Visible to the public Biblio

Filters: Keyword is parallel computing  [Clear All Filters]
Peng, X., Hongmei, Z., Lijie, C., Ying, H..  2020.  Analysis of Computer Network Information Security under the Background of Big Data. 2020 5th International Conference on Smart Grid and Electrical Automation (ICSGEA). :409—412.
In today's society, under the comprehensive arrival of the Internet era, the rapid development of technology has facilitated people's production and life, but it is also a “double-edged sword”, making people's personal information and other data subject to a greater threat of abuse. The unique features of big data technology, such as massive storage, parallel computing and efficient query, have created a breakthrough opportunity for the key technologies of large-scale network security situational awareness. On the basis of big data acquisition, preprocessing, distributed computing and mining and analysis, the big data analysis platform provides information security assurance services to the information system. This paper will discuss the security situational awareness in large-scale network environment and the promotion of big data technology in security perception.
Karatas, G., Demir, O., Sahingoz, O. K..  2019.  A Deep Learning Based Intrusion Detection System on GPUs. 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1—6.

In recent years, almost all the real-world operations are transferred to cyber world and these market computers connect with each other via Internet. As a result of this, there is an increasing number of security breaches of the networks, whose admins cannot protect their networks from the all types of attacks. Although most of these attacks can be prevented with the use of firewalls, encryption mechanisms, access controls and some password protections mechanisms; due to the emergence of new type of attacks, a dynamic intrusion detection mechanism is always needed in the information security market. To enable the dynamicity of the Intrusion Detection System (IDS), it should be updated by using a modern learning mechanism. Neural Network approach is one of the mostly preferred algorithms for training the system. However, with the increasing power of parallel computing and use of big data for training, as a new concept, deep learning has been used in many of the modern real-world problems. Therefore, in this paper, we have proposed an IDS system which uses GPU powered Deep Learning Algorithms. The experimental results are collected on mostly preferred dataset KDD99 and it showed that use of GPU speed up training time up to 6.48 times depending on the number of the hidden layers and nodes in them. Additionally, we compare the different optimizers to enlighten the researcher to select the best one for their ongoing or future research.

Sun, Y., Wang, J., Lu, Z..  2019.  Asynchronous Parallel Surrogate Optimization Algorithm Based on Ensemble Surrogating Model and Stochastic Response Surface Method. :74—84.
{Surrogate model-based optimization algorithm remains as an important solution to expensive black-box function optimization. The introduction of ensemble model enables the algorithm to automatically choose a proper model integration mode and adapt to various parameter spaces when dealing with different problems. However, this also significantly increases the computational burden of the algorithm. On the other hand, utilizing parallel computing resources and improving efficiency of black-box function optimization also require combination with surrogate optimization algorithm in order to design and realize an efficient parallel parameter space sampling mechanism. This paper makes use of parallel computing technology to speed up the weight updating related computation for the ensemble model based on Dempster-Shafer theory, and combines it with stochastic response surface method to develop a novel parallel sampling mechanism for asynchronous parameter optimization. Furthermore, it designs and implements corresponding parallel computing framework and applies the developed algorithm to quantitative trading strategy tuning in financial market. It is verified that the algorithm is both feasible and effective in actual application. The experiment demonstrates that with guarantee of optimizing performance, the parallel optimization algorithm can achieve excellent accelerating effect.
Tang, Deyou, Zhang, Yazhuo, Zeng, Qingmiao.  2019.  Optimization of Hardware-oblivious and Hardware-conscious Hash-join Algorithms on KNL. 2019 4th International Conference on Cloud Computing and Internet of Things (CCIOT). :24–28.
Investigation of hash join algorithm on multi-core and many-core platforms showed that carefully tuned hash join implementations could outperform simple hash joins on most multi-core servers. However, hardware-oblivious hash join has shown competitive performance on many-core platforms. Knights Landing (KNL) has received attention in the field of parallel computing for its massively data-parallel nature and high memory bandwidth, but both hardware-oblivious and hardware-conscious hash join algorithms have not been systematically discussed and evaluated for KNL's characteristics (high bandwidth, cluster mode, etc.). In this paper, we present the design and implementation of the state-of-the-art hardware-oblivious and hardware-conscious hash joins that are tuned to exploit various KNL hardware characteristics. Using a thorough evaluation, we show that:1) Memory allocation strategies based on KNL's architecture are effective for both hardware-oblivious and hardware-conscious hash join algorithms; 2) In order to improve the efficiency of the hash join algorithms, hardware architecture features are still non-negligible factors.
Han, Danyang, Yu, Jinsong, Song, Yue, Tang, Diyin, Dai, Jing.  2019.  A Distributed Autonomic Logistics System with Parallel-Computing Diagnostic Algorithm for Aircrafts. 2019 IEEE AUTOTESTCON. :1–8.
The autonomic logistic system (ALS), first used by the U.S. military JSF, is a new conceptional system which supports prognostic and health management system of aircrafts, including such as real-time failure monitoring, remaining useful life prediction and maintenance decisions-making. However, the development of ALS faces some challenges. Firstly, current ALS is mainly based on client/server architecture, which is very complex in a large-scale aircraft control center and software is required to be reconfigured for every accessed node, which will increase the cost and decrease the expandability of deployment for large scale aircraft control centers. Secondly, interpretation of telemetry parameters from the aircraft is a tough task considering various real-time flight conditions, including instructions from controllers, work statements of single machines or machine groups, and intrinsic physical meaning of telemetry parameters. It is troublesome to meet the expectation of full representing the relationship between faults and tests without a standard model. Finally, typical diagnostic algorithms based on dependency matrix are inefficient, especially the temporal waste when dealing with thousands of test points and fault modes, for the reason that the time complexity will increase exponentially as dependency matrix expansion. Under this situation, this paper proposed a distributed ALS under complex operating conditions, which has the following contributions 1) introducing a distributed system based on browser/server architecture, which is divided overall system into primary control system and diagnostic and health assessment platform; 2) designing a novel interface for modelling the interpretation rules of telemetry parameters and the relationship between faults and tests in consideration of multiple elements of aircraft conditions; 3) proposing a promoted diagnostic algorithm under parallel computing in order to decrease the computing time complexity. what's more, this paper develops a construction with 3D viewer of aircraft for user to locate fault points and presents repairment instructions for maintenance personnels based on Interactive Electronic Technical Manual, which supports both online and offline. A practice in a certain aircraft demonstrated the efficiency of improved diagnostic algorithm and proposed ALS.
Razaque, Abdul, Jinrui, Wang, Zancheng, Wang, Hani, Qassim Bani, Khaskheli, Murad Ali, Bhutto, Waseem Ahmed.  2018.  Integration of CPU and GPU to Accelerate RSA Modular Exponentiation Operation. 2018 IEEE Long Island Systems, Applications and Technology Conference (LISAT). :1-6.

Now-a-days, the security of data becomes more and more important, people store many personal information in their phones. However, stored information require security and maintain privacy. Encryption algorithm has become the main force of maintaining the security of data. Thus, the algorithm complexity and encryption efficiency have become the main measurement of whether the encryption algorithm is save or not. With the development of hardware, we have many tools to improve the algorithm at present. Because modular exponentiation in RSA algorithm can be divided into several parts mathematically. In this paper, we introduce a conception by dividing the process of encryption and add the model into graphics process unit (GPU). By using GPU's capacity in parallel computing, the core of RSA can be accelerated by using central process unit (CPU) and GPU. Compute unified device architecture (CUDA) is a platform which can combine CPU and GPU together to realize GPU parallel programming and this is the tool we use to perform experience of accelerating RSA algorithm. This paper will also build up a mathematical model to help understand the mechanism of RSA encryption algorithm.

Zhai, Keke, Banerjee, Tania, Zwick, David, Hackl, Jason, Ranka, Sanjay.  2018.  Dynamic Load Balancing for Compressible Multiphase Turbulence. Proceedings of the 2018 International Conference on Supercomputing. :318–327.
CMT-nek is a new scientific application for performing high fidelity predictive simulations of particle laden explosively dispersed turbulent flows. CMT-nek involves detailed simulations, is compute intensive and is targeted to be deployed on exascale platforms. The moving particles are the main source of load imbalance as the application is executed on parallel processors. In a demonstration problem, all the particles are initially in a closed container until a detonation occurs and the particles move apart. If all processors get an equal share of the fluid domain, then only some of the processors get sections of the domain that are initially laden with particles, leading to disparate load on the processors. In order to eliminate load imbalance in different processors and to speedup the makespan, we present different load balancing algorithms for CMT-nek on large scale multicore platforms consisting of hundred of thousands of cores. The detailed process of the load balancing algorithms are presented. The performance of the different load balancing algorithms are compared and the associated overheads are analyzed. Evaluations on the application with and without load balancing are conducted and these show that with load balancing, simulation time becomes faster by a factor of up to 9.97.
Lin, Frank Po-Chen, Phoa, Frederick Kin Hing.  2017.  A Performance Study of Parallel Programming via CPU and GPU on Swarm Intelligence Based Evolutionary Algorithm. Proceedings of the 2017 International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence. :1–5.
Algorithm parallelization diversifies a complicated computing task into small parts, and thus it receives wide attention when it is implemented to evolutionary algorithms (EA). This works considers a recently developed EA called the Swarm Intelligence Based (SIB) method as a benchmark to compare the performance of two types of parallel computing approaches: a CPU-based approach via OpenMP and a GPU-based approach via CUDA. The experiments are conducted to solve an optimization problem in the search of supersaturated designs via the SIB method. Unlike conventional suggestions, we show that the CPU-based OpenMP outperforms CUDA at the execution time. At the end of this paper, we provide several potential problems in GPU parallel computing towards EA and suggest to use CPU-based OpenMP for parallel computing of EA.
Rjoub, G., Bentahar, J..  2017.  Cloud Task Scheduling Based on Swarm Intelligence and Machine Learning. 2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud). :272–279.

Cloud computing is the expansion of parallel computing, distributed computing. The technology of cloud computing becomes more and more widely used, and one of the fundamental issues in this cloud environment is related to task scheduling. However, scheduling in Cloud environments represents a difficult issue since it is basically NP-complete. Thus, many variants based on approximation techniques, especially those inspired by Swarm Intelligence (SI) have been proposed. This paper proposes a machine learning algorithm to guide the cloud choose the scheduling technique by using multi criteria decision to optimize the performance. The main contribution of our work is to minimize the makespan of a given task set. The new strategy is simulated using the CloudSim toolkit package where the impact of the algorithm is checked with different numbers of VMs varying from 2 to 50, and different task sizes between 30 bytes and 2700 bytes. Experiment results show that the proposed algorithm minimizes the execution time and the makespan between 7% and 75%, and improves the performance of the load balancing scheduling.

Guan, X., Ma, Y., Hua, Y..  2017.  An Attack Intention Recognition Method Based on Evaluation Index System of Electric Power Information System. 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1544–1548.

With the increasing scale of the network, the power information system has many characteristics, such as large number of nodes, complicated structure, diverse network protocols and abundant data, which make the network intrusion detection system difficult to detect real alarms. The current security technologies cannot meet the actual power system network security operation and protection requirements. Based on the attacker ability, the vulnerability information and the existing security protection configuration, we construct the attack sub-graphs by using the parallel distributed computing method and combine them into the whole network attack graph. The vulnerability exploit degree, attacker knowledge, attack proficiency, attacker willingness and the confidence level of the attack evidence are used to construct the security evaluation index system of the power information network system to calculate the attack probability value of each node of the attack graph. According to the probability of occurrence of each node attack, the pre-order attack path will be formed and then the most likely attack path and attack targets will be got to achieve the identification of attack intent.

Salinas, Sergio, Luo, Changqing, Liao, Weixian, Li, Pan.  2016.  Efficient Secure Outsourcing of Large-scale Quadratic Programs. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :281–292.

The massive amount of data that is being collected by today's society has the potential to advance scientific knowledge and boost innovations. However, people often lack sufficient computing resources to analyze their large-scale data in a cost-effective and timely way. Cloud computing offers access to vast computing resources on an on-demand and pay-per-use basis, which is a practical way for people to analyze their huge data sets. However, since their data contain sensitive information that needs to be kept secret for ethical, security, or legal reasons, many people are reluctant to adopt cloud computing. For the first time in the literature, we propose a secure outsourcing algorithm for large-scale quadratic programs (QPs), which is one of the most fundamental problems in data analysis. Specifically, based on simple linear algebra operations, we design a low-complexity QP transformation that protects the private data in a QP. We show that the transformed QP is computationally indistinguishable under a chosen plaintext attack (CPA), i.e., CPA-secure. We then develop a parallel algorithm to solve the transformed QP at the cloud, and efficiently find the solution to the original QP at the user. We implement the proposed algorithm on the Amazon Elastic Compute Cloud (EC2) and a laptop. We find that our proposed algorithm offers significant time savings for the user and is scalable to the size of the QP.

Najjar-Ghabel, S., Yousefi, S., Lighvan, M. Z..  2016.  A high speed implementation counter mode cryptography using hardware parallelism. 2016 Eighth International Conference on Information and Knowledge Technology (IKT). :55–60.
Nowadays, cryptography is one of the common security mechanisms. Cryptography algorithms are used to make secure data transmission over unsecured networks. Vital applications are required to techniques that encrypt/decrypt big data at the appropriate time, because the data should be encrypted/decrypted are variable size and usually the size of them is large. In this paper, for the mentioned requirements, the counter mode cryptography (CTR) algorithm with Data Encryption Standard (DES) core is paralleled by using Graphics Processing Unit (GPU). A secondary part of our work, this parallel CTR algorithm is applied on special network on chip (NoC) architecture that designed by Heracles toolkit. The results of numerical comparison show that GPU-based implementation can be achieved better runtime in comparison to the CPU-based one. Furthermore, our final implementations show that parallel CTR mode cryptography is achieved better runtime by using special NoC that applied on FPGA board in comparison to GPU-based and CPU ones.
Agnihotri, Lalitha, Mojarad, Shirin, Lewkow, Nicholas, Essa, Alfred.  2016.  Educational Data Mining with Python and Apache Spark: A Hands-on Tutorial. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge. :507–508.

Enormous amount of educational data has been accumulated through Massive Open Online Courses (MOOCs), as well as commercial and non-commercial learning platforms. This is in addition to the educational data released by US government since 2012 to facilitate disruption in education by making data freely available. The high volume, variety and velocity of collected data necessitate use of big data tools and storage systems such as distributed databases for storage and Apache Spark for analysis. This tutorial will introduce researchers and faculty to real-world applications involving data mining and predictive analytics in learning sciences. In addition, the tutorial will introduce statistics required to validate and accurately report results. Topics will cover how big data is being used to transform education. Specifically, we will demonstrate how exploratory data analysis, data mining, predictive analytics, machine learning, and visualization techniques are being applied to educational big data to improve learning and scale insights driven from millions of student's records. The tutorial will be held over a half day and will be hands on with pre-posted material. Due to the interdisciplinary nature of work, the tutorial appeals to researchers from a wide range of backgrounds including big data, predictive analytics, learning sciences, educational data mining, and in general, those interested in how big data analytics can transform learning. As a prerequisite, attendees are required to have familiarity with at least one programming language.

Hassan, S., Abbas Kamboh, A., Azam, F..  2014.  Analysis of Cloud Computing Performance, Scalability, Availability, amp; Security. Information Science and Applications (ICISA), 2014 International Conference on. :1-5.

Cloud Computing means that a relationship of many number of computers through a contact channel like internet. Through cloud computing we send, receive and store data on internet. Cloud Computing gives us an opportunity of parallel computing by using a large number of Virtual Machines. Now a days, Performance, scalability, availability and security may represent the big risks in cloud computing. In this paper we highlights the issues of security, availability and scalability issues and we will also identify that how we make our cloud computing based infrastructure more secure and more available. And we also highlight the elastic behavior of cloud computing. And some of characteristics which involved for gaining the high performance of cloud computing will also be discussed.