Visible to the public Biblio

Found 147 results

Filters: Keyword is industrial control  [Clear All Filters]
Bhosale, Pushparaj, Kastner, Wolfgang, Sauter, Thilo.  2022.  Automating Safety and Security Risk Assessment in Industrial Control Systems: Challenges and Constraints. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1–4.
Currently, risk assessment of industrial control systems is static and performed manually. With the increased convergence of operational technology and information technology, risk assessment has to incorporate a combined safety and security analysis along with their interdependency. This paper investigates the data inputs required for safety and security assessments, also if the collection and utilisation of such data can be automated. A particular focus is put on integrated assessment methods which have the potential for automation. In case the overall process to identify potential hazards and threats and analyze what could happen if they occur can be automated, manual efforts and cost of operation can be reduced, thus also increasing the overall performance of risk assessment.
Cao, Yaofu, Li, Tianquan, Li, Xiaomeng, Zhao, Jincheng, Liu, Junwen, Yan, Junlu.  2022.  Research on network security behavior audit method of power industrial control system operation support cloud platform based on FP-Growth association rule algorithm. 2022 International Conference on Artificial Intelligence, Information Processing and Cloud Computing (AIIPCC). :409–412.
With the introduction of the national “carbon peaking and carbon neutrality” strategic goals and the accelerated construction of the new generation of power systems, cloud applications built on advanced IT technologies play an increasingly important role in meeting the needs of digital power business. In view of the characteristics of the current power industrial control system operation support cloud platform with wide coverage, large amount of log data, and low analysis intelligence, this paper proposes a cloud platform network security behavior audit method based on FP-Growth association rule algorithm, aiming at the uniqueness of the operating data of the cloud platform that directly interacts with the isolated system environment of power industrial control system. By using the association rule algorithm to associate and classify user behaviors, our scheme formulates abnormal behavior judgment standards, establishes an automated audit strategy knowledge base, and improves the security audit efficiency of power industrial control system operation support cloud platform. The intelligent level of log data analysis enables effective discovery, traceability and management of internal personnel operational risks.
Zhang, Yuqiang, Hao, Zhiqiang, Hu, Ning, Luo, Jiawei, Wang, Chonghua.  2022.  A virtualization-based security architecture for industrial control systems. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :94–101.
The Industrial Internet expands the attack surface of industrial control systems(ICS), bringing cybersecurity threats to industrial controllers located in operation technology(OT) networks. Honeypot technology is an important means to detect network attacks. However, the existing honeypot system cannot simulate business logic and is difficult to resist highly concealed APT attacks. This paper proposes a high-simulation ICS security defense framework based on virtualization technology. The framework utilizes virtualization technology to build twins for protected control systems. The architecture can infer the execution results of control instructions in advance based on actual production data, so as to discover hidden attack behaviors in time. This paper designs and implements a prototype system and demonstrates the effectiveness and potential of this architecture for ICS security.
Zhang, Ge, Zhang, Zheyu, Sun, Jun, Wang, Zun, Wang, Rui, Wang, Shirui, Xie, Chengyun.  2022.  10 Gigabit industrial thermal data acquisition and storage solution based on software-defined network. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :616–619.
With the wide application of Internet technology in the industrial control field, industrial control networks are getting larger and larger, and the industrial data generated by industrial control systems are increasing dramatically, and the performance requirements of the acquisition and storage systems are getting higher and higher. The collection and analysis of industrial equipment work logs and industrial timing data can realize comprehensive management and continuous monitoring of industrial control system work status, as well as intrusion detection and energy efficiency analysis in terms of traffic and data. In the face of increasingly large realtime industrial data, existing log collection systems and timing data gateways, such as packet loss and other phenomena [1], can not be more complete preservation of industrial control network thermal data. The emergence of software-defined networking provides a new solution to realize massive thermal data collection in industrial control networks. This paper proposes a 10-gigabit industrial thermal data acquisition and storage scheme based on software-defined networking, which uses software-defined networking technology to solve the problem of insufficient performance of existing gateways.
Zhang, Deng, Zhao, Jiang, Ding, Dingding, Gao, Hanjun.  2022.  Networked Control System Information Security Platform. 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :738–742.
With the development of industrial informatization, information security in the power production industry is becoming more and more important. In the power production industry, as the critical information egress of the industrial control system, the information security of the Networked Control System is particularly important. This paper proposes a construction method for an information security platform of Networked Control System, which is used for research, testing and training of Networked Control System information security.
Trifonov, Roumen, Manolov, Slavcho, Tsochev, Georgi, Pavlova, Galya, Raynova, Kamelia.  2022.  Analytical Choice of an Effective Cyber Security Structure with Artificial Intelligence in Industrial Control Systems. 2022 10th International Scientific Conference on Computer Science (COMSCI). :1–6.
The new paradigm of industrial development, called Industry 4.0, faces the problems of Cybersecurity, and as it has already manifested itself in Information Systems, focuses on the use of Artificial Intelligence tools. The authors of this article build on their experience with the use of the above mentioned tools to increase the resilience of Information Systems against Cyber threats, approached to the choice of an effective structure of Cyber-protection of Industrial Systems, primarily analyzing the objective differences between them and Information Systems. A number of analyzes show increased resilience of the decentralized architecture in the management of large-scale industrial processes to the centralized management architecture. These considerations provide sufficient grounds for the team of the project to give preference to the decentralized structure with flock behavior for further research and experiments. The challenges are to determine the indicators which serve to assess and compare the impacts on the controlled elements.
Gong, Xiao, Li, Mengwei, Zhao, Zhengbin, Cui, Dengqi.  2022.  Research on industrial Robot system security based on Industrial Internet Platform. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :214–218.
The industrial Internet platform has been applied to various fields of industrial production, effectively improving the data flow of all elements in the production process, improving production efficiency, reducing production costs, and ensuring the market competitiveness of enterprises. The premise of the effective application of the industrial Internet platform is the interconnection of industrial equipment. In the industrial Internet platform, industrial robot is a very common industrial control device. These industrial robots are connected to the control network of the industrial Internet platform, which will have obvious advantages in production efficiency and equipment maintenance, but at the same time will cause more serious network security problems. The industrial robot system based on the industrial Internet platform not only increases the possibility of industrial robots being attacked, but also aggravates the loss and harm caused by industrial robots being attacked. At the same time, this paper illustrates the effects and scenarios of industrial robot attacks based on industrial interconnection platforms from four different scenarios of industrial robots being attacked. Availability and integrity are related to the security of the environment.
Chirupphapa, Pawissakan, Hossain, Md Delwar, Esaki, Hiroshi, Ochiai, Hideya.  2022.  Unsupervised Anomaly Detection in RS-485 Traffic using Autoencoders with Unobtrusive Measurement. 2022 IEEE International Performance, Computing, and Communications Conference (IPCCC). :17—23.
Remotely connected devices have been adopted in several industrial control systems (ICS) recently due to the advancement in the Industrial Internet of Things (IIoT). This led to new security vulnerabilities because of the expansion of the attack surface. Moreover, cybersecurity incidents in critical infrastructures are increasing. In the ICS, RS-485 cables are widely used in its network for serial communication between each component. However, almost 30 years ago, most of the industrial network protocols implemented over RS-485 such as Modbus were designed without security features. Therefore, anomaly detection is required in industrial control networks to secure communication in the systems. The goal of this paper is to study unsupervised anomaly detection in RS-485 traffic using autoencoders. Five threat scenarios in the physical layer of the industrial control network are proposed. The novelty of our method is that RS-485 traffic is collected indirectly by an analog-to-digital converter. In the experiments, multilayer perceptron (MLP), 1D convolutional, Long Short-Term Memory (LSTM) autoencoders are trained to detect anomalies. The results show that three autoencoders effectively detect anomalous traffic with F1-scores of 0.963, 0.949, and 0.928 respectively. Due to the indirect traffic collection, our method can be practically applied in the industrial control network.
Doraswamy, B., Krishna, K. Lokesh.  2022.  A Deep Learning Approach for Anomaly Detection in Industrial Control Systems. 2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS). :442—448.
An Industrial Control System (ICS) is essential in monitoring and controlling critical infrastructures such as safety and security. Internet of Things (IoT) in ICSs allows cyber-criminals to utilize systems' vulnerabilities towards deploying cyber-attacks. To distinguish risks and keep an eye on malicious activity in networking systems, An Intrusion Detection System (IDS) is essential. IDS shall be used by system admins to identify unwanted accesses by attackers in various industries. It is now a necessary component of each organization's security governance. The main objective of this intended work is to establish a deep learning-depended intrusion detection system that can quickly identify intrusions and other unwanted behaviors that have the potential to interfere with networking systems. The work in this paper uses One Hot encoder for preprocessing and the Auto encoder for feature extraction. On KDD99 CUP, a data - set for network intruding, we categorize the normal and abnormal data applying a Deep Convolutional Neural Network (DCNN), a deep learning-based methodology. The experimental findings demonstrate that, in comparison with SVM linear Kernel model, SVM RBF Kernel model, the suggested deep learning model operates better.
Bukharev, Dmitriy A., Ragozin, Andrey N., Sokolov, Alexander N..  2022.  Method for Determining the Optimal Number of Clusters for ICS Information Processes Analysis During Cyberattacks Based on Hierarchical Clustering. 2022 Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :309—312.
The development of industrial automation tools and the integration of industrial and corporate networks in order to improve the quality of production management have led to an increase in the risks of successful cyberattacks and, as a result, to the necessity to solve the problems of practical information security of industrial control systems (ICS). Detection of cyberattacks of both known and unknown types is could be implemented as anomaly detection in dynamic information processes recorded during the operation of ICS. Anomaly detection methods do not require preliminary analysis and labeling of the training sample. In the context of detecting attacks on ICS, cluster analysis is used as one of the methods that implement anomaly detection. The application of hierarchical cluster analysis for clustering data of ICS information processes exposed to various cyberattacks is studied, the problem of choosing the level of the cluster hierarchy corresponding to the minimum set of clusters aggregating separately normal and abnormal data is solved. It is shown that the Ward method of hierarchical cluster division produces the best division into clusters. The next stage of the study involves solving the problem of classifying the formed minimum set of clusters, that is, determining which cluster is normal and which cluster is abnormal.
KK, Sabari, Shrivastava, Saurabh, V, Sangeetha..  2022.  Anomaly-based Intrusion Detection using GAN for Industrial Control Systems. 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1—6.
In recent years, cyber-attacks on modern industrial control systems (ICS) have become more common and it acts as a victim to various kind of attackers. The percentage of attacked ICS computers in the world in 2021 is 39.6%. To identify the anomaly in a large database system is a challenging task. Deep-learning model provides better solutions for handling the huge dataset with good accuracy. On the other hand, real time datasets are highly imbalanced with their sample proportions. In this research, GAN based model, a supervised learning method which generates new fake samples that is similar to real samples has been proposed. GAN based adversarial training would address the class imbalance problem in real time datasets. Adversarial samples are combined with legitimate samples and shuffled via proper proportion and given as input to the classifiers. The generated data samples along with the original ones are classified using various machine learning classifiers and their performances have been evaluated. Gradient boosting was found to classify with 98% accuracy when compared to other
Varkey, Mariam, John, Jacob, S., Umadevi K..  2022.  Automated Anomaly Detection Tool for Industrial Control System. 2022 IEEE Conference on Dependable and Secure Computing (DSC). :1—6.
Industrial Control Systems (ICS) are not secure by design–with recent developments requiring them to connect to the Internet, they tend to be highly vulnerable. Additionally, attacks on critical infrastructures such as power grids and nuclear plants can cause significant damage and loss of lives. Since such attacks tend to generate anomalies in the systems, an efficient way of attack detection is to monitor the systems and identify anomalies in real-time. An automated anomaly detection tool is introduced in this paper. Additionally, the functioning of the systems is viewed as Finite State Automata. Specific sensor measurements are used to determine permissible transitions, and statistical measures such as the Interquartile Range are used to determine acceptable boundaries for the remaining sensor measurements provided by the system. Deviations from the boundaries or permissible transitions are considered as anomalies. An additional feature is the provision of a finite state automata diagram that provides the operational constraints of a system, given a set of regulated input. This tool showed a high anomaly detection rate when tested with three types of ICS. The concepts are also benchmarked against a state-of-the-art anomaly detection algorithm called Isolation Forest, and the results are provided.
Zheng, Chengxu, Wang, Xiaopeng, Luo, Xiaoyu, Fang, Chongrong, He, Jianping.  2022.  An OpenPLC-based Active Real-time Anomaly Detection Framework for Industrial Control Systems. 2022 China Automation Congress (CAC). :5899—5904.
In recent years, the design of anomaly detectors has attracted a tremendous surge of interest due to security issues in industrial control systems (ICS). Restricted by hardware resources, most anomaly detectors can only be deployed at the remote monitoring ends, far away from the control sites, which brings potential threats to anomaly detection. In this paper, we propose an active real-time anomaly detection framework deployed in the controller of OpenPLC, which is a standardized open-source PLC and has high scalability. Specifically, we add adaptive active noises to control signals, and then identify a linear dynamic system model of the plant offline and implement it in the controller. Finally, we design two filters to process the estimated residuals based on the obtained model and use χ2 detector for anomaly detection. Extensive experiments are conducted on an industrial control virtual platform to show the effectiveness of the proposed detection framework.
Shen, Wendi, Yang, Genke.  2022.  An error neighborhood-based detection mechanism to improve the performance of anomaly detection in industrial control systems. 2022 International Conference on Mechanical, Automation and Electrical Engineering (CMAEE). :25—29.
Anomaly detection for devices (e.g, sensors and actuators) plays a crucial role in Industrial Control Systems (ICS) for security protection. The typical framework of deep learning-based anomaly detection includes a model to predict or reconstruct the state of devices and a detection mechanism to determine anomalies. The majority of anomaly detection methods use a fixed threshold detection mechanism to detect anomalous points. However, the anomalies caused by cyberattacks in ICSs are usually continuous anomaly segments. In this paper, we propose a novel detection mechanism to detect continuous anomaly segments. Its core idea is to determine the start and end times of anomalies based on the continuity characteristics of anomalies and the dynamics of error. We conducted experiments on the two real-world datasets for performance evaluation using five baselines. The F1 score increased by 3.8% on average in the SWAT dataset and increased by 15.6% in the WADI dataset. The results show a significant improvement in the performance of baselines using an error neighborhood-based continuity detection mechanism in a real-time manner.
Low, Xuan, Yang, DeQuan, Yang, DengPan.  2022.  Design and Implementation of Industrial Control Cyber Range System. 2022 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :166—170.
In the 21st century, world-leading industries are under the accelerated development of digital transformation. Along with information and data resources becoming more transparent on the Internet, many new network technologies were introduced, but cyber-attack also became a severe problem in cyberspace. Over time, industrial control networks are also forced to join the nodes of the Internet. Therefore, cybersecurity is much more complicated than before, and suffering risk of browsing unknown websites also increases. To practice defenses against cyber-attack effectively, Cyber Range is the best platform to emulate all cyber-attacks and defenses. This article will use VMware virtual machine emulation technology, research cyber range systems under industrial control network architecture, and design and implement an industrial control cyber range system. Using the industrial cyber range to perform vulnerability analyses and exploits on web servers, web applications, and operating systems. The result demonstrates the consequences of the vulnerability attack and raises awareness of cyber security among government, enterprises, education, and other related fields, improving the practical ability to defend against cybersecurity threats.
Lu, Jie, Ding, Yong, Li, Zhenyu, Wang, Chunhui.  2022.  A timestamp-based covert data transmission method in Industrial Control System. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :526—532.
Covert channels are data transmission methods that bypass the detection of security mechanisms and pose a serious threat to critical infrastructure. Meanwhile, it is also an effective way to ensure the secure transmission of private data. Therefore, research on covert channels helps us to quickly detect attacks and protect the security of data transmission. This paper proposes covert channels based on the timestamp of the Internet Control Message Protocol echo reply packet in the Linux system. By considering the concealment, we improve our proposed covert channels, ensuring that changing trends in the timestamp of modified consecutive packets are consistent with consecutive regular packets. Besides, we design an Iptables rule based on the current system time to analyze the performance of the proposed covert channels. Finally, it is shown through experiments that the channels complete the private data transmission in the industrial control network. Furthermore, the results demonstrate that the improved covert channels offer better performance in concealment, time cost, and the firewall test.
Chen, Yenan, Li, Linsen, Zhu, Zhaoqian, Wu, Yue.  2022.  Work-in-Progress: Reliability Evaluation of Power SCADA System with Three-Layer IDS. 2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES). :1–2.
The SCADA (Supervisory Control And Data Acquisition) has become ubiquitous in industrial control systems. However, it may be exposed to cyber attack threats when it accesses the Internet. We propose a three-layer IDS (Intrusion Detection System) model, which integrates three main functions: access control, flow detection and password authentication. We use the reliability test system IEEE RTS-79 to evaluate the reliability. The experimental results provide insights into the establishment of the power SCADA system reliability enhancement strategies.
ISSN: 2643-1726
Zou, Zhenwan, Yin, Jun, Yang, Ling, Luo, Cheng, Fei, Jiaxuan.  2022.  Research on Nondestructive Vulnerability Detection Technology of Power Industrial Control System. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:1591–1594.

The power industrial control system is an important part of the national critical Information infrastructure. Its security is related to the national strategic security and has become an important target of cyber attacks. In order to solve the problem that the vulnerability detection technology of power industrial control system cannot meet the requirement of non-destructive, this paper proposes an industrial control vulnerability analysis technology combined with dynamic and static analysis technology. On this basis, an industrial control non-destructive vulnerability detection system is designed, and a simulation verification platform is built to verify the effectiveness of the industrial control non-destructive vulnerability detection system. These provide technical support for the safety protection research of the power industrial control system.

ISSN: 2693-289X

Li, Shengyu, Meng, Fanjun, Zhang, Dashun, Liu, Qingqing, Lu, Li, Ye, Yalan.  2021.  Research on Security Defense System of Industrial Control Network. 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA). 2:631—635.
The importance of the security of industrial control network has become increasingly prominent. Aiming at the defects of main security protection system in the intelligent manufacturing industrial control network, we propose a security attack risk detection and defense, and emergency processing capability synchronization technology system suitable for the intelligent manufacturing industrial control system. Integrating system control and network security theories, a flexible and reconfigurable system-wide security architecture method is proposed. On the basis of considering the high availability and strong real-time of the system, our research centers on key technologies supporting system-wide security analysis, defense strategy deployment and synchronization, including weak supervision system reinforcement and pattern matching, etc.. Our research is helpful to solve the problem of industrial control network of “old but full of loopholes” caused by the long-term closed development of the production network of important parts, and alleviate the contradiction between the high availability of the production system and the relatively backward security defense measures.
Alqurashi, Saja, Shirazi, Hossein, Ray, Indrakshi.  2021.  On the Performance of Isolation Forest and Multi Layer Perceptron for Anomaly Detection in Industrial Control Systems Networks. 2021 8th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1–6.
With an increasing number of adversarial attacks against Industrial Control Systems (ICS) networks, enhancing the security of such systems is invaluable. Although attack prevention strategies are often in place, protecting against all attacks, especially zero-day attacks, is becoming impossible. Intrusion Detection Systems (IDS) are needed to detect such attacks promptly. Machine learning-based detection systems, especially deep learning algorithms, have shown promising results and outperformed other approaches. In this paper, we study the efficacy of a deep learning approach, namely, Multi Layer Perceptron (MLP), in detecting abnormal behaviors in ICS network traffic. We focus on very common reconnaissance attacks in ICS networks. In such attacks, the adversary focuses on gathering information about the targeted network. To evaluate our approach, we compare MLP with isolation Forest (i Forest), a statistical machine learning approach. Our proposed deep learning approach achieves an accuracy of more than 99% while i Forest achieves only 75%. This helps to reinforce the promise of using deep learning techniques for anomaly detection.
Khan, Rafiullah, McLaughlin, Kieran, Kang, BooJoong, Laverty, David, Sezer, Sakir.  2021.  A Novel Edge Security Gateway for End-to-End Protection in Industrial Internet of Things. 2021 IEEE Power & Energy Society General Meeting (PESGM). :1—5.
Many critical industrial control systems integrate a mixture of state-of-the-art and legacy equipment. Legacy installations lack advanced, and often even basic security features, risking entire system security. Existing research primarily focuses on the development of secure protocols for emerging devices or protocol translation proxies for legacy equipment. However, a robust security framework not only needs encryption but also mechanisms to prevent reconnaissance and unauthorized access to industrial devices. This paper proposes a novel Edge Security Gateway (ESG) that provides both, communication and endpoint security. The ESG is based on double ratchet algorithm and encrypts every message with a different key. It manages the ongoing renewal of short-lived session keys and provides localized firewall protection to individual devices. The ESG is easily customizable for a wide range of industrial application. As a use case, this paper presents the design and validation for synchrophasor technology in smart grid. The ESG effectiveness is practically validated in detecting reconnaissance, manipulation, replay, and command injection attacks due to its perfect forward and backward secrecy properties.
You, Jianzhou, Lv, Shichao, Sun, Yue, Wen, Hui, Sun, Limin.  2021.  HoneyVP: A Cost-Effective Hybrid Honeypot Architecture for Industrial Control Systems. ICC 2021 - IEEE International Conference on Communications. :1–6.
As a decoy for hackers, honeypots have been proved to be a very valuable tool for collecting real data. However, due to closed source and vendor-specific firmware, there are significant limitations in cost for researchers to design an easy-to-use and high-interaction honeypot for industrial control systems (ICSs). To solve this problem, it’s necessary to find a cost-effective solution. In this paper, we propose a novel honeypot architecture termed HoneyVP to support a semi-virtual and semi-physical honeypot design and implementation to enable high cost performance. Specially, we first analyze cyber-attacks on ICS devices in view of different interaction levels. Then, in order to deal with these attacks, our HoneyVP architecture clearly defines three basic independent and cooperative components, namely, the virtual component, the physical component, and the coordinator. Finally, a local-remote cooperative ICS honeypot system is implemented to validate its feasibility and effectiveness. Our experimental results show the advantages of using the proposed architecture compared with the previous honeypot solutions. HoneyVP provides a cost-effective solution for ICS security researchers, making ICS honeypots more attractive and making it possible to capture physical interactions.
Qiang, Rong.  2021.  Improved Depth Neural Network Industrial Control Security Algorithm Based On PCA Dimension Reduction. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :891–894.
In order to improve the security and anti-interference ability of industrial control system, this paper proposes an improved industrial neural network defense method based on the PCA dimension reduction and the improved deep neural network. Firstly, the proposed method reduces the dimensionality of the industrial data using the dimension reduction theory of principal component analysis (PCA). Then the deep neural network extracts the features of the network. Finally, the softmax classifier classifies industrial data. Experiment results show that compared with unintegrated algorithm, this method achieves higher recognition accuracy and has great application potential.
Hu, Peng, Yang, Baihua, Wang, Dong, Wang, Qile, Meng, Kaifeng, Wang, Yinsheng, Chen, Zhen.  2021.  Research on Cybersecurity Strategy and Key Technology of the Wind Farms’ Industrial Control System. 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT). :357–361.
Affected by the inherent ideas like "Focus on Function Realization, Despise Security Protection", there are lots of hidden threats in the industrial control system of wind farms (ICS-WF), such as unreasonable IP configuration, failure in virus detection and killing, which are prone to illegal invasion and attack from the cyberspace. Those unexpected unauthorized accesses are quite harmful for the stable operation of the wind farms and regional power grid. Therefore, by investigating the current security situation and needs of ICS-WF, analyzing the characteristics of ICS-WF’s architecture and internal communication, and integrating the ideas of the classified protection of cybersecurity, this paper proposes a new customized cybersecurity strategy for ICS-WF based on the barrel theory. We also introduce an new anomalous intrusion detection technology for ICS-WF, which is developed based on statistical models of wind farm network characteristics. Finally, combined all these work with the network security offense and defense drill in the industrial control safety simulation laboratory of wind farms, this research formulates a three-dimensional comprehensive protection solution for ICS-WF, which significantly improves the cybersecurity level of ICS-WF.
Garrocho, Charles Tim Batista, Oliveira, Karine Nogueira, Sena, David José, da Cunha Cavalcanti, Carlos Frederico Marcelo, Oliveira, Ricardo Augusto Rabelo.  2021.  BACE: Blockchain-based Access Control at the Edge for Industrial Control Devices of Industry 4.0. 2021 XI Brazilian Symposium on Computing Systems Engineering (SBESC). :1–8.
The Industrial Internet of Things is expected to attract significant investments for Industry 4.0. In this new environment, the blockchain has immediate potential in industrial applications, providing unchanging, traceable and auditable access control. However, recent work and present in blockchain literature are based on a cloud infrastructure that requires significant investments. Furthermore, due to the placement and distance of the cloud infrastructure to industrial control devices, such approaches present a communication latency that can compromise the strict deadlines for accessing and communicating with this device. In this context, this article presents a blockchain-based access control architecture, which is deployed directly to edge devices positioned close to devices that need access control. Performance assessments of the proposed approach were carried out in practice in an industrial mining environment. The results of this assessment demonstrate the feasibility of the proposal and its performance compared to cloud-based approaches.