Visible to the public Biblio

Filters: Keyword is smart city  [Clear All Filters]
Suciu, George, Hussain, Ijaz, Petrescu, Gabriel.  2020.  Role of Ubiquitous Computing and Mobile WSN Technologies and Implementation. 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). :1–6.
Computing capabilities such as real time data, unlimited connection, data from sensors, environmental analysis, automated decisions (machine learning) are demanded by many areas like industry for example decision making, machine learning, by research and military, for example GPS, sensor data collection. The possibility to make these features compatible with each domain that demands them is known as ubiquitous computing. Ubiquitous computing includes network topologies such as wireless sensor networks (WSN) which can help further improving the existing communication, for example the Internet. Also, ubiquitous computing is included in the Internet of Things (IoT) applications. In this article, it is discussed the mobility of WSN and its advantages and innovations, which make possible implementations for smart home and office. Knowing the growing number of mobile users, we place the mobile phone as the key factor of the future ubiquitous wireless networks. With secure computing, communicating, and storage capacities of mobile devices, they can be taken advantage of in terms of architecture in the sense of scalability, energy efficiency, packet delay, etc. Our work targets to present a structure from a ubiquitous computing point of view for researchers who have an interest in ubiquitous computing and want to research on the analysis, to implement a novel method structure for the ubiquitous computing system in military sectors. Also, this paper presents security and privacy issues in ubiquitous sensor networks (USN).
Iskhakov, A., Jharko, E..  2020.  Approach to Security Provision of Machine Vision for Unmanned Vehicles of “Smart City”. 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1—5.

By analogy to nature, sight is the main integral component of robotic complexes, including unmanned vehicles. In this connection, one of the urgent tasks in the modern development of unmanned vehicles is the solution to the problem of providing security for new advanced systems, algorithms, methods, and principles of space navigation of robots. In the paper, we present an approach to the protection of machine vision systems based on technologies of deep learning. At the heart of the approach lies the “Feature Squeezing” method that works on the phase of model operation. It allows us to detect “adversarial” examples. Considering the urgency and importance of the target process, the features of unmanned vehicle hardware platforms and also the necessity of execution of tasks on detecting of the objects in real-time mode, it was offered to carry out an additional simple computational procedure of localization and classification of required objects in case of crossing a defined in advance threshold of “adversarial” object testing.

Promyslov, V., Semenkov, K..  2020.  Security Threats for Autonomous and Remotely Controlled Vehicles in Smart City. 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1—5.

The paper presents a comprehensive model of cybersecurity threats for a system of autonomous and remotely controlled vehicles (AV) in the environment of a smart city. The main focus in the security context is given to the “integrity” property. That property is of higher importance for industrial control systems in comparison with other security properties (availability and confidentiality). The security graph, which is part of the model, is dynamic, and, in real cases, its analysis may require significant computing resources for AV systems with a large number of assets and connections. The simplified example of the security graph for the AV system is presented.

Sharma, Sachin, Ghanshala, Kamal Kumar, Mohan, Seshadri.  2019.  Blockchain-Based Internet of Vehicles (IoV): An Efficient Secure Ad Hoc Vehicular Networking Architecture. 2019 IEEE 2nd 5G World Forum (5GWF). :452–457.
With the transformation of connected vehicles into the Internet of Vehicles (IoV), the time is now ripe for paving the way for the next generation of connected vehicles with novel applications and innovative security measures. The connected vehicles are experiencing prenominal growth in the auto industry, but are still studded with many security and privacy vulnerabilities. Today's IoV applications are part of cyber physical communication systems that collect useful information from thousands of smart sensors associated with the connected vehicles. The technology advancement has paved the way for connected vehicles to share significant information among drivers, auto manufacturers, auto insurance companies and operational and maintenance service providers for various applications. The critical issues in engineering the IoV applications are effective to use of the available spectrum and effective allocation of good channels an opportunistic manner to establish connectivity among vehicles, and the effective utilization of the infrastructure under various traffic conditions. Security and privacy in information sharing are the main concerns in a connected vehicle communication network. Blockchain technology facilitates secured communication among users in a connected vehicles network. Originally, blockchain technology was developed and employed with the cryptocurrency. Bitcoin, to provide increased trust, reliability, and security among users based on peer-to-peer networks for transaction sharing. In this paper, we propose to integrate blockchain technology into ad hoc vehicular networking so that the vehicles can share network resources with increased trust, reliability, and security using distributed access control system and can benefit a wider scope of scalable IoV applications scenarios for decision making. The proposed architecture is the faithful environment for information sharing among connected vehicles. Blockchain technology allows multiple copies of data storage at the distribution cloud. Distributed access control system is significantly more secure than a traditional centralized system. This paper also describes how important of ad hoc vehicular networking in human life, possibilities in real-world implementation and its future trends. The ad hoc vehicular networking may become one of the most trendy networking concepts in the future that has the perspective to bring out much ease human beneficial and secured applications.
Akbarzadeh, Aida, Pandey, Pankaj, Katsikas, Sokratis.  2019.  Cyber-Physical Interdependencies in Power Plant Systems: A Review of Cyber Security Risks. 2019 IEEE Conference on Information and Communication Technology. :1—6.

Realizing the importance of the concept of “smart city” and its impact on the quality of life, many infrastructures, such as power plants, began their digital transformation process by leveraging modern computing and advanced communication technologies. Unfortunately, by increasing the number of connections, power plants become more and more vulnerable and also an attractive target for cyber-physical attacks. The analysis of interdependencies among system components reveals interdependent connections, and facilitates the identification of those among them that are in need of special protection. In this paper, we review the recent literature which utilizes graph-based models and network-based models to study these interdependencies. A comprehensive overview, based on the main features of the systems including communication direction, control parameters, research target, scalability, security and safety, is presented. We also assess the computational complexity associated with the approaches presented in the reviewed papers, and we use this metric to assess the scalability of the approaches.

Dattana, Vishal, Gupta, Kishu, Kush, Ashwani.  2019.  A Probability based Model for Big Data Security in Smart City. 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC). :1—6.

Smart technologies at hand have facilitated generation and collection of huge volumes of data, on daily basis. It involves highly sensitive and diverse data like personal, organisational, environment, energy, transport and economic data. Data Analytics provide solution for various issues being faced by smart cities like crisis response, disaster resilience, emergence management, smart traffic management system etc.; it requires distribution of sensitive data among various entities within or outside the smart city,. Sharing of sensitive data creates a need for efficient usage of smart city data to provide smart applications and utility to the end users in a trustworthy and safe mode. This shared sensitive data if get leaked as a consequence can cause damage and severe risk to the city's resources. Fortification of critical data from unofficial disclosure is biggest issue for success of any project. Data Leakage Detection provides a set of tools and technology that can efficiently resolves the concerns related to smart city critical data. The paper, showcase an approach to detect the leakage which is caused intentionally or unintentionally. The model represents allotment of data objects between diverse agents using Bigraph. The objective is to make critical data secure by revealing the guilty agent who caused the data leakage.

Lakhno, Valeriy, Kasatkin, Dmytro, Blozva, Andriy.  2019.  Modeling Cyber Security of Information Systems Smart City Based on the Theory of Games and Markov Processes. 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S T). :497–501.
The article considers some aspects of modeling information security circuits for information and communication systems used in Smart City. As a basic research paradigm, the postulates of game theory and mathematical dependencies based on Markov processes were used. Thus, it is possible to sufficiently substantively describe the procedure for selecting rational variants of cyber security systems used to protect information technologies in Smart City. At the same time, using the model proposed by us, we can calculate the probability of cyber threats for the Smart City systems, as well as the cybernetic risks of diverse threats. Further, on the basis of the described indicators, rational contour options are chosen to protect the information systems used in Smart City.
Nejatifar, Abbas, Hadavi, Mohammad Ali.  2019.  Threat Extraction in IoT-Based Systems Focusing on Smart Cities. 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC). :92–98.
IoT-based services are widely increasing due to their advantages such as economy, automation, and comfort. Smart cities are among major applications of IoT-based systems. However, security and privacy threats are vital issues challenging the utilization of such services. Connectivity nature, variety of data technology, and volume of data maintained through these systems make their security analysis a difficult process. Threat modeling is one the best practices for security analysis, especially for complex systems. This paper proposes a threat extraction method for IoT-based systems. We elaborate on a smart city scenario with three services including lighting, car parking, and waste management. Investigating on these services, firstly, we identify thirty-two distinct threat types. Secondly, we distinguish threat root causes by associating a threat to constituent parts of the IoT-based system. In this way, threat instances can be extracted using the proposed derivation rules. Finally, we evaluate our method on a smart car parking scenario as well as on an E-Health system and identify more than 50 threat instances in each cases to show that the method can be easily generalized for other IoT-based systems whose constituent parts are known.
Mohanta, Bhabendu K., Panda, Soumyashree S., Satapathy, Utkalika, Jena, Debasish, Gountia, Debasis.  2019.  Trustworthy Management in Decentralized IoT Application using Blockchain. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.
Internet of Things (IoT) as per estimated will connect 50 billion devices by 2020. Since its evolution, IoT technology provides lots of flexibility to develop and implement any application. Most of the application improves the human living standard and also makes life easy to access and monitoring the things in real time. Though there exist some security and privacy issues in IoT system like authentication, computation, data modification, trust among users. In this paper, we have identified the IoT application like insurance, supply chain system, smart city and smart car where trust among associated users is an major issue. The current centralized system does not provide enough trust between users. Using Blockchain technology we have shown that trust issue among users can be managed in a decentralized way so that information can be traceable and identify/verify any time. Blockchain has properties like distributed, digitally share and immutable which enhance security. For Blockchain implementation, Ethereum platform is used.
Mumtaz, Majid, Akram, Junaid, Ping, Luo.  2019.  An RSA Based Authentication System for Smart IoT Environment. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :758–765.
Authentication is the fundamental security service used in almost all remote applications. All such sensitive applications over an open network need authentication mechanism that should be delivered in a trusted way. In this paper, we design an RSA based authentication system for smart IoT environment over the air network using state-of-the-art industry standards. Our system provide security services including X.509 certificate, RSA based Public Key Infrastructure (PKI), challenge/response protocols with the help of proxy induced security service provider. We describe an innovative system model, protocol design, system architecture and evaluation against known threats. Also the implemented solution designed as an add on service for multiple other sensitive applications (smart city apps, cyber physical systems etc.) which needs the support of X.509 certificate based on hard tokens to populate other security services including confidentiality, integrity, non-repudiation, privacy and anonymity of the identities. The proposed scheme is evaluated against known vulnerabilities and given detail comparisons with popular known authentication schemes. The result shows that our proposed scheme mitigate all the known security risks and provide highest level assurance to smart gadgets.
Ahmadi-Assalemi, Gabriela, al-Khateeb, Haider M., Epiphaniou, Gregory, Cosson, Jon, Jahankhani, Hamid, Pillai, Prashant.  2019.  Federated Blockchain-Based Tracking and Liability Attribution Framework for Employees and Cyber-Physical Objects in a Smart Workplace. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :1–9.
The systematic integration of the Internet of Things (IoT) and Cyber-Physical Systems (CPS) into the supply chain to increase operational efficiency and quality has also introduced new complexities to the threat landscape. The myriad of sensors could increase data collection capabilities for businesses to facilitate process automation aided by Artificial Intelligence (AI) but without adopting an appropriate Security-by-Design framework, threat detection and response are destined to fail. The emerging concept of Smart Workplace incorporates many CPS (e.g. Robots and Drones) to execute tasks alongside Employees both of which can be exploited as Insider Threats. We introduce and discuss forensic-readiness, liability attribution and the ability to track moving Smart SPS Objects to support modern Digital Forensics and Incident Response (DFIR) within a defence-in-depth strategy. We present a framework to facilitate the tracking of object behaviour within Smart Controlled Business Environments (SCBE) to support resilience by enabling proactive insider threat detection. Several components of the framework were piloted in a company to discuss a real-life case study and demonstrate anomaly detection and the emerging of behavioural patterns according to objects' movement with relation to their job role, workspace position and nearest entry or exit. The empirical data was collected from a Bluetooth-based Proximity Monitoring Solution. Furthermore, a key strength of the framework is a federated Blockchain (BC) model to achieve forensic-readiness by establishing a digital Chain-of-Custody (CoC) and a collaborative environment for CPS to qualify as Digital Witnesses (DW) to support post-incident investigations.
Shukla, Meha, Johnson, Shane D., Jones, Peter.  2019.  Does the NIS implementation strategy effectively address cyber security risks in the UK? 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–11.
This research explored how cyber security risks are managed across UK Critical National Infrastructure (CNI) sectors following implementation of the 2018 Networks and Information Security (NIS) legislation. Being in its infancy, there has been limited study into the effectiveness of this national framework for cyber risk management. The analysis of data gathered through interviews with key stakeholders against the NIS objectives indicated a collaborative implementation approach to improve cyber-risk management capabilities in CNI sectors. However, more work is required to bridge the gaps in the NIS framework to ensure holistic security across cyber spaces as well as non-cyber elements: cyber-physical security, cross-sector CNI service security measures, outcome-based regulatory assessments and risks due to connected smart technology implementations alongside legacy systems. This paper proposes ten key recommendations to counter the danger of not meeting the NIS key strategic objectives. In particular, it recommends that the approach to NIS implementation needs further alignment with its objectives, such as bringing a step-change in the cyber-security risk management capabilities of the CNI sectors.
Suksomboon, Kalika, Shen, Zhishu, Ueda, Kazuaki, Tagami, Atsushi.  2019.  C2P2: Content-Centric Privacy Platform for Privacy-Preserving Monitoring Services. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:252–261.
Motivated by ubiquitous surveillance cameras in a smart city, a monitoring service can be provided to citizens. However, the rise of privacy concerns may disrupt this advanced service. Yet, the existing cloud-based services have not clearly proven that they can preserve Wth-privacy in which the relationship of three types of information, i.e., who requests the service, what the target is and where the camera is, does not leak. We address this problem by proposing a content-centric privacy platform (C2P2) that enables the construction of a Wth-privacy-preserving monitoring service without cloud dependency. C2P2 uses an image classification model of a target serving as the key to access the monitoring service specific to the target. In C2P2, communication is based on information-centric networking (ICN) that enables privacy preservation to be centered on the content itself rather than relying on a centralized system. Moreover, to preserve the privacy of bystanders, C2P2 separates the sensitive information (e.g., human faces) from the non-sensitive information (e.g., image background), while the privacy-aware forwarding strategies in C2P2 enable data aggregation and prevent privacy leakage resulting from false positive of image recognition. We evaluate the privacy leakage of C2P2 compared to that of the cloud-based system. The privacy analysis shows that, compared to the cloud-based system, C2P2 achieves a lower privacy loss ratio while reducing the communication cost significantly.
Subasi, A., Al-Marwani, K., Alghamdi, R., Kwairanga, A., Qaisar, S. M., Al-Nory, M., Rambo, K. A..  2018.  Intrusion Detection in Smart Grid Using Data Mining Techniques. 2018 21st Saudi Computer Society National Computer Conference (NCC). :1-6.

The rapid growth of population and industrialization has given rise to the way for the use of technologies like the Internet of Things (IoT). Innovations in Information and Communication Technologies (ICT) carries with it many challenges to our privacy's expectations and security. In Smart environments there are uses of security devices and smart appliances, sensors and energy meters. New requirements in security and privacy are driven by the massive growth of devices numbers that are connected to IoT which increases concerns in security and privacy. The most ubiquitous threats to the security of the smart grids (SG) ascended from infrastructural physical damages, destroying data, malwares, DoS, and intrusions. Intrusion detection comprehends illegitimate access to information and attacks which creates physical disruption in the availability of servers. This work proposes an intrusion detection system using data mining techniques for intrusion detection in smart grid environment. The results showed that the proposed random forest method with a total classification accuracy of 98.94 %, F-measure of 0.989, area under the ROC curve (AUC) of 0.999, and kappa value of 0.9865 outperforms over other classification methods. In addition, the feasibility of our method has been successfully demonstrated by comparing other classification techniques such as ANN, k-NN, SVM and Rotation Forest.

Patra, M. K..  2017.  An architecture model for smart city using Cognitive Internet of Things (CIoT). 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1–6.

In this paper, a distributed architecture for the implementation of smart city has been proposed to facilitate various smart features like solid waste management, efficient urban mobility and public transport, smart parking, robust IT connectivity, safety and security of citizens and a roadmap for achieving it. How massive volume of IoT data can be analyzed and a layered architecture of IoT is explained. Why data integration is important for analyzing and processing of data collected by the different smart devices like sensors, actuators and RFIDs is discussed. The wireless sensor network can be used to sense the data from various locations but there has to be more to it than stuffing sensors everywhere for everything. Why only the sensor is not sufficient for data collection and how human beings can be used to collect data is explained. There is some communication protocols between the volunteers engaged in collecting data to restrict the sharing of data and ensure that the target area is covered with minimum numbers of volunteers. Every volunteer should cover some predefined area to collect data. Then the proposed architecture model is having one central server to store all data in a centralized server. The data processing and the processing of query being made by the user is taking place in centralized server.

Harrington, Joshua, Lacroix, Jesse, El-Khatib, Khalil, Lobo, Felipe Leite, Oliveira, Horácio A.B.F..  2017.  Proactive Certificate Distribution for PKI in VANET. Proceedings of the 13th ACM Symposium on QoS and Security for Wireless and Mobile Networks. :9–13.

Vehicular Ad-Hoc Networks (VANET) are the creation of several vehicles communicating with each other in order to create a network capable of communication and data exchange. One of the most promising methods for security and trust amongst vehicular networks is the usage of Public Key Infrastructure (PKI). However, current implementations of PKI as a security solution for determining the validity and authenticity of vehicles in a VANET is not efficient due to the usage of large amounts of delay and computational overhead. In this paper, we investigate the potential of PKI when predictively and preemptively passing along certificates to roadside units (RSU) in an effort to lower delay and computational overhead in a dynamic environment. We look to accomplish this through utilizing fog computing and propose a new protocol to pass certificates along the projected path.

Elsaeidy, A., Elgendi, I., Munasinghe, K. S., Sharma, D., Jamalipour, A..  2017.  A smart city cyber security platform for narrowband networks. 2017 27th International Telecommunication Networks and Applications Conference (ITNAC). :1–6.

Smart city is gaining a significant attention all around the world. Narrowband technologies would have strong impact on achieving the smart city promises to its citizens with its powerful and efficient spectrum. The expected diversity of applications, different data structures and high volume of connecting devices for smart cities increase the persistent need to apply narrowband technologies. However, narrowband technologies have recognized limitations regarding security which make them an attractive target to cyber-attacks. In this paper, a novel platform architecture to secure smart city against cyber attackers is presented. The framework is providing a threat deep learning-based model to detect attackers based on users data behavior. The proposed architecture could be considered as an attempt toward developing a universal model to identify and block Denial of Service (DoS) attackers in a real time for smart city applications.

Biswas, K., Muthukkumarasamy, V..  2016.  Securing Smart Cities Using Blockchain Technology. 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1392–1393.

A smart city uses information technology to integrate and manage physical, social, and business infrastructures in order to provide better services to its dwellers while ensuring efficient and optimal utilization of available resources. With the proliferation of technologies such as Internet of Things (IoT), cloud computing, and interconnected networks, smart cities can deliver innovative solutions and more direct interaction and collaboration between citizens and the local government. Despite a number of potential benefits, digital disruption poses many challenges related to information security and privacy. This paper proposes a security framework that integrates the blockchain technology with smart devices to provide a secure communication platform in a smart city.

Dhand, Pooja, Mittal, Sumit.  2016.  Smart Handoff Framework for Next Generation Heterogeneous Networks in Smart Cities. Proceedings of the International Conference on Advances in Information Communication Technology & Computing. :75:1–75:7.

Over the last few decades, accessibility scenarios have undergone a drastic change. Today the way people access information and resources is quite different from the age when internet was not evolved. The evolution of the Internet has made remarkable, epoch-making changes and has become the backbone of smart city. The vision of smart city revolves around seamless connectivity. Constant connectivity can provide uninterrupted services to users such as e-governance, e-banking, e-marketing, e-shopping, e-payment and communication through social media. And to provide uninterrupted services to such applications to citizens is our prime concern. So this paper focuses on smart handoff framework for next generation heterogeneous networks in smart cities to provide all time connectivity to anyone, anyhow and anywhere. To achieve this, three strategies have been proposed for handoff initialization phase-Mobile controlled, user controlled and network controlled handoff initialization. Each strategy considers a different set of parameters. Results show that additional parameters with RSSI and adaptive threshold and hysteresis solve ping-pong and corner effect problems in smart city.

Kubler, Sylvain, Robert, Jérémy, Hefnawy, Ahmed, Cherifi, Chantal, Bouras, Abdelaziz, Främling, Kary.  2016.  IoT-based Smart Parking System for Sporting Event Management. Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. :104–114.

By connecting devices, people, vehicles and infrastructures everywhere in a city, governments and their partners can improve community wellbeing and other economic and financial aspects (e.g., cost and energy savings). Nonetheless, smart cities are complex ecosystems that comprise many different stakeholders (network operators, managed service providers, logistic centers...) who must work together to provide the best services and unlock the commercial potential of the IoT. This is one of the major challenges that faces today's smart city movement, and more generally the IoT as a whole. Indeed, while new smart connected objects hit the market every day, they mostly feed "vertical silos" (e.g., vertical apps, siloed apps...) that are closed to the rest of the IoT, thus hampering developers to produce new added value across multiple platforms. Within this context, the contribution of this paper is twofold: (i) present the EU vision and ongoing activities to overcome the problem of vertical silos; (ii) introduce recent IoT standards used as part of a recent Horizon 2020 IoT project to address this problem. The implementation of those standards for enhanced sporting event management in a smart city/government context (FIFA World Cup 2022) is developed, presented, and evaluated as a proof-of-concept.

Sterbenz, James P.G..  2016.  Drones in the Smart City and IoT: Protocols, Resilience, Benefits, and Risks. Proceedings of the 2Nd Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use. :3–3.

Drones have quickly become ubiquitous for both recreational and serious use. As is frequently the case with new technology in general, their rapid adoption already far exceeds our legal, policy, and social ability to cope with such issues as privacy and interference with well-established commercial and military air space. While the FAA has issued rulings, they will almost certainly be challenged in court as disputes arise, for example, when property owners shoot drones down. It is clear that drones will provide a critical role in smart cities and be connected to, if not directly a part of the IoT (Internet of Things). Drones will provide an essential role in providing network relay connectivity and situational awareness, particularly in disaster assessment and recovery scenarios. As is typical for new network technologies, the deployment of the drone hardware far exceeds our research in protocols – extending our previous understanding of MANETs (mobile ad hoc networks) and DTNs (disruption tolerant networks) – and more importantly, management, control, resilience, security, and privacy concerns. This keynote address will discuss these challenges and consider future research directions.

Giang, Nam K., Lea, Rodger, Blackstock, Michael, Leung, Victor C. M..  2016.  On Building Smart City IoT Applications: A Coordination-based Perspective. Proceedings of the 2Nd International Workshop on Smart. :7:1–7:6.

In the Internet of Things (IoT), Internet-connected things provide an influx of data and resources that offer unlimited possibility for applications and services. Smart City IoT systems refer to the things that are distributed over wide physical areas covering a whole city. While the new breed of data and resources looks promising, building applications in such large scale IoT systems is a difficult task due to the distributed and dynamic natures of entities involved, such as sensing, actuating devices, people and computing resources. In this paper, we explore the process of developing Smart City IoT applications from a coordination-based perspective. We show that a distributed coordination model that oversees such a large group of distributed components is necessary in building Smart City IoT applications. In particular, we propose Adaptive Distributed Dataflow, a novel Dataflow-based programming model that focuses on coordinating city-scale distributed systems that are highly heterogeneous and dynamic.

Lau, Billy Pik Lik, Chaturvedi, Tanmay, Ng, Benny Kai Kiat, Li, Kai, Hasala, Marakkalage S., Yuen, Chau.  2016.  Spatial and Temporal Analysis of Urban Space Utilization with Renewable Wireless Sensor Network. Proceedings of the 3rd IEEE/ACM International Conference on Big Data Computing, Applications and Technologies. :133–142.

Space utilization are important elements for a smart city to determine how well public space are being utilized. Such information could also provide valuable feedback to the urban developer on what are the factors that impact space utilization. The spatial and temporal information for space utilization can be studied and further analyzed to generate insights about that particular space. In our research context, these elements are translated to part of big data and Internet of things (IoT) to eliminate the need of on site investigation. However, there are a number of challenges for large scale deployment, eg. hardware cost, computation capability, communication bandwidth, scalability, data fragmentation, and resident privacy etc. In this paper, we designed and prototype a Renewable Wireless Sensor Network (RWSN), which addressed the aforementioned challenges. Finally, analyzed results based on initial data collected is presented.

Silva Ferraz, F., Guimaraes Ferraz, C.A..  2014.  Smart City Security Issues: Depicting Information Security Issues in the Role of an Urban Environment. Utility and Cloud Computing (UCC), 2014 IEEE/ACM 7th International Conference on. :842-847.

For the first time in the history of humanity, more them half of the population is now living in big cities. This scenario has raised concerns related systems that provide basic services to citizens. Even more, those systems has now the responsibility to empower the citizen with information and values that may aid people on daily decisions, such as related to education, transport, healthy and others. This environment creates a set of services that, interconnected, can develop a brand new range of solutions that refers to a term often called System of Systems. In this matter, focusing in a smart city, new challenges related to information security raises, those concerns may go beyond the concept of privacy issues exploring situations where the entire environment could be affected by issues different them only break the confidentiality of a data. This paper intends to discuss and propose 9 security issues that can be part of a smart city environment, and that explores more them just citizens privacy violations.