Visible to the public Biblio

Filters: Keyword is network intrusion detection  [Clear All Filters]
Lee, Jonghoon, Kim, Hyunjin, Park, Chulhee, Kim, Youngsoo, Park, Jong-Geun.  2022.  AI-based Network Security Enhancement for 5G Industrial Internet of Things Environments. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :971–975.
The recent 5G networks aim to provide higher speed, lower latency, and greater capacity; therefore, compared to the previous mobile networks, more advanced and intelligent network security is essential for 5G networks. To detect unknown and evolving 5G network intrusions, this paper presents an artificial intelligence (AI)-based network threat detection system to perform data labeling, data filtering, data preprocessing, and data learning for 5G network flow and security event data. The performance evaluations are first conducted on two well-known datasets-NSL-KDD and CICIDS 2017; then, the practical testing of proposed system is performed in 5G industrial IoT environments. To demonstrate detection against network threats in real 5G environments, this study utilizes the 5G model factory, which is downscaled to a real smart factory that comprises a number of 5G industrial IoT-based devices.
ISSN: 2162-1241
Liu, Lisa, Engelen, Gints, Lynar, Timothy, Essam, Daryl, Joosen, Wouter.  2022.  Error Prevalence in NIDS datasets: A Case Study on CIC-IDS-2017 and CSE-CIC-IDS-2018. 2022 IEEE Conference on Communications and Network Security (CNS). :254—262.
Benchmark datasets are heavily depended upon by the research community to validate theoretical findings and track progression in the state-of-the-art. NIDS dataset creation presents numerous challenges on account of the volume, heterogeneity, and complexity of network traffic, making the process labor intensive, and thus, prone to error. This paper provides a critical review of CIC-IDS-2017 and CIC-CSE-IDS-2018, datasets which have seen extensive usage in the NIDS literature, and are currently considered primary benchmarking datasets for NIDS. We report a large number of previously undocumented errors throughout the dataset creation lifecycle, including in attack orchestration, feature generation, documentation, and labeling. The errors destabilize the results and challenge the findings of numerous publications that have relied on it as a benchmark. We demonstrate the implications of these errors through several experiments. We provide comprehensive documentation to summarize the discovery of these issues, as well as a fully-recreated dataset, with labeling logic that has been reverse-engineered, corrected, and made publicly available for the first time. We demonstrate the implications of dataset errors through a series of experiments. The findings serve to remind the research community of common pitfalls with dataset creation processes, and of the need to be vigilant when adopting new datasets. Lastly, we strongly recommend the release of labeling logic for any dataset released, to ensure full transparency.
Ndichu, Samuel, Ban, Tao, Takahashi, Takeshi, Inoue, Daisuke.  2022.  Security-Alert Screening with Oversampling Based on Conditional Generative Adversarial Networks. 2022 17th Asia Joint Conference on Information Security (AsiaJCIS). :1–7.
Imbalanced class distribution can cause information loss and missed/false alarms for deep learning and machine-learning algorithms. The detection performance of traditional intrusion detection systems tend to degenerate due to skewed class distribution caused by the uneven allocation of observations in different kinds of attacks. To combat class imbalance and improve network intrusion detection performance, we adopt the conditional generative adversarial network (CTGAN) that enables the generation of samples of specific classes of interest. CTGAN builds on the generative adversarial networks (GAN) architecture to model tabular data and generate high quality synthetic data by conditionally sampling rows from the generated model. Oversampling using CTGAN adds instances to the minority class such that both data in the majority and the minority class are of equal distribution. The generated security alerts are used for training classifiers that realize critical alert detection. The proposed scheme is evaluated on a real-world dataset collected from security operation center of a large enterprise. The experiment results show that detection accuracy can be substantially improved when CTGAN is adopted to produce a balanced security-alert dataset. We believe the proposed CTGAN-based approach can cast new light on building effective systems for critical alert detection with reduced missed/false alarms.
ISSN: 2765-9712
Xiang, Peng, Peng, ChengWei, Li, Qingshan.  2022.  Hierarchical Association Features Learning for Network Traffic Recognition. 2022 International Conference on Information Processing and Network Provisioning (ICIPNP). :129—133.
With the development of network technology, identifying specific traffic has become important in network monitoring and security. However, designing feature sets that can accurately describe network traffic is still an urgent problem. Most of existing researches cannot realize effectively the identification of targets, and don't perform well in the complex and dynamic network environment. Aiming at these problems, we propose a novel method in this paper, which learns correlation features of network traffic based on the hierarchical structure. Firstly, the method learns the spatial-temporal features using convolutional neural networks (CNNs) and the bidirectional long short-term memory networks (Bi-LSTMs), then builds network topology to capture dependency characteristics between sessions and learns the context-related features through the graph attention networks (GATs). Finally, the network traffic session is classified using a fully connected network. The experimental results show that our method can effectively improve the detection ability and achieve a better classification performance overall.
Guarino, Idio, Bovenzi, Giampaolo, Di Monda, Davide, Aceto, Giuseppe, Ciuonzo, Domenico, Pescapè, Antonio.  2022.  On the use of Machine Learning Approaches for the Early Classification in Network Intrusion Detection. 2022 IEEE International Symposium on Measurements & Networking (M&N). :1–6.
Current intrusion detection techniques cannot keep up with the increasing amount and complexity of cyber attacks. In fact, most of the traffic is encrypted and does not allow to apply deep packet inspection approaches. In recent years, Machine Learning techniques have been proposed for post-mortem detection of network attacks, and many datasets have been shared by research groups and organizations for training and validation. Differently from the vast related literature, in this paper we propose an early classification approach conducted on CSE-CIC-IDS2018 dataset, which contains both benign and malicious traffic, for the detection of malicious attacks before they could damage an organization. To this aim, we investigated a different set of features, and the sensitivity of performance of five classification algorithms to the number of observed packets. Results show that ML approaches relying on ten packets provide satisfactory results.
ISSN: 2639-5061
Deri, Luca, Cardigliano, Alfredo.  2022.  Using CyberScore for Network Traffic Monitoring. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :56–61.
The growing number of cybersecurity incidents and the always increasing complexity of cybersecurity attacks is forcing the industry and the research community to develop robust and effective methods to detect and respond to network attacks. Many tools are either built upon a large number of rules and signatures which only large third-party vendors can afford to create and maintain, or are based on complex artificial intelligence engines which, in most cases, still require personalization and fine-tuning using costly service contracts offered by the vendors.This paper introduces an open-source network traffic monitoring system based on the concept of cyberscore, a numerical value that represents how a network activity is considered relevant for spotting cybersecurity-related events. We describe how this technique has been applied in real-life networks and present the result of this evaluation.
Hashim, Noor Hassanin, Sadkhan, Sattar B..  2022.  DDOS Attack Detection in Wireless Network Based On MDR. 2022 3rd Information Technology To Enhance e-learning and Other Application (IT-ELA). :1–5.
Intrusion detection systems (IDS) are most efficient way of defending against network-based attacks aimed at system devices, especially wireless devices. These systems are used in almost all large-scale IT infrastructures components, and they effected with different types of network attacks such as DDoS attack. Distributed Denial of-Services (DDoS) attacks the protocols and systems that are intended to provide services (to the public) are inherently vulnerable to attacks like DDoS, which were launched against a number of important Internet sites where security precautions were in place.
Lu, Chaofan.  2022.  Research on the technical application of artificial intelligence in network intrusion detection system. 2022 International Conference on Electronics and Devices, Computational Science (ICEDCS). :109–112.
Network intrusion detection technology has been a popular application technology for current network security, but the existing network intrusion detection technology in the application process, there are problems such as low detection efficiency, low detection accuracy and other poor detection performance. To solve the above problems, a new treatment combining artificial intelligence with network intrusion detection is proposed. Artificial intelligence-based network intrusion detection technology refers to the application of artificial intelligence techniques, such as: neural networks, neural algorithms, etc., to network intrusion detection, and the application of these artificial intelligence techniques makes the automatic detection of network intrusion detection models possible.
Khant, Shailesh, Patel, Atul, Patel, Sanskruti, Ganatra, Nilay, Patel, Rachana.  2022.  Cyber Security Actionable Education during COVID19 Third Wave in India. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :274–278.
Still in many countries COVID19 virus is changing its structure and creating damages in terms of economy and education. In India during the period of January 2022 third wave is on its high peak. Many colleges and schools are still forced to teach online. This paper describes how cyber security actionable or practical fundamental were taught by school or college teachers. Various cyber security tools are used to explain the actionable insight of the subject. Main Topics or concepts covered are MITM (Man In the Middle Attack) using ethercap tool in Kali Linux, spoofing methods like ARP (Address Resolution Protocol) spoofing and DNS (Domain Name System) spoofing, network intrusion detection using snort , finding information about packets using wireshark tool and other tools like nmap and netcat for finding the vulnerability. Even brief details were given about how to crack password using wireshark.
Halisdemir, Maj. Emre, Karacan, Hacer, Pihelgas, Mauno, Lepik, Toomas, Cho, Sungbaek.  2022.  Data Quality Problem in AI-Based Network Intrusion Detection Systems Studies and a Solution Proposal. 2022 14th International Conference on Cyber Conflict: Keep Moving! (CyCon). 700:367–383.
Network Intrusion Detection Systems (IDSs) have been used to increase the level of network security for many years. The main purpose of such systems is to detect and block malicious activity in the network traffic. Researchers have been improving the performance of IDS technology for decades by applying various machine-learning techniques. From the perspective of academia, obtaining a quality dataset (i.e. a sufficient amount of captured network packets that contain both malicious and normal traffic) to support machine learning approaches has always been a challenge. There are many datasets publicly available for research purposes, including NSL-KDD, KDDCUP 99, CICIDS 2017 and UNSWNB15. However, these datasets are becoming obsolete over time and may no longer be adequate or valid to model and validate IDSs against state-of-the-art attack techniques. As attack techniques are continuously evolving, datasets used to develop and test IDSs also need to be kept up to date. Proven performance of an IDS tested on old attack patterns does not necessarily mean it will perform well against new patterns. Moreover, existing datasets may lack certain data fields or attributes necessary to analyse some of the new attack techniques. In this paper, we argue that academia needs up-to-date high-quality datasets. We compare publicly available datasets and suggest a way to provide up-to-date high-quality datasets for researchers and the security industry. The proposed solution is to utilize the network traffic captured from the Locked Shields exercise, one of the world’s largest live-fire international cyber defence exercises held annually by the NATO CCDCOE. During this three-day exercise, red team members consisting of dozens of white hackers selected by the governments of over 20 participating countries attempt to infiltrate the networks of over 20 blue teams, who are tasked to defend a fictional country called Berylia. After the exercise, network packets captured from each blue team’s network are handed over to each team. However, the countries are not willing to disclose the packet capture (PCAP) files to the public since these files contain specific information that could reveal how a particular nation might react to certain types of cyberattacks. To overcome this problem, we propose to create a dedicated virtual team, capture all the traffic from this team’s network, and disclose it to the public so that academia can use it for unclassified research and studies. In this way, the organizers of Locked Shields can effectively contribute to the advancement of future artificial intelligence (AI) enabled security solutions by providing annual datasets of up-to-date attack patterns.
ISSN: 2325-5374
Bong, Kijung, Kim, Jonghyun.  2022.  Analysis of Intrusion Detection Performance by Smoothing Factor of Gaussian NB Model Using Modified NSL-KDD Dataset. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :1471—1476.
Recently, research on AI-based network intrusion detection has been actively conducted. In previous studies, the machine learning models such as SVM (Support Vector Machine) and RF (Random Forest) showed consistently high performance, whereas the NB (Naïve Bayes) showed various performances with large deviations. In the paper, after analyzing the cause of the NB models showing various performances addressed in the several studies, we measured the performance of the Gaussian NB model according to the smoothing factor that is closely related to these causes. Furthermore, we compared the performance of the Gaussian NB model with that of the other models as a zero-day attack detection system. As a result of the experiment, the accuracy was 38.80% and 87.99% in case that the smoothing factor is 0 and default respectively, and the highest accuracy was 94.53% in case that the smoothing factor is 1e-01. In the experiment, we used only some types of the attack data in the NSL-KDD dataset. The experiments showed the applicability of the Gaussian NB model as a zero-day attack detection system in the future. In addition, it is clarified that the smoothing factor of the Gaussian NB model determines the shape of gaussian distribution that is related to the likelihood.
King, James, Bendiab, Gueltoum, Savage, Nick, Shiaeles, Stavros.  2021.  Data Exfiltration: Methods and Detection Countermeasures. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :442—447.
Data exfiltration is of increasing concern throughout the world. The number of incidents and capabilities of data exfiltration attacks are growing at an unprecedented rate. However, such attack vectors have not been deeply explored in the literature. This paper aims to address this gap by implementing a data exfiltration methodology, detailing some data exfiltration methods. Groups of exfiltration methods are incorporated into a program that can act as a testbed for owners of any network that stores sensitive data. The implemented methods are tested against the well-known network intrusion detection system Snort, where all of them have been successfully evaded detection by its community rule sets. Thus, in this paper, we have developed new countermeasures to prevent and detect data exfiltration attempts using these methods.
Schneider, Madeleine, Aspinall, David, Bastian, Nathaniel D..  2021.  Evaluating Model Robustness to Adversarial Samples in Network Intrusion Detection. 2021 IEEE International Conference on Big Data (Big Data). :3343–3352.
Adversarial machine learning, a technique which seeks to deceive machine learning (ML) models, threatens the utility and reliability of ML systems. This is particularly relevant in critical ML implementations such as those found in Network Intrusion Detection Systems (NIDS). This paper considers the impact of adversarial influence on NIDS and proposes ways to improve ML based systems. Specifically, we consider five feature robustness metrics to determine which features in a model are most vulnerable, and four defense methods. These methods are tested on six ML models with four adversarial sample generation techniques. Our results show that across different models and adversarial generation techniques, there is limited consistency in vulnerable features or in effectiveness of defense method.
Manoj Vignesh, K M, Sujanani, Anish, Bangalore, Raghu A..  2021.  Modelling Trust Frameworks for Network-IDS. 2021 2nd International Conference for Emerging Technology (INCET). :1–5.
Though intrusion detection systems provide actionable alerts based on signature-based or anomaly-based traffic patterns, the majority of systems still rely on human analysts to identify and contain the root cause of security incidents. This process is naturally susceptible to human error and is time-consuming, which may allow for further enumeration and pivoting within a compromised environment. Through this paper, we have augmented traditional signature-based network intrusion detection systems with a trust framework whose reduction and redemption values are a function of the severity of the incident, the degree of connectivity of nodes and the time elapsed. A lightweight implementation on the nodes coupled with a multithreaded approach on the central trust server has shown the capability to scale to larger networks with high traffic volumes and a varying proportion of suspicious traffic patterns.
Qiu, Bin, Chen, Ke, He, Kexun, Fang, Xiyu.  2021.  Research on vehicle network intrusion detection technology based on dynamic data set. 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer (ICFTIC). :386–390.
A new round of scientific and technological revolution and industrial reform promote the intelligent development of automobile and promote the deep integration of automobile with Internet, big data, communication and other industries. At the same time, it also brings network and data security problems to automobile, which is very easy to cause national security and social security risks. Intelligent vehicle Ethernet intrusion detection can effectively alleviate the security risk of vehicle network, but the complex attack means and vehicle compatibility have not been effectively solved. This research takes the vehicle Ethernet as the research object, constructs the machine learning samples for neural network, applies the self coding network technology combined with the original characteristics to the network intrusion detection algorithm, and studies a self-learning vehicle Ethernet intrusion detection algorithm. Through the application and test of vehicle terminal, the algorithm generated in this study can be used for vehicle terminal with Ethernet communication function, and can effectively resist 34 kinds of network attacks in four categories. This method effectively improves the network security defense capability of vehicle Ethernet, provides technical support for the network security of intelligent vehicles, and can be widely used in mass-produced intelligent vehicles with Ethernet.
Singh, Praneet, P, Jishnu Jaykumar, Pankaj, Akhil, Mitra, Reshmi.  2021.  Edge-Detect: Edge-Centric Network Intrusion Detection using Deep Neural Network. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1—6.
Edge nodes are crucial for detection against multitudes of cyber attacks on Internet-of-Things endpoints and is set to become part of a multi-billion industry. The resource constraints in this novel network infrastructure tier constricts the deployment of existing Network Intrusion Detection System with Deep Learning models (DLM). We address this issue by developing a novel light, fast and accurate `Edge-Detect' model, which detects Distributed Denial of Service attack on edge nodes using DLM techniques. Our model can work within resource restrictions i.e. low power, memory and processing capabilities, to produce accurate results at a meaningful pace. It is built by creating layers of Long Short-Term Memory or Gated Recurrent Unit based cells, which are known for their excellent representation of sequential data. We designed a practical data science pipeline with Recurring Neural Network to learn from the network packet behavior in order to identify whether it is normal or attack-oriented. The model evaluation is from deployment on actual edge node represented by Raspberry Pi using current cybersecurity dataset (UNSW2015). Our results demonstrate that in comparison to conventional DLM techniques, our model maintains a high testing accuracy of 99% even with lower resource utilization in terms of cpu and memory. In addition, it is nearly 3 times smaller in size than the state-of-art model and yet requires a much lower testing time.
Shi, Jibo, Lin, Yun, Zhang, Zherui, Yu, Shui.  2021.  A Hybrid Intrusion Detection System Based on Machine Learning under Differential Privacy Protection. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). :1–6.

With the development of network, network security has become a topic of increasing concern. Recent years, machine learning technology has become an effective means of network intrusion detection. However, machine learning technology requires a large amount of data for training, and training data often contains privacy information, which brings a great risk of privacy leakage. At present, there are few researches on data privacy protection in the field of intrusion detection. Regarding the issue of privacy and security, we combine differential privacy and machine learning algorithms, including One-class Support Vector Machine (OCSVM) and Local Outlier Factor(LOF), to propose an hybrid intrusion detection system (IDS) with privacy protection. We add Laplacian noise to the original network intrusion detection data set to get differential privacy data sets with different privacy budgets, and proposed a hybrid IDS model based on machine learning to verify their utility. Experiments show that while protecting data privacy, the hybrid IDS can achieve detection accuracy comparable to traditional machine learning algorithms.

Helmiawan, Muhammad Agreindra, Julian, Eggi, Cahyan, Yavan, Saeppani, Asep.  2021.  Experimental Evaluation of Security Monitoring and Notification on Network Intrusion Detection System for Server Security. 2021 9th International Conference on Cyber and IT Service Management (CITSM). :1–6.
Security of data and information in servers connected to networks that provide services to user computers, is the most important thing to maintain data privacy and security in network security management mechanisms. Weaknesses in the server security system can be exploited by intruders to disrupt the security of the server. One way to maintain server security is to implement an intrusion detection system using the Intrusion Detection System. This research is experimenting to create a security system prototype, monitoring, and evaluating server security systems using Snort and alert notifications that can improve security monitoring for server security. The system can detect intrusion attacks and provide warning messages and attack information through the Intrusion Detection System monitoring system. The results show that snort and alert notifications on the security server can work well, efficiently, and can be handled quickly. Testing attacks with Secure Shell Protocol and File Transfer Protocol Brute Force, Ping of Death and scanning port attacks requires a detection time of no more than one second, and all detection test results are detected and send real-time notification alerts to the Administrator.
Venkatesan, Sridhar, Sikka, Harshvardhan, Izmailov, Rauf, Chadha, Ritu, Oprea, Alina, de Lucia, Michael J..  2021.  Poisoning Attacks and Data Sanitization Mitigations for Machine Learning Models in Network Intrusion Detection Systems. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :874—879.
Among many application domains of machine learning in real-world settings, cyber security can benefit from more automated techniques to combat sophisticated adversaries. Modern network intrusion detection systems leverage machine learning models on network logs to proactively detect cyber attacks. However, the risk of adversarial attacks against machine learning used in these cyber settings is not fully explored. In this paper, we investigate poisoning attacks at training time against machine learning models in constrained cyber environments such as network intrusion detection; we also explore mitigations of such attacks based on training data sanitization. We consider the setting of poisoning availability attacks, in which an attacker can insert a set of poisoned samples at training time with the goal of degrading the accuracy of the deployed model. We design a white-box, realizable poisoning attack that reduced the original model accuracy from 95% to less than 50 % by generating mislabeled samples in close vicinity of a selected subset of training points. We also propose a novel Nested Training method as a defense against these attacks. Our defense includes a diversified ensemble of classifiers, each trained on a different subset of the training set. We use the disagreement of the classifiers' predictions as a data sanitization method, and show that an ensemble of 10 SVM classifiers is resilient to a large fraction of poisoning samples, up to 30% of the training data.
Singhal, Abhinav, Maan, Akash, Chaudhary, Daksh, Vishwakarma, Dinesh.  2021.  A Hybrid Machine Learning and Data Mining Based Approach to Network Intrusion Detection. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :312–318.
This paper outlines an approach to build an Intrusion detection system for a network interface device. This research work has developed a hybrid intrusion detection system which involves various machine learning techniques along with inference detection for a comparative analysis. It is explained in 2 phases: Training (Model Training and Inference Network Building) and Detection phase (Working phase). This aims to solve all the current real-life problem that exists in machine learning algorithms as machine learning techniques are stiff they have their respective classification region outside which they cease to work properly. This paper aims to provide the best working machine learning technique out of the many used. The machine learning techniques used in comparative analysis are Decision Tree, Naïve Bayes, K-Nearest Neighbors (KNN) and Support Vector Machines (SVM) along with NSLKDD dataset for testing and training of our Network Intrusion Detection Model. The accuracy recorded for Decision Tree, Naïve Bayes, K-Nearest Neighbors (KNN) and Support Vector Machines(SVM) respectively when tested independently are 98.088%, 82.971%, 95.75%, 81.971% and when tested with inference detection model are 98.554%, 66.687%, 97.605%, 93.914%. Therefore, it can be concluded that our inference detection model helps in improving certain factors which are not detected using conventional machine learning techniques.
Hui, Wang, Dongming, Wang, Dejian, Li, Lin, Zeng, Zhe, Wang.  2021.  A Framework For Network Intrusion Detection Based on Unsupervised Learning. 2021 IEEE International Conference on Artificial Intelligence and Industrial Design (AIID). :188–193.
Anomaly detection is the primary method of detecting intrusion. Unsupervised models, such as auto-encoders network, auto-encoder, and GMM, are currently the most widely used anomaly detection techniques. In reality, the samples used to train the unsupervised model may not be pure enough and may include some abnormal samples. However, the classification effect is poor since these approaches do not completely understand the association between reconstruction errors, reconstruction characteristics, and irregular sample density distribution. This paper proposes a novel intrusion detection system architecture that includes data collection, processing, and feature extraction by integrating data reconstruction features, reconstruction errors, auto-encoder parameters, and GMM. Our system outperforms other unsupervised learning-based detection approaches in terms of accuracy, recall, F1-score, and other assessment metrics after training and testing on multiple intrusion detection data sets.
Amaran, Sibi, Mohan, R. Madhan.  2021.  Intrusion Detection System Using Optimal Support Vector Machine for Wireless Sensor Networks. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1100–1104.
Wireless sensor networks (WSN) hold numerous battery operated, compact sized, and inexpensive sensor nodes, which are commonly employed to observe the physical parameters in the target environment. As the sensor nodes undergo arbitrary placement in the open areas, there is a higher possibility of affected by distinct kinds of attacks. For resolving the issue, intrusion detection system (IDS) is developed. This paper presents a new optimal Support Vector Machine (OSVM) based IDS in WSN. The presented OSVM model involves the proficient selection of optimal kernels in the SVM model using whale optimization algorithm (WOA) for intrusion detection. Since the SVM kernel gets altered using WOA, the application of OSVM model can be used for the detection of intrusions with proficient results. The performance of the OSVM model has been investigated on the benchmark NSL KDDCup 99 dataset. The resultant simulation values portrayed the effectual results of the OSVM model by obtaining a superior accuracy of 94.09% and detection rate of 95.02%.
Chen, Chen, Song, Li, Bo, Cao, Shuo, Wang.  2021.  A Support Vector Machine with Particle Swarm Optimization Grey Wolf Optimizer for Network Intrusion Detection. 2021 International Conference on Big Data Analysis and Computer Science (BDACS). :199–204.
Support Vector Machine (SVM) is a relatively novel classification technology, which has shown higher performance than traditional learning methods in many applications. Therefore, some security researchers have proposed an intrusion detection method based on SVM. However, the SVM algorithm is very sensitive to the choice of kernel function and parameter adjustment. Once the parameter selection is unscientific, it will lead to poor classification accuracy. To solve this problem, this paper presents a Grey Wolf Optimizer Algorithm based on Particle Swarm Optimization (PSOGWO) algorithm to improve the Intrusion Detection System (IDS) based on SVM. This method uses PSOGWO algorithm to optimize the parameters of SVM to improve the overall performance of intrusion detection based on SVM. The "optimal detection model" of SVM classifier is determined by the fusion of PSOGWO algorithm and SVM. The comparison experiments based on NSL-KDD dataset show that the intrusion detection method based on PSOGWO-SVM achieves the optimization of the parameters of SVM, and has improved significantly in terms of detection rate, convergence speed and model balance. This shows that the method has better performance for network intrusion detection.
Omid Azarkasb, Seyed, Sedighian Kashi, Saeed, Hossein Khasteh, Seyed.  2021.  A Network Intrusion Detection Approach at the Edge of Fog. 2021 26th International Computer Conference, Computer Society of Iran (CSICC). :1–6.
In addition to the feature of real-time analytics, fog computing allows detection nodes to be located at the edges of the network. On the other hand, intrusion detection systems require prompt and accurate attack analysis and detection. These systems must promptly respond appropriately to an event. Increasing the speed of data transfer and response requires less bandwidth in the network, reducing the data sent to the cloud and increasing information security as some of the advantages of using detection nodes at the edges of the network in fog computing. The use of neural networks in the analyzer engine is important for the low consumption of system resources, avoidance of explicit production of detection rules, detection of known deformed attacks, and the ability to manage noise and outlier data. The current paper proposes and implements the architecture of network intrusion detection nodes in fog computing, in addition to presenting the proposed fog network architecture. In the proposed architecture, each node can, in addition to performing intrusion detection operations, observe the nodes around it, find the compromised node or intrusion node, and inform the nodes close to it to disconnect from that node.
Chen, Shuyu, Li, Wei, Liu, Jun, Jin, Haoyu, Yin, Xuehui.  2021.  Network Intrusion Detection Based on Subspace Clustering and BP Neural Network. 2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :65–70.
This paper proposes a novel network intrusion detection algorithm based on the combination of Subspace Clustering (SSC) and BP neural network. Firstly, we perform a subspace clustering algorithm on the network data set to obtain different subspaces. Secondly, BP neural network intrusion detection is carried out on the data in different subspaces, and calculate the prediction error value. By comparing with the pre-set accuracy, the threshold is constantly updated to improve the ability to identify network attacks. By comparing with K-means, DBSCAN, SSC-EA and k-KNN intrusion detection model, the SSC-BP neural network model can detect the most attacked networks with the lowest false detection rate.