Visible to the public Biblio

Filters: Keyword is Turing machine  [Clear All Filters]
Mikkilineni, Rao, Morana, Giovanni.  2019.  Post-Turing Computing, Hierarchical Named Networks and a New Class of Edge Computing. 2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE). :82-87.

Advances in our understanding of the nature of cognition in its myriad forms (Embodied, Embedded, Extended, and Enactive) displayed in all living beings (cellular organisms, animals, plants, and humans) and new theories of information, info-computation and knowledge are throwing light on how we should build software systems in the digital universe which mimic and interact with intelligent, sentient and resilient beings in the physical universe. Recent attempts to infuse cognition into computing systems to push the boundaries of Church-Turing thesis have led to new computing models that mimic biological systems in encoding knowledge structures using both algorithms executed in stored program control machines and neural networks. This paper presents a new model and implements an application as hierarchical named network composed of microservices to create a managed process workflow by enabling dynamic configuration and reconfiguration of the microservice network. We demonstrate the resiliency, efficiency and scaling of the named microservice network using a novel edge cloud platform by Platina Systems. The platform eliminates the need for Virtual Machine overlay and provides high performance and low-latency with L3 based 100 GbE network and SSD support with RDMA and NVMeoE. The hierarchical named microservice network using Kubernetes provisioning stack provides all the cloud features such as elasticity, autoscaling, self-repair and live-migration without reboot. The model is derived from a recent theoretical framework for unification of different models of computation using "Structural Machines.'' They are shown to simulate Turing machines, inductive Turing machines and also are proved to be more efficient than Turing machines. The structural machine framework with a hierarchy of controllers managing the named service connections provides dynamic reconfiguration of the service network from browsers to database to address rapid fluctuations in the demand for or the availability of resources without having to reconfigure IP address base networks.

Harrison, Michael A., Ruzzo, Walter L., Ullman, Jeffrey D..  1976.  Protection in Operating Systems. Commun. ACM. 19:461–471.

A model of protection mechanisms in computing systems is presented and its appropriateness is argued. The “safety” problem for protection systems under this model is to determine in a given situation whether a subject can acquire a particular right to an object. In restricted cases, it can be shown that this problem is decidable, i.e. there is an algorithm to determine whether a system in a particular configuration is safe. In general, and under surprisingly weak assumptions, it cannot be decided if a situation is safe. Various implications of this fact are discussed.

This article was identified by the SoS Best Scientific Cybersecurity Paper Competition Distinguished Experts as a Science of Security Significant Paper.

The Science of Security Paper Competition was developed to recognize and honor recently published papers that advance the science of cybersecurity. During the development of the competition, members of the Distinguished Experts group suggested that listing papers that made outstanding contributions, empirical or theoretical, to the science of cybersecurity in earlier years would also benefit the research community.