky, P., Swar, B., Naiyeju, R., Dabra, S..  2020.  Deep Packet Inspection in Industrial Automation Control System to Mitigate Attacks Exploiting Modbus/TCP Vulnerabilities. 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :241–245.

Modbus TCP/IP protocol is a commonly used protocol in industrial automation control systems, systems responsible for sensitive operations such as gas turbine operation and refinery control. The protocol was designed decades ago with no security features in mind. Denial of service attack and malicious parameter command injection are examples of attacks that can exploit vulnerabilities in industrial control systems that use Modbus/TCP protocol. This paper discusses and explores the use of intrusion detection and prevention systems (IDPS) with deep packet inspection (DPI) capabilities and DPI industrial firewalls that have capability to detect and stop highly specialized attacks hidden deep in the communication flow. The paper has the following objectives: (i) to develop signatures for IDPS for common attacks on Modbus/TCP based network architectures; (ii) to evaluate performance of three IDPS - Snort, Suricata and Bro - in detecting and preventing common attacks on Modbus/TCP based control systems; and (iii) to illustrate and emphasize that the IDPS and industrial firewalls with DPI capabilities are not preventing but only mitigating likelihood of exploitation of Modbus/TCP vulnerabilities in the industrial and automation control systems. The results presented in the paper illustrate that it might be challenging task to achieve requirements on real-time communication in some industrial and automation control systems in case the DPI is implemented because of the latency and jitter introduced by these IDPS and DPI industrial firewall.

2020-12-01
Karatas, G., Demir, O., Sahingoz, O. K..  2019.  A Deep Learning Based Intrusion Detection System on GPUs. 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1—6.

In recent years, almost all the real-world operations are transferred to cyber world and these market computers connect with each other via Internet. As a result of this, there is an increasing number of security breaches of the networks, whose admins cannot protect their networks from the all types of attacks. Although most of these attacks can be prevented with the use of firewalls, encryption mechanisms, access controls and some password protections mechanisms; due to the emergence of new type of attacks, a dynamic intrusion detection mechanism is always needed in the information security market. To enable the dynamicity of the Intrusion Detection System (IDS), it should be updated by using a modern learning mechanism. Neural Network approach is one of the mostly preferred algorithms for training the system. However, with the increasing power of parallel computing and use of big data for training, as a new concept, deep learning has been used in many of the modern real-world problems. Therefore, in this paper, we have proposed an IDS system which uses GPU powered Deep Learning Algorithms. The experimental results are collected on mostly preferred dataset KDD99 and it showed that use of GPU speed up training time up to 6.48 times depending on the number of the hidden layers and nodes in them. Additionally, we compare the different optimizers to enlighten the researcher to select the best one for their ongoing or future research.

2020-11-04
Yuan, X., Zhang, T., Shama, A. A., Xu, J., Yang, L., Ellis, J., He, W., Waters, C..  2019.  Teaching Cybersecurity Using Guided Inquiry Collaborative Learning. 2019 IEEE Frontiers in Education Conference (FIE). :1—6.

This Innovate Practice Full Paper describes our experience with teaching cybersecurity topics using guided inquiry collaborative learning. The goal is to not only develop the students' in-depth technical knowledge, but also “soft skills” such as communication, attitude, team work, networking, problem-solving and critical thinking. This paper reports our experience with developing and using the Guided Inquiry Collaborative Learning materials on the topics of firewall and IPsec. Pre- and post-surveys were conducted to access the effectiveness of the developed materials and teaching methods in terms of learning outcome, attitudes, learning experience and motivation. Analysis of the survey data shows that students had increased learning outcome, participation in class, and interest with Guided Inquiry Collaborative Learning.

2020-10-19
Hong, Bo, Chen, Jie, Zhang, Kai, Qian, Haifeng.  2019.  Multi-Authority Non-Monotonic KP-ABE With Cryptographic Reverse Firewall. IEEE Access. 7:159002–159012.
The revelations of Snowden show that hardware and software of devices may corrupt users' machine to compromise the security in various ways. To address this concern, Mironov and Stephen-Davidowitz introduce the Cryptographic Reverse Firewall (CRF) concept that is able to resist the ex-filtration of secret information for some compromised machine (Eurocrypt 2015). There are some applications of CRF deployed in many cryptosystems, but less studied and deployed in Attribute-Based Encryption (ABE) field, which attracts a wide range of attention and is employed in real-world scenarios (i.e., data sharing in cloud). In this work, we focus how to give a CRF security protection for a multi-authority ABE scheme and hence propose a multi-authority key-policy ABE scheme with CRF (acronym, MA-KP-ABE-CRF), which supports attribute distribution and non-monotonic access structure. To achieve this, beginning with revisiting a MA-KP-ABE with non-trivial combining non-monotonic formula, we then give the randomness of ciphertexts and secret keys with reverse firewall and give formal security analysis. Finally, we give a simulation on our MA-KP-ABE-CRF system based on Charm library whose the experimental results demonstrate practical efficiency.
2020-10-16
Zhang, Xin, Cai, Xiaobo, Wang, Chaogang, Han, Ke, Zhang, Shujuan.  2019.  A Dynamic Security Control Architecture for Industrial Cyber-Physical System. 2019 IEEE International Conference on Industrial Internet (ICII). :148—151.

According to the information security requirements of the industrial control system and the technical features of the existing defense measures, a dynamic security control strategy based on trusted computing is proposed. According to the strategy, the Industrial Cyber-Physical System system information security solution is proposed, and the linkage verification mechanism between the internal fire control wall of the industrial control system, the intrusion detection system and the trusted connection server is provided. The information exchange of multiple network security devices is realized, which improves the comprehensive defense capability of the industrial control system, and because the trusted platform module is based on the hardware encryption, storage, and control protection mode, It overcomes the common problem that the traditional repairing and stitching technique based on pure software leads to easy breakage, and achieves the goal of significantly improving the safety of the industrial control system . At the end of the paper, the system analyzes the implementation of the proposed secure industrial control information security system based on the trustworthy calculation.

2020-09-18
Tanrıverdi, Mustafa, Tekerek, Adem.  2019.  Implementation of Blockchain Based Distributed Web Attack Detection Application. 2019 1st International Informatics and Software Engineering Conference (UBMYK). :1—6.
In last decades' web application security has become one of the most important case study of information security studies. Business processes are transferred to web platforms. So web application usage is increased very fast. Web-based attacks have also increased due to the increased use of web applications. In order to ensure the security of web applications, intrusion detection and prevention systems and web application firewalls are used against web based attacks. Blockchain technology, which has become popular in recent years, enables reliable and transparent sharing of data with all stakeholders. In this study, in order to detect web-based attacks, a blockchain based web attack detection model that uses the signature based detection method is proposed. The signature based detection refers to the detection of attacks by looking for specific patterns against known web based attack types, such as Structured Query Language (SQL) Injection, Cross Site Scripting (XSS), Command Injection. Three web servers were used for the experimental study. A blockchain node has been installed with the MultiChain application for each server. Attacks on web applications are detected using the signature list found in the web application as well as detected using the signature list updated on the blockchain. According to the experimental results, the attacks signature detected and defined by a web application are updated in the blockchain lists and used by all web applications.
2020-08-24
Sophakan, Natnaree, Sathitwiriyawong, Chanboon.  2019.  A Secured OpenFlow-Based Software Defined Networking Using Dynamic Bayesian Network. 2019 19th International Conference on Control, Automation and Systems (ICCAS). :1517–1522.
OpenFlow has been the main standard protocol of software defined networking (SDN) since the launch of this new networking paradigm. It is a programmable network protocol that controls traffic flows among switches and routers regardless of their platforms. Its security relies on the optional implementation of Transport Layer Security (TLS) which has been proven vulnerable. The aim of this research was to develop a secured OpenFlow, so-called Secured-OF. A stateful firewall was used to store state information for further analysis. Dynamic Bayesian Network (DBN) was used to learn denial-of-service attack and distributed denial-of-service attack. It analyzes packet states to determine the nature of an attack and adds that piece of information to the flow table entry. The proposed Secured-OF model in Ryu controller was evaluated with several performance metrics. The analytical evaluation of the proposed Secured-OF scheme was performed on an emulated network. The results showed that the proposed Secured-OF scheme offers a high attack detection accuracy at 99.5%. In conclusion, it was able to improve the security of the OpenFlow controller dramatically with trivial performance degradation compared to an SDN with no security implementation.
2020-06-29
Nenova, Maria, Atanasov, Denis, Kassev, Kiril, Nenov, Andon.  2019.  Intrusion Detection System Model Implementation against DDOS attacks. 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS). :1–4.
In the paper is presented implementation of a system for detecting intrusion actions. An implementation of intrusion detection systems (IDS), their architectures, and intrusion detection methods are investigated. Analyzed are methods for SNORT (IDS) bandwidth traffic analysis in intrusion detection and prevention systems. The main requirements for Installation and configuration of the system are also discussed. Then the configuration of the firewall policy and specifics there, are also presented. It is also described the database structure, the operating modes, and analysis of the rules. Two of the most commonly implemented attacks and model for defense against them is proposed.
2020-05-15
Kornaros, Georgios, Tomoutzoglou, Othon, Coppola, Marcello.  2018.  Hardware-Assisted Security in Electronic Control Units: Secure Automotive Communications by Utilizing One-Time-Programmable Network on Chip and Firewalls. IEEE Micro. 38:63—74.
With emerging smart automotive technologies, vehicle-to-vehicle communications, and software-dominated enhancements for enjoyable driving and advanced driver assistance systems, the complexity of providing guarantees in terms of security, trust, and privacy in a modern cyber-enabled automotive system is significantly elevated. New threat models emerge that require efficient system-level countermeasures. This article introduces synergies between on- and off-chip networking techniques to ensure secure execution environments for electronic control units. The proposed mechanisms consist of hardware firewalling and on-chip network physical isolation, whose mechanisms are combined with system-wide cryptographic techniques in automotive controller area network (CAN)-bus communications to provide authentication and confidentiality.
2020-02-26
Matin, Iik Muhamad Malik, Rahardjo, Budi.  2019.  Malware Detection Using Honeypot and Machine Learning. 2019 7th International Conference on Cyber and IT Service Management (CITSM). 7:1–4.

Malware is one of the threats to information security that continues to increase. In 2014 nearly six million new malware was recorded. The highest number of malware is in Trojan Horse malware while in Adware malware is the most significantly increased malware. Security system devices such as antivirus, firewall, and IDS signature-based are considered to fail to detect malware. This happens because of the very fast spread of computer malware and the increasing number of signatures. Besides signature-based security systems it is difficult to identify new methods, viruses or worms used by attackers. One other alternative in detecting malware is to use honeypot with machine learning. Honeypot can be used as a trap for packages that are suspected while machine learning can detect malware by classifying classes. Decision Tree and Support Vector Machine (SVM) are used as classification algorithms. In this paper, we propose architectural design as a solution to detect malware. We presented the architectural proposal and explained the experimental method to be used.

2019-12-18
Chugunkov, Ilya V., Fedorov, Leonid O., Achmiz, Bela Sh., Sayfullina, Zarina R..  2018.  Development of the Algorithm for Protection against DDoS-Attacks of Type Pulse Wave. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :292-294.

Protection from DDoS-attacks is one of the most urgent problems in the world of network technologies. And while protect systems has algorithms for detection and preventing DDoS attacks, there are still some unresolved problems. This article is devoted to the DDoS-attack called Pulse Wave. Providing a brief introduction to the world of network technologies and DDoS-attacks, in particular, aims at the algorithm for protecting against DDoS-attack Pulse Wave. The main goal of this article is the implementation of traffic classifier that adds rules for infected computers to put them into a separate queue with limited bandwidth. This approach reduces their load on the service and, thus, firewall neutralises the attack.

2019-05-01
Chen, Huashan, Cho, Jin-Hee, Xu, Shouhuai.  2018.  Quantifying the Security Effectiveness of Firewalls and DMZs. Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security. :9:1–9:11.

Firewalls and Demilitarized Zones (DMZs) are two mechanisms that have been widely employed to secure enterprise networks. Despite this, their security effectiveness has not been systematically quantified. In this paper, we make a first step towards filling this void by presenting a representational framework for investigating their security effectiveness in protecting enterprise networks. Through simulation experiments, we draw useful insights into the security effectiveness of firewalls and DMZs. To the best of our knowledge, these insights were not reported in the literature until now.

Naik, N., Jenkins, P., Kerby, B., Sloane, J., Yang, L..  2018.  Fuzzy Logic Aided Intelligent Threat Detection in Cisco Adaptive Security Appliance 5500 Series Firewalls. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1-8.

Cisco Adaptive Security Appliance (ASA) 5500 Series Firewall is amongst the most popular and technically advanced for securing organisational networks and systems. One of its most valuable features is its threat detection function which is available on every version of the firewall running a software version of 8.0(2) or higher. Threat detection operates at layers 3 and 4 to determine a baseline for network traffic, analysing packet drop statistics and generating threat reports based on traffic patterns. Despite producing a large volume of statistical information relating to several security events, further effort is required to mine and visually report more significant information and conclude the security status of the network. There are several commercial off-the-shelf tools available to undertake this task, however, they are expensive and may require a cloud subscription. Furthermore, if the information transmitted over the network is sensitive or requires confidentiality, the involvement of a third party or a third-party tool may place organisational security at risk. Therefore, this paper presents a fuzzy logic aided intelligent threat detection solution, which is a cost-free, intuitive and comprehensible solution, enhancing and simplifying the threat detection process for all. In particular, it employs a fuzzy reasoning system based on the threat detection statistics, and presents results/threats through a developed dashboard user interface, for ease of understanding for administrators and users. The paper further demonstrates the successful utilisation of a fuzzy reasoning system for selected and prioritised security events in basic threat detection, although it can be extended to encompass more complex situations, such as complete basic threat detection, advanced threat detection, scanning threat detection, and customised feature based threat detection.

2019-03-28
Sahabandu, D., Xiao, B., Clark, A., Lee, S., Lee, W., Poovendran, R..  2018.  DIFT Games: Dynamic Information Flow Tracking Games for Advanced Persistent Threats. 2018 IEEE Conference on Decision and Control (CDC). :1136-1143.
Dynamic Information Flow Tracking (DIFT) has been proposed to detect stealthy and persistent cyber attacks that evade existing defenses such as firewalls and signature-based antivirus systems. A DIFT defense taints and tracks suspicious information flows across the network in order to identify possible attacks, at the cost of additional memory overhead for tracking non-adversarial information flows. In this paper, we present the first analytical model that describes the interaction between DIFT and adversarial information flows, including the probability that the adversary evades detection and the performance overhead of the defense. Our analytical model consists of a multi-stage game, in which each stage represents a system process through which the information flow passes. We characterize the optimal strategies for both the defense and adversary, and derive efficient algorithms for computing the strategies. Our results are evaluated on a realworld attack dataset obtained using the Refinable Attack Investigation (RAIN) framework, enabling us to draw conclusions on the optimal adversary and defense strategies, as well as the effect of valid information flows on the interaction between adversary and defense.
2019-02-13
Rashidi, B., Fung, C., Rahman, M..  2018.  A scalable and flexible DDoS mitigation system using network function virtualization. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1–6.
Distributed Denial of Service (DDoS) attacks remain one of the top threats to enterprise networks and ISPs nowadays. It can cause tremendous damage by bringing down online websites or services. Existing DDoS defense solutions either brings high cost such as upgrading existing firewall or IPS, or bring excessive traffic delay by using third-party cloud-based DDoS filtering services. In this work, we propose a DDoS defense framework that utilizes Network Function Virtualization (NFV) architecture to provide low cost and highly flexible solutions for enterprises. In particular, the system uses virtual network agents to perform attack traffic filtering before they are forwarded to the target server. Agents are created on demand to verify the authenticity of the source of packets, and drop spoofed packets in order protect the target server. Furthermore, we design a scalable and flexible dispatcher to forward packets to corresponding agents for processing. A bucket-based forwarding mechanism is used to improve the scalability of the dispatcher through batching forwarding. The dispatcher can also adapt to agent addition and removal. Our simulation results demonstrate that the dispatcher can effectively serve a large volume of traffic with low dropping rate. The system can successfully mitigate SYN flood attack by introducing minimal performance degradation to legitimate traffic.
2019-01-21
Sangeetha, V., Kumar, S. S..  2018.  Detection of malicious node in mobile ad-hoc network. 2018 International Conference on Power, Signals, Control and Computation (EPSCICON). :1–3.

In recent years, the area of Mobile Ad-hoc Net-work(MANET) has received considerable attention among the research community owing to the advantages in its networking features as well as solving the unsolved issues in it. One field which needs more security is the mobile ad hoc network. Mobile Ad-hoc Network is a temporary network composed of mobile nodes, connected by wireless links, without fixed infrastructure. Network security plays a crucial role in this MANET and the traditional way of protecting the networks through firewalls and encryption software is no longer effective and sufficient. In order to provide additional security to the MANET, intrusion detection mechanisms should be added. In this paper, selective acknowledgment is used for detecting malicious nodes in the Mobile ad-hoc network is proposed. In this paper we propose a novel mechanism called selective acknowledgment for solving problems that airse with Adaptive ACKnowledgment (AACK). This mechanism is an enhancement to the AACK scheme where its Packet delivery ration and detection overhead is reduced. NS2 is used to simulate and evaluate the proposed scheme and compare it against the AACK. The obtained results show that the selective acknowledgment scheme outperforms AACK in terms of network packet delivery ratio and routing overhead.

Dixit, Vaibhav Hemant, Kyung, Sukwha, Zhao, Ziming, Doupé, Adam, Shoshitaishvili, Yan, Ahn, Gail-Joon.  2018.  Challenges and Preparedness of SDN-based Firewalls. Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization. :33–38.

Software-Defined Network (SDN) is a novel architecture created to address the issues of traditional and vertically integrated networks. To increase cost-effectiveness and enable logical control, SDN provides high programmability and centralized view of the network through separation of network traffic delivery (the "data plane") from network configuration (the "control plane"). SDN controllers and related protocols are rapidly evolving to address the demands for scaling in complex enterprise networks. Because of the evolution of modern SDN technologies, production networks employing SDN are prone to several security vulnerabilities. The rate at which SDN frameworks are evolving continues to overtake attempts to address their security issues. According to our study, existing defense mechanisms, particularly SDN-based firewalls, face new and SDN-specific challenges in successfully enforcing security policies in the underlying network. In this paper, we identify problems associated with SDN-based firewalls, such as ambiguous flow path calculations and poor scalability in large networks. We survey existing SDN-based firewall designs and their shortcomings in protecting a dynamically scaling network like a data center. We extend our study by evaluating one such SDN-specific security solution called FlowGuard, and identifying new attack vectors and vulnerabilities. We also present corresponding threat detection techniques and respective mitigation strategies.

2018-11-19
Pomsathit, A..  2017.  Performance Analysis of IDS with Honey Pot on New Media Broadcasting. 2017 International Conference on Circuits, Devices and Systems (ICCDS). :201–204.

This research was an experimental analysis of the Intrusion Detection Systems(IDS) with Honey Pot conducting through a study of using Honey Pot in tricking, delaying or deviating the intruder to attack new media broadcasting server for IPTV system. Denial of Service(DoS) over wire network and wireless network consisted of three types of attacks: TCP Flood, UDP Flood and ICMP Flood by Honey Pot, where the Honeyd would be used. In this simulation, a computer or a server in the network map needed to be secured by the inactivity firewalls or other security tools for the intrusion of the detection systems and Honey Pot. The network intrusion detection system used in this experiment was SNORT (www.snort.org) developed in the form of the Open Source operating system-Linux. The results showed that, from every experiment, the internal attacks had shown more threat than the external attacks. In addition, attacks occurred through LAN network posted 50% more disturb than attacks occurred on WIFI. Also, the external attacks through LAN posted 95% more attacks than through WIFI. However, the number of attacks presented by TCP, UDP and ICMP were insignificant. This result has supported the assumption that Honey Pot was able to help detecting the intrusion. In average, 16% of the attacks was detected by Honey Pot in every experiment.

2018-06-07
Appelt, D., Panichella, A., Briand, L..  2017.  Automatically Repairing Web Application Firewalls Based on Successful SQL Injection Attacks. 2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE). :339–350.

Testing and fixing Web Application Firewalls (WAFs) are two relevant and complementary challenges for security analysts. Automated testing helps to cost-effectively detect vulnerabilities in a WAF by generating effective test cases, i.e., attacks. Once vulnerabilities have been identified, the WAF needs to be fixed by augmenting its rule set to filter attacks without blocking legitimate requests. However, existing research suggests that rule sets are very difficult to understand and too complex to be manually fixed. In this paper, we formalise the problem of fixing vulnerable WAFs as a combinatorial optimisation problem. To solve it, we propose an automated approach that combines machine learning with multi-objective genetic algorithms. Given a set of legitimate requests and bypassing SQL injection attacks, our approach automatically infers regular expressions that, when added to the WAF's rule set, prevent many attacks while letting legitimate requests go through. Our empirical evaluation based on both open-source and proprietary WAFs shows that the generated filter rules are effective at blocking previously identified and successful SQL injection attacks (recall between 54.6% and 98.3%), while triggering in most cases no or few false positives (false positive rate between 0% and 2%).