Djeachandrane, Abhishek, Hoceini, Said, Delmas, Serge, Duquerrois, Jean-Michel, Mellouk, Abdelhamid.
2022.
QoE-based Situational Awareness-Centric Decision Support for Network Video Surveillance. ICC 2022 - IEEE International Conference on Communications. :335–340.
Control room video surveillance is an important source of information for ensuring public safety. To facilitate the process, a Decision-Support System (DSS) designed for the security task force is vital and necessary to take decisions rapidly using a sea of information. In case of mission critical operation, Situational Awareness (SA) which consists of knowing what is going on around you at any given time plays a crucial role across a variety of industries and should be placed at the center of our DSS. In our approach, SA system will take advantage of the human factor thanks to the reinforcement signal whereas previous work on this field focus on improving knowledge level of DSS at first and then, uses the human factor only for decision-making. In this paper, we propose a situational awareness-centric decision-support system framework for mission-critical operations driven by Quality of Experience (QoE). Our idea is inspired by the reinforcement learning feedback process which updates the environment understanding of our DSS. The feedback is injected by a QoE built on user perception. Our approach will allow our DSS to evolve according to the context with an up-to-date SA.
Fujii, Shota, Kawaguchi, Nobutaka, Kojima, Shoya, Suzuki, Tomoya, Yamauchi, Toshihiro.
2022.
Design and Implementation of System for URL Signature Construction and Impact Assessment. 2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI). :95–100.
The attacker’s server plays an important role in sending attack orders and receiving stolen information, particularly in the more recent cyberattacks. Under these circumstances, it is important to use network-based signatures to block malicious communications in order to reduce the damage. However, in addition to blocking malicious communications, signatures are also required not to block benign communications during normal business operations. Therefore, the generation of signatures requires a high level of understanding of the business, and highly depends on individual skills. In addition, in actual operation, it is necessary to test whether the generated signatures do not interfere with benign communications, which results in high operational costs. In this paper, we propose SIGMA, a system that automatically generates signatures to block malicious communication without interfering with benign communication and then automatically evaluates the impact of the signatures. SIGMA automatically extracts the common parts of malware communication destinations by clustering them and generates multiple candidate signatures. After that, SIGMA automatically calculates the impact on normal communication based on business logs, etc., and presents the final signature to the analyst, which has the highest blockability of malicious communication and non-blockability of normal communication. Our objectives with this system are to reduce the human factor in generating the signatures, reduce the cost of the impact evaluation, and support the decision of whether to apply the signatures. In the preliminary evaluation, we showed that SIGMA can automatically generate a set of signatures that detect 100% of suspicious URLs with an over-detection rate of just 0.87%, using the results of 14,238 malware analyses and actual business logs. This result suggests that the cost for generation of signatures and the evaluation of their impact on business operations can be suppressed, which used to be a time-consuming and human-intensive process.
An, Guowei, Han, Congzheng, Zhang, Fugui, Liu, Kun.
2022.
Research on Electromagnetic Energy Harvesting Technology for Smart Grid Application. 2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). :441—443.
The electromagnetic energy harvesting technology is a new and effective way to supply power to the condition monitoring sensors installed on or near the transmission line. We will use Computer Simulation Technology Software to simulate the different designs of stand-alone electromagnetic energy harvesters The power generated by energy harvesters of different design structures is compared and analyzed through simulation and experimental results. We then propose an improved design of energy harvester.
G, Emayashri, R, Harini, V, Abirami S, M, Benedict Tephila.
2022.
Electricity-Theft Detection in Smart Grids Using Wireless Sensor Networks. 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:2033—2036.
Satisfying the growing demand for electricity is a huge challenge for electricity providers without a robust and good infrastructure. For effective electricity management, the infrastructure has to be strengthened from the generation stage to the transmission and distribution stages. In the current electrical infrastructure, the evolution of smart grids provides a significant solution to the problems that exist in the conventional system. Enhanced management visibility and better monitoring and control are achieved by the integration of wireless sensor network technology in communication systems. However, to implement these solutions in the existing grids, the infrastructural constraints impose a major challenge. Along with the choice of technology, it is also crucial to avoid exorbitant implementation costs. This paper presents a self-stabilizing hierarchical algorithm for the existing electrical network. Neighborhood Area Networks (NAN) and Home Area Networks (HAN) layers are used in the proposed architecture. The Home Node (HN), Simple Node (SN) and Cluster Head (CH) are the three types of nodes used in the model. Fraudulent users in the system are identified efficiently using the proposed model based on the observations made through simulation on OMNeT++ simulator.
Alkuwari, Ahmad N., Al-Kuwari, Saif, Qaraqe, Marwa.
2022.
Anomaly Detection in Smart Grids: A Survey From Cybersecurity Perspective. 2022 3rd International Conference on Smart Grid and Renewable Energy (SGRE). :1—7.
Smart grid is the next generation for power generation, consumption and distribution. However, with the introduction of smart communication in such sensitive components, major risks from cybersecurity perspective quickly emerged. This survey reviews and reports on the state-of-the-art techniques for detecting cyber attacks in smart grids, mainly through machine learning techniques.
Qian, Sen, Deng, Hui, Chen, Chuan, Huang, Hui, Liang, Yun, Guo, Jinghong, Hu, Zhengyong, Si, Wenrong, Wang, Hongkang, Li, Yunjia.
2022.
Design of a Nonintrusive Current Sensor with Large Dynamic Range Based on Tunneling Magnetoresistive Devices. 2022 IEEE 5th International Electrical and Energy Conference (CIEEC). :3405—3409.
Current sensors are widely used in power grid for power metering, automation and power equipment monitoring. Since the tradeoff between the sensitivity and the measurement range needs to be made to design a current sensor, it is difficult to deploy one sensor to measure both the small-magnitude and the large-magnitude current. In this research, we design a surface-mount current sensor by using the tunneling magneto-resistance (TMR) devices and show that the tradeoff between the sensitivity and the detection range can be broken. Two TMR devices of different sensitivity degrees were integrated into one current sensor module, and a signal processing algorithm was implemented to fusion the outputs of the two TMR devices. Then, a platform was setup to test the performance of the surface-mount current sensor. The results showed that the designed current sensor could measure the current from 2 mA to 100 A with an approximate 93 dB dynamic range. Besides, the nonintrusive feature of the surface-mount current sensor could make it convenient to be deployed on-site.
Cheng, Xi, Liang, Yafeng, Qiu, Jianhong, Zhao, XiaoLi, Ma, Lihong.
2022.
Risk Assessment Method of Microgrid System Based on Random Matrix Theory. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:705—709.
In view of the problems that the existing power grid risk assessment mainly depends on the data fusion of decision-making level, which has strong subjectivity and less effective information, this paper proposes a risk assessment method of microgrid system based on random matrix theory. Firstly, the time series data of multiple sensors are constructed into a high-dimensional matrix according to the different parameter types and nodes; Then, based on random matrix theory and sliding time window processing, the average spectral radius sequence is calculated to characterize the state of microgrid system. Finally, an example is given to verify the effectiveness of the method.
Kumar, T. Ch. Anil, Dixit, Ganesh Kumar, Singh, Rajesh, Narukullapati, Bharath Kumar, Chakravarthi, M. Kalyan, Gangodkar, Durgaprasad.
2022.
Wireless Sensor Network using Control Communication and Monitoring of Smart Grid. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :1567—1570.
For some countries around the world, meeting demand is a serious concern. Power supply market is increasingly increasing, posing a big challenge for various countries throughout the world. The increasing expansion in the market for power needs upgrading system dependability to increase the smart grid's resilience. This smart electric grid has a sensor that analyses grid power availability and sends regular updates to the organisation. The internet is currently being utilized to monitor processes and place orders for running variables from faraway places. A large number of scanners have been used to activate electrical equipment for domestic robotics for a long period in the last several days. Conversely, if it is not correctly implemented, it will have a negative impact on cost-effectiveness as well as productivity. For something like a long time, home automation has relied on a large number of sensor nodes to control electrical equipment. Since there are so many detectors, this isn't cost-effective. In this article, develop and accept a wireless communication component and a management system suitable for managing independent efficient network units from voltage rises and voltage control technologies in simultaneous analyzing system reliability in this study. This research paper has considered secondary method to collect relevant and in-depth data related to the wireless sensor network and its usage in smart grid monitoring.
Núñez, Ivonne, Cano, Elia, Rovetto, Carlos, Ojo-Gonzalez, Karina, Smolarz, Andrzej, Saldana-Barrios, Juan Jose.
2022.
Key technologies applied to the optimization of smart grid systems based on the Internet of Things: A Review. 2022 V Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y Móvil (AmITIC). :1—8.
This article describes an analysis of the key technologies currently applied to improve the quality, efficiency, safety and sustainability of Smart Grid systems and identifies the tools to optimize them and possible gaps in this area, considering the different energy sources, distributed generation, microgrids and energy consumption and production capacity. The research was conducted with a qualitative methodological approach, where the literature review was carried out with studies published from 2019 to 2022, in five (5) databases following the selection of studies recommended by the PRISMA guide. Of the five hundred and four (504) publications identified, ten (10) studies provided insight into the technological trends that are impacting this scenario, namely: Internet of Things, Big Data, Edge Computing, Artificial Intelligence and Blockchain. It is concluded that to obtain the best performance within Smart Grids, it is necessary to have the maximum synergy between these technologies, since this union will enable the application of advanced smart digital technology solutions to energy generation and distribution operations, thus allowing to conquer a new level of optimization.
Kumar, Santosh, Kumar, N M G, Geetha, B.T., Sangeetha, M., Chakravarthi, M. Kalyan, Tripathi, Vikas.
2022.
Cluster, Cloud, Grid Computing via Network Communication Using Control Communication and Monitoring of Smart Grid. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :1220—1224.
Traditional power consumption management systems are not showing enough reliability and thus, smart grid technology has been introduced to reduce the excess power wastages. In the context of smart grid systems, network communication is another term that is used for developing the network between the users and the load profiles. Cloud computing and clustering are also executed for efficient power management. Based on the facts, this research is going to identify wireless network communication systems to monitor and control smart grid power consumption. Primary survey-based research has been carried out with 62 individuals who worked in the smart grid system, tracked, monitored and controlled the power consumptions using WSN technology. The survey was conducted online where the respondents provided their opinions via a google survey form. The responses were collected and analyzed on Microsoft Excel. Results show that hybrid commuting of cloud and edge computing technology is more advantageous than individual computing. Respondents agreed that deep learning techniques will be more beneficial to analyze load profiles than machine learning techniques. Lastly, the study has explained the advantages and challenges of using smart grid network communication systems. Apart from the findings from primary research, secondary journal articles were also observed to emphasize the research findings.
Zhai, Di, Lu, Yang, Shi, Rui, Ji, Yuejie.
2022.
Large-Scale Micro-Power Sensors Access Scheme Based on Hybrid Mode in IoT Enabled Smart Grid. 2022 7th International Conference on Signal and Image Processing (ICSIP). :719—723.
In order to solve the problem of high data collision probability, high access delay and high-power consumption in random access process of power Internet of Things, an access scheme for large-scale micro-power wireless sensors based on slot-scheduling and hybrid mode is presented. This scheme divides time into different slots and designs a slot-scheduling algorithm according to network workload and power consumption. Sensors with different service priorities are arranged in different time slots for competitive access, using appropriate random-access mechanism. And rationally arrange the number of time slots and competing end-devices in different time slots. This scheme is able to meet the timeliness requirements of different services and reduce the overall network power consumption when dealing with random access scenarios of large-scale micro-power wireless sensor network. Based on the simulation results of actual scenarios, this access scheme can effectively reduce the overall power consumption of the network, and the high priority services can meet the timeliness requirements on the premise of lower power consumption, while the low priority services can further reduce power consumption.
Pradyumna, Achhi, Kuthadi, Sai Madhav, Kumar, A. Ananda, Karuppiah, N..
2022.
IoT Based Smart Grid Communication with Transmission Line Fault Identification. 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP). :1—5.
The electrical grid connects all the generating stations to supply uninterruptible power to the consumers. With the advent of technology, smart sensors and communication are integrated with the existing grid to behave like a smart system. This smart grid is a two-way communication that connects the consumers and producers. It is a connected smart network that integrates electricity generation, transmission, substation, distribution, etc. In this smart grid, clean, reliable power with a high-efficiency rate of transmission is available. In this paper, a highly efficient smart management system of a smart grid with overall protection is proposed. This management system checks and monitors the parameters periodically. This future technology also develops a smart transformer with ac and dc compatibility, for self-protection and for the healing process.