Visible to the public Biblio

Found 3437 results

Filters: Keyword is security  [Clear All Filters]
2022-05-24
Daughety, Nathan, Pendleton, Marcus, Xu, Shouhuai, Njilla, Laurent, Franco, John.  2021.  vCDS: A Virtualized Cross Domain Solution Architecture. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :61–68.
With the paradigm shift to cloud-based operations, reliable and secure access to and transfer of data between differing security domains has never been more essential. A Cross Domain Solution (CDS) is a guarded interface which serves to execute the secure access and/or transfer of data between isolated and/or differing security domains defined by an administrative security policy. Cross domain security requires trustworthiness at the confluence of the hardware and software components which implement a security policy. Security components must be relied upon to defend against widely encompassing threats – consider insider threats and nation state threat actors which can be both onsite and offsite threat actors – to information assurance. Current implementations of CDS systems use suboptimal Trusted Computing Bases (TCB) without any formal verification proofs, confirming the gap between blind trust and trustworthiness. Moreover, most CDSs are exclusively operated by Department of Defense agencies and are not readily available to the commercial sectors, nor are they available for independent security verification. Still, more CDSs are only usable in physically isolated environments such as Sensitive Compartmented Information Facilities and are inconsistent with the paradigm shift to cloud environments. Our purpose is to address the question of how trustworthiness can be implemented in a remotely deployable CDS that also supports availability and accessibility to all sectors. In this paper, we present a novel CDS system architecture which is the first to use a formally verified TCB. Additionally, our CDS model is the first of its kind to utilize a computation-isolation approach which allows our CDS to be remotely deployable for use in cloud-based solutions.
Khan, Mohd, Chen, Yu.  2021.  A Randomized Switched-Mode Voltage Regulation System for IoT Edge Devices to Defend Against Power Analysis based Side Channel Attacks. 2021 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :1771–1776.
The prevalence of Internet of Things (IoT) allows heterogeneous and lightweight smart devices to collaboratively provide services with or without human intervention. With an ever-increasing presence of IoT-based smart applications and their ubiquitous visibility from the Internet, user data generated by highly connected smart IoT devices also incur more concerns on security and privacy. While a lot of efforts are reported to develop lightweight information assurance approaches that are affordable to resource-constrained IoT devices, there is not sufficient attention paid from the aspect of security solutions against hardware-oriented attacks, i.e. side channel attacks. In this paper, a COTS (commercial off-the-shelf) based Randomized Switched-Mode Voltage Regulation System (RSMVRS) is proposed to prevent power analysis based side channel attacks (P-SCA) on bare metal IoT edge device. The RSMVRS is implemented to direct power to IoT edge devices. The power is supplied to the target device by randomly activating power stages with random time delays. Therefore, the cryptography algorithm executing on the IoT device will not correlate to a predictable power profile, if an adversary performs a SCA by measuring the power traces. The RSMVRS leverages COTS components and experimental study has verified the correctness and effectiveness of the proposed solution.
2022-05-20
Kodwani, Gaurav, Arora, Shashank, Atrey, Pradeep K..  2021.  On Security of Key Derivation Functions in Password-based Cryptography. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :109–114.
Most common user authentication methods use some form of password or a combination of passwords. However, encryption schemes are generally not directly compatible with user passwords and thus, Password-Based Key Derivation Functions (PBKDFs) are used to convert user passwords into cryptographic keys. In this paper, we analyze the theoretical security of PBKDF2 and present two vulnerabilities, γ-collision and δ-collision. Using AES-128 as our exemplar, we show that due to γ-collision, text encrypted with one user password can be decrypted with γ 1 different passwords. We also provide a proof that finding− a collision in the derived key for AES-128 requires δ lesser calls to PBKDF2 than the known Birthday attack. Due to this, it is possible to break password-based AES-128 in O(264) calls, which is equivalent to brute-forcing DES.
Zahra, Ayima, Asif, Muhammad, Nagra, Arfan Ali, Azeem, Muhammad, Gilani, Syed A..  2021.  Vulnerabilities and Security Threats for IoT in Transportation and Fleet Management. 2021 4th International Conference on Computing Information Sciences (ICCIS). :1–5.
The fields of transportation and fleet management have been evolving at a rapid pace and most of these changes are due to numerous incremental developments in the area. However, a comprehensive study that critically compares and contrasts all the existing techniques and methodologies in the area is still missing. This paper presents a comparative analysis of the vulnerabilities and security threats for IoT and their mitigation strategies in the context of transportation and fleet management. Moreover, we attempt to classify the existing strategies based on their underlying principles.
Hasan, Raiful, Hasan, Ragib.  2021.  Towards a Threat Model and Security Analysis of Video Conferencing Systems. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–4.
Video Conferencing has emerged as a new paradigm of communication in the age of COVID-19 pandemic. This technology is allowing us to have real-time interaction during the social distancing era. Even before the current crisis, it was increasingly commonplace for organizations to adopt a video conferencing tool. As people adopt video conferencing tools and access data with potentially less secure equipment and connections, meetings are becoming a target to cyber attackers. Enforcing appropriate security and privacy settings prevents attackers from exploiting the system. To design the video conferencing system's security and privacy model, an exhaustive threat model must be adopted. Threat modeling is a process of optimizing security by identifying objectives, vulnerabilities, and defining the plan to mitigate or prevent potential threats to the system. In this paper, we use the widely accepted STRIDE threat modeling technique to identify all possible risks to video conferencing tools and suggest mitigation strategies for creating a safe and secure system.
Sion, Laurens, Van Landuyt, Dimitri, Yskout, Koen, Verreydt, Stef, Joosen, Wouter.  2021.  Automated Threat Analysis and Management in a Continuous Integration Pipeline. 2021 IEEE Secure Development Conference (SecDev). :30–37.
Security and privacy threat modeling is commonly applied to systematically identify and address design-level security and privacy concerns in the early stages of architecture and design. Identifying and resolving these threats should remain a continuous concern during the development lifecycle. Especially with contemporary agile development practices, a single-shot upfront analysis becomes quickly outdated. Despite it being explicitly recommended by experts, existing threat modeling approaches focus largely on early development phases and provide limited support during later implementation phases.In this paper, we present an integrated threat analysis toolchain to support automated, continuous threat elicitation, assessment, and mitigation as part of a continuous integration pipeline in the GitLab DevOps platform. This type of automation allows for continuous attention to security and privacy threats during development at the level of individual commits, supports monitoring and managing the progress in addressing security and privacy threats over time, and enables more advanced and fine-grained analyses such as assessing the impact of proposed changes in different code branches or merge/pull requests by analyzing the changes to the threat model.
2022-05-19
Kösemen, Cem, Dalkiliç, Gökhan.  2021.  Tamper Resistance Functions on Internet of Things Devices. 2021 Innovations in Intelligent Systems and Applications Conference (ASYU). :1–5.
As the number of Internet of things devices increases, there is a growing importance of securely managing and storing the secret and private keys in these devices. Public-key cryptosystems or symmetric encryption algorithms both use special keys that need to be kept secret from other peers in the network. Additionally, ensuring the integrity of the installed application firmware of these devices is another security problem. In this study, private key storage methods are explained in general. Also, ESP32-S2 device is used for experimental case study for its robust built-in trusted platform module. Secure boot and flash encryption functionalities of ESP32-S2 device, which offers a solution to these security problems, are explained and tested in detail.
Shiomi, Jun, Kotsugi, Shuya, Dong, Boyu, Onodera, Hidetoshi, Shinya, Akihiko, Notomi, Masaya.  2021.  Tamper-Resistant Optical Logic Circuits Based on Integrated Nanophotonics. 2021 58th ACM/IEEE Design Automation Conference (DAC). :139–144.
A tamper-resistant logical operation method based on integrated nanophotonics is proposed focusing on electromagnetic side-channel attacks. In the proposed method, only the phase of each optical signal is modulated depending on its logical state, which keeps the power of optical signals in optical logic circuits constant. This provides logic-gate-level tamper resistance which is difficult to achieve with CMOS circuits. An optical implementation method based on electronically-controlled phase shifters is then proposed. The electrical part of proposed circuits achieves 300 times less instantaneous current change, which is proportional to intensity of the leaked electromagnetic wave, than a CMOS logic gate.
Chen, Xiarun, Li, Qien, Yang, Zhou, Liu, Yongzhi, Shi, Shaosen, Xie, Chenglin, Wen, Weiping.  2021.  VulChecker: Achieving More Effective Taint Analysis by Identifying Sanitizers Automatically. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :774–782.
The automatic detection of vulnerabilities in Web applications using taint analysis is a hot topic. However, existing taint analysis methods for sanitizers identification are too simple to find available taint transmission chains effectively. These methods generally use pre-constructed dictionaries or simple keywords to identify, which usually suffer from large false positives and false negatives. No doubt, it will have a greater impact on the final result of the taint analysis. To solve that, we summarise and classify the commonly used sanitizers in Web applications and propose an identification method based on semantic analysis. Our method can accurately and completely identify the sanitizers in the target Web applications through static analysis. Specifically, we analyse the natural semantics and program semantics of existing sanitizers, use semantic analysis to find more in Web applications. Besides, we implemented the method prototype in PHP and achieved a vulnerability detection tool called VulChecker. Then, we experimented with some popular open-source CMS frameworks. The results show that Vulchecker can accurately identify more sanitizers. In terms of vulnerability detection, VulChecker also has a lower false positive rate and a higher detection rate than existing methods. Finally, we used VulChecker to analyse the latest PHP applications. We identified several new suspicious taint data propagation chains. Before the paper was completed, we have identified four unreported vulnerabilities. In general, these results show that our approach is highly effective in improving vulnerability detection based on taint analysis.
Ji, Songyan, Dong, Jian, Qiu, Junfu, Gu, Bowen, Wang, Ye, Wang, Tongqi.  2021.  Increasing Fuzz Testing Coverage for Smart Contracts with Dynamic Taint Analysis. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS). :243–247.
Nowadays, smart contracts manage more and more digital assets and have become an attractive target for adversaries. To prevent smart contracts from malicious attacks, a thorough test is indispensable and must be finished before deployment because smart contracts cannot be modified after being deployed. Fuzzing is an important testing approach, but most existing smart contract fuzzers can hardly solve the constraints which involve deeply nested conditional statements, resulting in low coverage. To address this problem, we propose Targy, an efficient targeted mutation strategy based on dynamic taint analysis. We obtain the taint flow by dynamic taint propagation, and generate a more accurate mutation strategy for the input parameters of functions to simultaneously satisfy all conditional statements. We implemented Targy on sFuzz with 3.6 thousand smart contracts running on Ethereum. The numbers of covered branches and detected vulnerabilities increase by 6% and 7% respectively, and the average time required for covering a branch is reduced by 11 %.
Fursova, Natalia, Dovgalyuk, Pavel, Vasiliev, Ivan, Klimushenkova, Maria, Egorov, Danila.  2021.  Detecting Attack Surface With Full-System Taint Analysis. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :1161–1162.
Attack surface detection for the complex software is needed to find targets for the fuzzing, because testing the whole system with many inputs is not realistic. Researchers that previously applied taint analysis for dealing with different security tasks in the virtual machines did not examined how to apply it for attack surface detection. I.e., getting the program modules and functions, that may be affected by input data. We propose using taint tracking within a virtual machine and virtual machine introspection to create a new approach that can detect the internal module interfaces that can be fuzz tested to assure that software is safe or find the vulnerabilities.
Piskachev, Goran, Krishnamurthy, Ranjith, Bodden, Eric.  2021.  SecuCheck: Engineering configurable taint analysis for software developers. 2021 IEEE 21st International Working Conference on Source Code Analysis and Manipulation (SCAM). :24–29.
Due to its ability to detect many frequently occurring security vulnerabilities, taint analysis is one of the core static analyses used by many static application security testing (SAST) tools. Previous studies have identified issues that software developers face with SAST tools. This paper reports on our experience in building a configurable taint analysis tool, named SecuCheck, that runs in multiple integrated development environments. SecuCheck is built on top of multiple existing components and comes with a Java-internal domain-specific language fluentTQL for specifying taint-flows, designed for software developers. We evaluate the applicability of SecuCheck in detecting eleven taint-style vulnerabilities in microbench programs and three real-world Java applications with known vulnerabilities. Empirically, we identify factors that impact the runtime of SecuCheck.
Gylling, Andreas, Ekstedt, Mathias, Afzal, Zeeshan, Eliasson, Per.  2021.  Mapping Cyber Threat Intelligence to Probabilistic Attack Graphs. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :304–311.
As cyber threats continue to grow and expertise resources are limited, organisations need to find ways to evaluate their resilience efficiently and take proactive measures against an attack from a specific adversary before it occurs. Threat modelling is an excellent method of assessing the resilience of ICT systems, forming Attack (Defense) Graphs (ADGs) that illustrate an adversary’s attack vectors. Cyber Threat Intelligence (CTI) is information that helps understand the current cyber threats, but has little integration with ADGs. This paper contributes with an approach that resolves this problem by using CTI feeds of known threat actors to enrich ADGs under multiple reuse. This enables security analysts to take proactive measures and strengthen their ICT systems against current methods used by any threat actor that is believed to pose a threat to them.
Baniya, Babu Kaji.  2021.  Intrusion Representation and Classification using Learning Algorithm. 2021 23rd International Conference on Advanced Communication Technology (ICACT). :279–284.
At present, machine learning (ML) algorithms are essential components in designing the sophisticated intrusion detection system (IDS). They are building-blocks to enhance cyber threat detection and help in classification at host-level and network-level in a short period. The increasing global connectivity and advancements of network technologies have added unprecedented challenges and opportunities to network security. Malicious attacks impose a huge security threat and warrant scalable solutions to thwart large-scale attacks. These activities encourage researchers to address these imminent threats by analyzing a large volume of the dataset to tackle all possible ranges of attack. In this proposed method, we calculated the fitness value of each feature from the population by using a genetic algorithm (GA) and selected them according to the fitness value. The fitness values are presented in hierarchical order to show the effectiveness of problem decomposition. We implemented Support Vector Machine (SVM) to verify the consistency of the system outcome. The well-known NSL-knowledge discovery in databases (KDD) was used to measure the performance of the system. From the experiments, we achieved a notable classification accuracies using a SVM of the current state of the art intrusion detection.
Ndichu, Samuel, Ban, Tao, Takahashi, Takeshi, Inoue, Daisuke.  2021.  A Machine Learning Approach to Detection of Critical Alerts from Imbalanced Multi-Appliance Threat Alert Logs. 2021 IEEE International Conference on Big Data (Big Data). :2119–2127.
The extraordinary number of alerts generated by network intrusion detection systems (NIDS) can desensitize security analysts tasked with incident response. Security information and event management systems (SIEMs) perform some rudimentary automation but cannot replicate the decision-making process of a skilled analyst. Machine learning and artificial intelligence (AI) can detect patterns in data with appropriate training. In practice, the majority of the alert data comprises false alerts, and true alerts form only a small proportion. Consequently, a naive engine that classifies all security alerts into the majority class can yield a superficial high accuracy close to 100%. Without any correction for the class imbalance, the false alerts will dominate algorithmic predictions resulting in poor generalization performance. We propose a machine-learning approach to address the class imbalance problem in multi-appliance security alert data and automate the security alert analysis process performed in security operations centers (SOCs). We first used the neighborhood cleaning rule (NCR) to identify and remove ambiguous, noisy, and redundant false alerts. Then, we applied the support vector machine synthetic minority oversampling technique (SVMSMOTE) to generate synthetic training true alerts. Finally, we fit and evaluated the decision tree and random forest classifiers. In the experiments, using alert data from eight security appliances, we demonstrated that the proposed method can significantly reduce the need for manual auditing, decreasing the number of uninspected alerts and achieving a performance of 99.524% in recall.
2022-05-12
Ma, Lele.  2021.  One Layer for All: Efficient System Security Monitoring for Edge Servers. 2021 IEEE International Performance, Computing, and Communications Conference (IPCCC). :1–8.
Edge computing promises higher bandwidth and lower latency to end-users. However, edge servers usually have limited computing resources and are geographically distributed over the edge. This imposes new challenges for efficient system monitoring and control of edge servers.In this paper, we propose EdgeVMI, a framework to monitor and control services running on edge servers with lightweight virtual machine introspection(VMI). The key of our technique is to run the monitor in a lightweight virtual machine which can leverage hardware events for monitoring memory read and writes. In addition, the small binary size and memory footprints of the monitor could reduce the start/stop time of service, the runtime overhead, as well as the deployment efforts.Inspired by unikernels, we build our monitor with only the necessary system modules, libraries, and functionalities of a specific monitor task. To reduce the security risk of the monitoring behavior, we separate the monitor into two isolated modules: one acts as a sensor to collect security information and another acts as an actuator to conduct control commands. Our evaluation shows the effectiveness and the efficiency of the monitoring system, with an average performance overhead of 2.7%.
Li, Shih-Wei, Li, Xupeng, Gu, Ronghui, Nieh, Jason, Zhuang Hui, John.  2021.  A Secure and Formally Verified Linux KVM Hypervisor. 2021 IEEE Symposium on Security and Privacy (SP). :1782–1799.
Commodity hypervisors are widely deployed to support virtual machines (VMs) on multiprocessor hardware. Their growing complexity poses a security risk. To enable formal verification over such a large codebase, we introduce microverification, a new approach that decomposes a commodity hypervisor into a small core and a set of untrusted services so that we can prove security properties of the entire hypervisor by verifying the core alone. To verify the multiprocessor hypervisor core, we introduce security-preserving layers to modularize the proof without hiding information leakage so we can prove each layer of the implementation refines its specification, and the top layer specification is refined by all layers of the core implementation. To verify commodity hypervisor features that require dynamically changing information flow, we introduce data oracles to mask intentional information flow. We can then prove noninterference at the top layer specification and guarantee the resulting security properties hold for the entire hypervisor implementation. Using microverification, we retrofitted the Linux KVM hypervisor with only modest modifications to its codebase. Using Coq, we proved that the hypervisor protects the confidentiality and integrity of VM data, while retaining KVM’s functionality and performance. Our work is the first machine-checked security proof for a commodity multiprocessor hypervisor.
Rokade, Monika D., Sharma, Yogesh Kumar.  2021.  MLIDS: A Machine Learning Approach for Intrusion Detection for Real Time Network Dataset. 2021 International Conference on Emerging Smart Computing and Informatics (ESCI). :533–536.
Computer network and virtual machine security is very essential in today's era. Various architectures have been proposed for network security or prevent malicious access of internal or external users. Various existing systems have already developed to detect malicious activity on victim machines; sometimes any external user creates some malicious behavior and gets unauthorized access of victim machines to such a behavior system considered as malicious activities or Intruder. Numerous machine learning and soft computing techniques design to detect the activities in real-time network log audit data. KKDDCUP99 and NLSKDD most utilized data set to detect the Intruder on benchmark data set. In this paper, we proposed the identification of intruders using machine learning algorithms. Two different techniques have been proposed like a signature with detection and anomaly-based detection. In the experimental analysis, demonstrates SVM, Naïve Bayes and ANN algorithm with various data sets and demonstrate system performance on the real-time network environment.
2022-05-10
Ye, YuGuang.  2021.  Research on the Security Defense Strategy of Smart City's Substitution Computer Network in Big Data. 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA). :1428–1431.
With the rapid development of the information technology era, the era of big data has also arrived. While computer networks are promoting the prosperity and development of society, their applications have become more extensive and in-depth. Smart city video surveillance systems have entered an era of networked surveillance and business integration. The problems are also endless. This article discusses computer network security in the era of big data, hoping to help strengthen the security of computer networks in our country. This paper studies the computer network security prevention strategies of smart cities in the era of big data.
Hassan, Salman, Bari, Safioul, Shuvo, A S M Muktadiru Baized, Khan, Shahriar.  2021.  Implementation of a Low-Cost IoT Enabled Surveillance Security System. 2021 7th International Conference on Applied System Innovation (ICASI). :101–104.
Security is a requirement in society, yet its wide implementation is held back because of high expenses, and barriers to the use of technology. Experimental implementation of security at low cost will only help in promoting the technology at more affordable prices. This paper describes the design of a security system of surveillance using Raspberry Pi and Arduino UNO. The design senses the presence of \$a\$ human in a surveillance area and immediately sets off the buzzer and simultaneously starts capturing video of the motion it had detected and stores it in a folder. When the design senses a motion, it immediately sends an SMS to the user. The user of this design can see the live video of the motion it detects using the internet connection from a remote area. Our objective of making a low-cost surveillance area security system has been mostly fulfilled. Although this is a low-cost project, features can be compared with existing commercially available systems.
Ahmed, Foez, Shahriar, T. A. M. Ragib, Paul, Robi, Ahammad, Arif.  2021.  Design and Development of a Smart Surveillance System for Security of an Institution. 2021 International Conference on Electronics, Communications and Information Technology (ICECIT). :1–4.
Conventional Security Systems are improving with the advancement of Internet of Things (IoT) based technology. For better security, in addition to the currently available technology, surveillance systems are used. In this research, a Smart Surveillance System with machine-learning capabilities is designed to detect security breaches and it will resolve safety concerns. Machine learning algorithms are implemented to detect intruders as well as suspicious activities. Enery efficiency is the major concern for constant monitoring systems. As a result, the designed system focuses on power consumption by calibrating the system so that it can work on bare minimum power and additionally provides the required output. Fire sensor has also been integrated to detect fire for safety purposes. By adding upon the security infrastructure, next-generation smart surveillance systems can be created for a safe future. The developed system contains the necessary tools to recognize intruders by face recognition. Also using the ambient sensors (PIR sensor, fire detecting sensor), a secure environment is provided during working and non-working hours. The system shows high accuracy in human & flame detection. A more reliable security system can be created with the further development of this research.
Shin, Ho-Chul, Na, Kiin.  2021.  Abnormal Situation Detection using Global Surveillance Map. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :769–772.
in this paper, we describe a method for detecting abnormal pedestrians or cars by expressing the behavioral characteristics of pedestrians on a global surveillance map in a video security system using CCTV and patrol robots. This method converts a large amount of video surveillance data into a compressed map shape format to efficiently transmit and process data. By using deep learning auto-encoder and CNN algorithm, pedestrians belonging to the abnormal category can be detected in two steps. In the case of the first-stage abnormal candidate extraction, the normal detection rate was 87.7%, the abnormal detection rate was 88.3%, and in the second stage abnormal candidate filtering, the normal detection rate was 99.8% and the abnormal detection rate was 96.5%.
Zheng, Wei, Abdallah Semasaba, Abubakar Omari, Wu, Xiaoxue, Agyemang, Samuel Akwasi, Liu, Tao, Ge, Yuan.  2021.  Representation vs. Model: What Matters Most for Source Code Vulnerability Detection. 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). :647–653.
Vulnerabilities in the source code of software are critical issues in the realm of software engineering. Coping with vulnerabilities in software source code is becoming more challenging due to several aspects of complexity and volume. Deep learning has gained popularity throughout the years as a means of addressing such issues. In this paper, we propose an evaluation of vulnerability detection performance on source code representations and evaluate how Machine Learning (ML) strategies can improve them. The structure of our experiment consists of 3 Deep Neural Networks (DNNs) in conjunction with five different source code representations; Abstract Syntax Trees (ASTs), Code Gadgets (CGs), Semantics-based Vulnerability Candidates (SeVCs), Lexed Code Representations (LCRs), and Composite Code Representations (CCRs). Experimental results show that employing different ML strategies in conjunction with the base model structure influences the performance results to a varying degree. However, ML-based techniques suffer from poor performance on class imbalance handling when used in conjunction with source code representations for software vulnerability detection.
Xu, Zheng, Chen, Ming, Chen, Mingzhe, Yang, Zhaohui, Cang, Yihan, Poor, H. Vincent.  2021.  Physical Layer Security Optimization for MIMO Enabled Visible Light Communication Networks. 2021 IEEE Global Communications Conference (GLOBECOM). :1–6.
This paper investigates the optimization of physical layer security in multiple-input multiple-output (MIMO) enabled visible light communication (VLC) networks. In the considered model, one transmitter equipped with light-emitting diodes (LEDs) intends to send confidential messages to legitimate users while one eavesdropper attempts to eavesdrop on the communication between the transmitter and legitimate users. This security problem is formulated as an optimization problem whose goal is to minimize the sum mean-square-error (MSE) of all legitimate users while meeting the MSE requirement of the eavesdropper thus ensuring the security. To solve this problem, the original optimization problem is first transformed to a convex problem using successive convex approximation. An iterative algorithm with low complexity is proposed to solve this optimization problem. Simulation results show that the proposed algorithm can reduce the sum MSE of legitimate users by up to 40% compared to a conventional zero forcing scheme.
priyadharshini, C Subha, Rajeswari, A, Sharmila, P, Gayathri, M, Randhisha, K, Yazhini, M C.  2021.  Design of Visible Light Communication System Using Ask Modulation. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :894–899.
A Visible Light Communication (VLC) is a fast growing technology became ubiquitous in the Optical wireless communication domain. It has the benefits of high security, high bandwidth, less power consumption, free from Electro Magnetic radiation hazards. VLC can help to address the looming spectrum crunch problem with secure communication in an unlimited spectrum. VLC provides extensive wireless connectivity with larger data densities than Wi-Fi along with added security features that annihilate unwanted external network invasion. The problem such as energy consumption and infrastructure complexity has been reduced by integrating the illumination and data services. The objective is to provide fast data communication with uninterrupted network connectivity and high accuracy to the user. In this paper, a proposed visible light communication system for transmitting text information using amplitude shift keying modulation (ASK) has been presented. Testing of transmitter and receiver block based on frequency, power and distance has been analyzed. The results show that the receiver is capable of receiving input data with minimum length under direct communication with the transmitter.