Visible to the public Biblio

Filters: Keyword is Silicon carbide  [Clear All Filters]
2020-12-14
Goudos, S. K., Diamantoulakis, P. D., Boursianis, A. D., Papanikolaou, V. K., Karagiannidis, G. K..  2020.  Joint User Association and Power Allocation Using Swarm Intelligence Algorithms in Non-Orthogonal Multiple Access Networks. 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST). :1–4.
In this paper, we address the problem of joint user association and power allocation for non-orthogonal multiple access (NOMA) networks with multiple base stations (BSs). A user grouping procedure into orthogonal clusters, as well as an allocation of different physical resource blocks (PRBs) is considered. The problem of interest is mathematically described using the maximization of the weighted sum rate. We apply two different swarm intelligence algorithms, namely, the recently introduced Grey Wolf Optimizer (GWO), and the popular Particle Swarm Optimization (PSO), in order to solve this problem. Numerical results demonstrate that the above-described problem can be satisfactorily addressed by both algorithms.
2020-10-05
Hahn, Sebastian, Reineke, Jan.  2018.  Design and Analysis of SIC: A Provably Timing-Predictable Pipelined Processor Core. 2018 IEEE Real-Time Systems Symposium (RTSS). :469—481.

We introduce the strictly in-order core (SIC), a timing-predictable pipelined processor core. SIC is provably timing compositional and free of timing anomalies. This enables precise and efficient worst-case execution time (WCET) and multi-core timing analysis. SIC's key underlying property is the monotonicity of its transition relation w.r.t. a natural partial order on its microarchitectural states. This monotonicity is achieved by carefully eliminating some of the dependencies between consecutive instructions from a standard in-order pipeline design. SIC preserves most of the benefits of pipelining: it is only about 6-7% slower than a conventional pipelined processor. Its timing predictability enables orders-of-magnitude faster WCET and multi-core timing analysis than conventional designs.