Visible to the public Biblio

Filters: Keyword is Mathematics  [Clear All Filters]
2022-12-20
Cheng, Leixiao, Meng, Fei.  2022.  An Improvement on “CryptCloud$^\textrm+\$$: Secure and Expressive Data Access Control for Cloud Storage”. IEEE Transactions on Services Computing. :1–2.
Recently, Ning et al. proposed the “CryptCloud$^\textrm+\$$: Secure and Expressive Data Access Control for Cloud Storage” in IEEE Transaction on Services Computing. This work provided two versatile ciphertext-policy attribute-based encryption (CP-ABE) schemes to achieve flexible access control on encrypted data, namely ATER-CP-ABE and ATIR-CP-ABE, both of which have attractive advantages, such as white-box malicious user traceability, semi-honest authority accountability, public auditing and user revocation. However, we find a bug of access control in both schemes, i.e., a non-revoked user with attribute set \$S\$ can decrypt the ciphertext \$ct\$ encrypted under any access policy \$(A,\textbackslashrho )\$, regardless of whether \$S\$ satisfies \$(A,\textbackslashrho )\$ or not. This paper carefully analyzes the bug, and makes an improvement on Ning's pioneering work, so as to fix it.
Conference Name: IEEE Transactions on Services Computing
2022-09-20
Bentahar, Atef, Meraoumia, Abdallah, Bendjenna, Hakim, Chitroub, Salim, Zeroual, Abdelhakim.  2021.  Eigen-Fingerprints-Based Remote Authentication Cryptosystem. 2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI). :1—6.
Nowadays, biometric is a most technique to authenticate /identify human been, because its resistance against theft, loss or forgetfulness. However, biometric is subject to different transmission attacks. Today, the protection of the sensitive biometric information is a big challenge, especially in current wireless networks such as internet of things where the transmitted data is easy to sniffer. For that, this paper proposes an Eigens-Fingerprint-based biometric cryptosystem, where the biometric feature vectors are extracted by the Principal Component Analysis technique with an appropriate quantification. The key-binding principle incorporated with bit-wise and byte-wise correcting code is used for encrypting data and sharing key. Several recognition rates and computation time are used to evaluate the proposed system. The findings show that the proposed cryptosystem achieves a high security without decreasing the accuracy.
2022-05-06
Goswami, Partha Sarathi, Chakraborty, Tamal, Chattopadhyay, Abir.  2021.  A Secured Quantum Key Exchange Algorithm using Fermat Numbers and DNA Encoding. 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1—8.
To address the concerns posed by certain security attacks on communication protocol, this paper proposes a Quantum Key Exchange algorithm coupled with an encoding scheme based on Fermat Numbers and DNA sequences. The concept of Watson-Crick’s transformation of DNA sequences and random property of the Fermat Numbers is applied for protection of the communication system by means of dual encryption. The key generation procedure is governed by a quantum bit rotation mechanism. The total process is illustrated with an example. Also, security analysis of the encryption and decryption process is also discussed.
Jain, Kurunandan, Krishnan, Prabhakar, Rao, Vaishnavi V.  2021.  A Comparison Based Approach on Mutual Authentication and Key Agreement Using DNA Cryptography. 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1—6.
Cryptography is the science of encryption and decryption of data using the techniques of mathematics to achieve secure communication. This enables the user to send the data in an insecure channel. These channels are usually vulnerable to security attacks due to the data that they possess. A lot of work is being done these days to protect data and data communication. Hence securing them is the utmost concern. In recent times a lot of researchers have come up with different cryptographic techniques to protect the data over the network. One such technique used is DNA cryptography. The proposed approach employs a DNA sequencing-based encoding and decoding mechanism. The data is secured over the network using a secure authentication and key agreement procedure. A significant amount of work is done to show how DNA cryptography is secure when compared to other forms of cryptography techniques over the network.
2022-03-23
Benadla, Sarra, Merad-Boudia, Omar Rafik.  2021.  The Impact of Sybil Attacks on Vehicular Fog Networks. 2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI). :1—6.
The Internet of Vehicles (IoV) is a network that considers vehicles as intelligent machines. They interact and communicate with each other to improve the performance and safety of traffic. IoV solves certain problems, but it has some issues such as response time, which prompted researchers to propose the integration of Fog Computing into vehicular networks. In Vehicular Fog Computing (VFC), the services are provided at the edge of the network to increase data rate and reduce response time. However, in order to satisfy network users, the security and privacy of sensitive data should be guaranteed. Using pseudonyms instead of real identities is one of the techniques considered to preserve the privacy of users, however, this can push malicious vehicles to exploit such a process and launch the Sybil attack by creating several pseudonyms in order to perform various malicious activities. In this paper, we describe the Sybil attack effects on VFC networks and compare them to those in conventional networks, as well as identify the various existing methods for detecting this attack and determine if they are applicable to VFC networks.
2021-05-25
AKCENGİZ, Ziya, Aslan, Melis, Karabayır, Özgür, Doğanaksoy, Ali, Uğuz, Muhiddin, Sulak, Fatih.  2020.  Statistical Randomness Tests of Long Sequences by Dynamic Partitioning. 2020 International Conference on Information Security and Cryptology (ISCTURKEY). :68—74.
Random numbers have a wide usage in the area of cryptography. In practice, pseudo random number generators are used in place of true random number generators, as regeneration of them may be required. Therefore because of generation methods of pseudo random number sequences, statistical randomness tests have a vital importance. In this paper, a randomness test suite is specified for long binary sequences. In literature, there are many randomness tests and test suites. However, in most of them, to apply randomness test, long sequences are partitioned into a certain fixed length and the collection of short sequences obtained is evaluated instead. In this paper, instead of partitioning a long sequence into fixed length subsequences, a concept of dynamic partitioning is introduced in accordance with the random variable in consideration. Then statistical methods are applied. The suggested suite, containing four statistical tests: Collision Tests, Weight Test, Linear Complexity Test and Index Coincidence Test, all of them work with the idea of dynamic partitioning. Besides the adaptation of this approach to randomness tests, the index coincidence test is another contribution of this work. The distribution function and the application of all tests are given in the paper.
2020-05-22
Shah, Mujahid, Ahmed, Sheeraz, Saeed, Khalid, Junaid, Muhammad, Khan, Hamayun, Ata-ur-rehman.  2019.  Penetration Testing Active Reconnaissance Phase – Optimized Port Scanning With Nmap Tool. 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). :1—6.

Reconnaissance might be the longest phase, sometimes take weeks or months. The black hat makes use of passive information gathering techniques. Once the attacker has sufficient statistics, then the attacker starts the technique of scanning perimeter and internal network devices seeking out open ports and related services. In this paper we are showing traffic accountability and time to complete the specific task during reconnaissance phase active scanning with nmap tool and proposed strategies that how to deal with large volumes of hosts and conserve network traffic as well as time of the specific task.

2019-12-30
Tariq, Mahak, Khan, Mashal, Fatima, Sana.  2018.  Detection of False Data in Wireless Sensor Network Using Hash Chain. 2018 International Conference on Applied and Engineering Mathematics (ICAEM). :126-129.

Wireless Sensor Network (WSN) is often to consist of adhoc devices that have low power, limited memory and computational power. WSN is deployed in hostile environment, due to which attacker can inject false data easily. Due to distributed nature of WSN, adversary can easily inject the bogus data into the network because sensor nodes don't ensure data integrity and not have strong authentication mechanism. This paper reviews and analyze the performance of some of the existing false data filtering schemes and propose new scheme to identify the false data injected by adversary or compromised node. Proposed schemes shown better and efficiently filtrate the false data in comparison with existing schemes.

2017-03-07
Schubotz, Moritz, Grigorev, Alexey, Leich, Marcus, Cohl, Howard S., Meuschke, Norman, Gipp, Bela, Youssef, Abdou S., Markl, Volker.  2016.  Semantification of Identifiers in Mathematics for Better Math Information Retrieval. Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. :135–144.

Mathematical formulae are essential in science, but face challenges of ambiguity, due to the use of a small number of identifiers to represent an immense number of concepts. Corresponding to word sense disambiguation in Natural Language Processing, we disambiguate mathematical identifiers. By regarding formulae and natural text as one monolithic information source, we are able to extract the semantics of identifiers in a process we term Mathematical Language Processing (MLP). As scientific communities tend to establish standard (identifier) notations, we use the document domain to infer the actual meaning of an identifier. Therefore, we adapt the software development concept of namespaces to mathematical notation. Thus, we learn namespace definitions by clustering the MLP results and mapping those clusters to subject classification schemata. In addition, this gives fundamental insights into the usage of mathematical notations in science, technology, engineering and mathematics. Our gold standard based evaluation shows that MLP extracts relevant identifier-definitions. Moreover, we discover that identifier namespaces improve the performance of automated identifier-definition extraction, and elevate it to a level that cannot be achieved within the document context alone.

2017-02-21
J. Qadir, O. Hasan.  2015.  "Applying Formal Methods to Networking: Theory, Techniques, and Applications". IEEE Communications Surveys Tutorials. 17:256-291.

Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet, which began as a research experiment, was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, particularly for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification and to an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design-in particular, the software defined networking (SDN) paradigm-offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods and present a survey of its applications to networking.

2015-05-05
Qadir, J., Hasan, O..  2015.  Applying Formal Methods to Networking: Theory, Techniques, and Applications. Communications Surveys Tutorials, IEEE. 17:256-291.

Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet, which began as a research experiment, was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, particularly for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification and to an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design-in particular, the software defined networking (SDN) paradigm-offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods and present a survey of its applications to networking.