Visible to the public Biblio

Found 1178 results

Filters: Keyword is human factors  [Clear All Filters]
Javed Butt, Usman, Abbod, Maysam, Lors, Anzor, Jahankhani, Hamid, Jamal, Arshad, Kumar, Arvind.  2019.  Ransomware Threat and its Impact on SCADA. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :205—212.
Modern cybercrimes have exponentially grown over the last one decade. Ransomware is one of the types of malware which is the result of sophisticated attempt to compromise the modern computer systems. The governments and large corporations are investing heavily to combat this cyber threat against their critical infrastructure. It has been observed that over the last few years that Industrial Control Systems (ICS) have become the main target of Ransomware due to the sensitive operations involved in the day to day processes of these industries. As the technology is evolving, more and more traditional industrial systems are replaced with advanced industry methods involving advanced technologies such as Internet of Things (IoT). These technology shift help improve business productivity and keep the company's global competitive in an overflowing competitive market. However, the systems involved need secure measures to protect integrity and availability which will help avoid any malfunctioning to their operations due to the cyber-attacks. There have been several cyber-attack incidents on healthcare, pharmaceutical, water cleaning and energy sector. These ICS' s are operated by remote control facilities and variety of other devices such as programmable logic controllers (PLC) and sensors to make a network. Cyber criminals are exploring vulnerabilities in the design of these ICS's to take the command and control of these systems and disrupt daily operations until ransomware is paid. This paper will provide critical analysis of the impact of Ransomware threat on SCADA systems.
Muñoz, Jordi Zayuelas i, Suárez-Varela, José, Barlet-Ros, Pere.  2019.  Detecting cryptocurrency miners with NetFlow/IPFIX network measurements. 2019 IEEE International Symposium on Measurements Networking (M N). :1—6.

In the last few years, cryptocurrency mining has become more and more important on the Internet activity and nowadays is even having a noticeable impact on the global economy. This has motivated the emergence of a new malicious activity called cryptojacking, which consists of compromising other machines connected to the Internet and leverage their resources to mine cryptocurrencies. In this context, it is of particular interest for network administrators to detect possible cryptocurrency miners using network resources without permission. Currently, it is possible to detect them using IP address lists from known mining pools, processing information from DNS traffic, or directly performing Deep Packet Inspection (DPI) over all the traffic. However, all these methods are still ineffective to detect miners using unknown mining servers or result too expensive to be deployed in real-world networks with large traffic volume. In this paper, we present a machine learning-based method able to detect cryptocurrency miners using NetFlow/IPFIX network measurements. Our method does not require to inspect the packets' payload; as a result, it achieves cost-efficient miner detection with similar accuracy than DPI-based techniques.

Radhakrishnan, Kiran, Menon, Rajeev R, Nath, Hiran V.  2019.  A survey of zero-day malware attacks and its detection methodology. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :533—539.

The recent malware outbreaks have shown that the existing end-point security solutions are not robust enough to secure the systems from getting compromised. The techniques, like code obfuscation along with one or more zero-days, are used by malware developers for evading the security systems. These malwares are used for large-scale attacks involving Advanced Persistent Threats(APT), Botnets, Cryptojacking, etc. Cryptojacking poses a severe threat to various organizations and individuals. We are summarising multiple methods available for the detection of malware.

Nahmias, Daniel, Cohen, Aviad, Nissim, Nir, Elovici, Yuval.  2019.  TrustSign: Trusted Malware Signature Generation in Private Clouds Using Deep Feature Transfer Learning. 2019 International Joint Conference on Neural Networks (IJCNN). :1—8.

This paper presents TrustSign, a novel, trusted automatic malware signature generation method based on high-level deep features transferred from a VGG-19 neural network model pre-trained on the ImageNet dataset. While traditional automatic malware signature generation techniques rely on static or dynamic analysis of the malware's executable, our method overcomes the limitations associated with these techniques by producing signatures based on the presence of the malicious process in the volatile memory. Signatures generated using TrustSign well represent the real malware behavior during runtime. By leveraging the cloud's virtualization technology, TrustSign analyzes the malicious process in a trusted manner, since the malware is unaware and cannot interfere with the inspection procedure. Additionally, by removing the dependency on the malware's executable, our method is capable of signing fileless malware. Thus, we focus our research on in-browser cryptojacking attacks, which current antivirus solutions have difficulty to detect. However, TrustSign is not limited to cryptojacking attacks, as our evaluation included various ransomware samples. TrustSign's signature generation process does not require feature engineering or any additional model training, and it is done in a completely unsupervised manner, obviating the need for a human expert. Therefore, our method has the advantage of dramatically reducing signature generation and distribution time. The results of our experimental evaluation demonstrate TrustSign's ability to generate signatures invariant to the process state over time. By using the signatures generated by TrustSign as input for various supervised classifiers, we achieved 99.5% classification accuracy.

Yulianto, Arief Dwi, Sukarno, Parman, Warrdana, Aulia Arif, Makky, Muhammad Al.  2019.  Mitigation of Cryptojacking Attacks Using Taint Analysis. 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE). :234—238.

Cryptojacking (also called malicious cryptocurrency mining or cryptomining) is a new threat model using CPU resources covertly “mining” a cryptocurrency in the browser. The impact is a surge in CPU Usage and slows the system performance. In this research, in-browsercryptojacking mitigation has been built as an extension in Google Chrome using Taint analysis method. The method used in this research is attack modeling with abuse case using the Man-In-The-Middle (MITM) attack as a testing for mitigation. The proposed model is designed so that users will be notified if a cryptojacking attack occurs. Hence, the user is able to check the script characteristics that run on the website background. The results of this research show that the taint analysis is a promising method to mitigate cryptojacking attacks. From 100 random sample websites, the taint analysis method can detect 19 websites that are infcted by cryptojacking.

Tahir, Rashid, Durrani, Sultan, Ahmed, Faizan, Saeed, Hammas, Zaffar, Fareed, Ilyas, Saqib.  2019.  The Browsers Strike Back: Countering Cryptojacking and Parasitic Miners on the Web. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :703—711.

With the recent boom in the cryptocurrency market, hackers have been on the lookout to find novel ways of commandeering users' machine for covert and stealthy mining operations. In an attempt to expose such under-the-hood practices, this paper explores the issue of browser cryptojacking, whereby miners are secretly deployed inside browser code without the knowledge of the user. To this end, we analyze the top 50k websites from Alexa and find a noticeable percentage of sites that are indulging in this exploitative exercise often using heavily obfuscated code. Furthermore, mining prevention plug-ins, such as NoMiner, fail to flag such cleverly concealed instances. Hence, we propose a machine learning solution based on hardware-assisted profiling of browser code in real-time. A fine-grained micro-architectural footprint allows us to classify mining applications with \textbackslashtextgreater99% accuracy and even flags them if the mining code has been heavily obfuscated or encrypted. We build our own browser extension and show that it outperforms other plug-ins. The proposed design has negligible overhead on the user's machine and works for all standard off-the-shelf CPUs.

Saad, Muhammad, Khormali, Aminollah, Mohaisen, Aziz.  2019.  Dine and Dash: Static, Dynamic, and Economic Analysis of In-Browser Cryptojacking. 2019 APWG Symposium on Electronic Crime Research (eCrime). :1—12.

Cryptojacking is the permissionless use of a target device to covertly mine cryptocurrencies. With cryptojacking attackers use malicious JavaScript codes to force web browsers into solving proof-of-work puzzles, thus making money by exploiting resources of the website visitors. To understand and counter such attacks, we systematically analyze the static, dynamic, and economic aspects of in-browser cryptojacking. For static analysis, we perform content-, currency-, and code-based categorization of cryptojacking samples to 1) measure their distribution across websites, 2) highlight their platform affinities, and 3) study their code complexities. We apply unsupervised learning to distinguish cryptojacking scripts from benign and other malicious JavaScript samples with 96.4% accuracy. For dynamic analysis, we analyze the effect of cryptojacking on critical system resources, such as CPU and battery usage. Additionally, we perform web browser fingerprinting to analyze the information exchange between the victim node and the dropzone cryptojacking server. We also build an analytical model to empirically evaluate the feasibility of cryptojacking as an alternative to online advertisement. Our results show a large negative profit and loss gap, indicating that the model is economically impractical. Finally, by leveraging insights from our analyses, we build countermeasures for in-browser cryptojacking that improve upon the existing remedies.

Mi, Xianghang, Feng, Xuan, Liao, Xiaojing, Liu, Baojun, Wang, XiaoFeng, Qian, Feng, Li, Zhou, Alrwais, Sumayah, Sun, Limin, Liu, Ying.  2019.  Resident Evil: Understanding Residential IP Proxy as a Dark Service. 2019 IEEE Symposium on Security and Privacy (SP). :1185—1201.

An emerging Internet business is residential proxy (RESIP) as a service, in which a provider utilizes the hosts within residential networks (in contrast to those running in a datacenter) to relay their customers' traffic, in an attempt to avoid server- side blocking and detection. With the prominent roles the services could play in the underground business world, little has been done to understand whether they are indeed involved in Cybercrimes and how they operate, due to the challenges in identifying their RESIPs, not to mention any in-depth analysis on them. In this paper, we report the first study on RESIPs, which sheds light on the behaviors and the ecosystem of these elusive gray services. Our research employed an infiltration framework, including our clients for RESIP services and the servers they visited, to detect 6 million RESIP IPs across 230+ countries and 52K+ ISPs. The observed addresses were analyzed and the hosts behind them were further fingerprinted using a new profiling system. Our effort led to several surprising findings about the RESIP services unknown before. Surprisingly, despite the providers' claim that the proxy hosts are willingly joined, many proxies run on likely compromised hosts including IoT devices. Through cross-matching the hosts we discovered and labeled PUP (potentially unwanted programs) logs provided by a leading IT company, we uncovered various illicit operations RESIP hosts performed, including illegal promotion, Fast fluxing, phishing, malware hosting, and others. We also reverse engi- neered RESIP services' internal infrastructures, uncovered their potential rebranding and reselling behaviors. Our research takes the first step toward understanding this new Internet service, contributing to the effective control of their security risks.

Bradley, Cerys, Stringhini, Gianluca.  2019.  A Qualitative Evaluation of Two Different Law Enforcement Approaches on Dark Net Markets. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :453—463.

This paper presents the results of a qualitative study on discussions about two major law enforcement interventions against Dark Net Market (DNM) users extracted from relevant Reddit forums. We assess the impact of Operation Hyperion and Operation Bayonet (combined with the closure of the site Hansa) by analyzing posts and comments made by users of two Reddit forums created for the discussion of Dark Net Markets. The operations are compared in terms of the size of the discussions, the consequences recorded, and the opinions shared by forum users. We find that Operation Bayonet generated a higher number of discussions on Reddit, and from the qualitative analysis of such discussions it appears that this operation also had a greater impact on the DNM ecosystem.

Koloveas, Paris, Chantzios, Thanasis, Tryfonopoulos, Christos, Skiadopoulos, Spiros.  2019.  A Crawler Architecture for Harvesting the Clear, Social, and Dark Web for IoT-Related Cyber-Threat Intelligence. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:3—8.

The clear, social, and dark web have lately been identified as rich sources of valuable cyber-security information that -given the appropriate tools and methods-may be identified, crawled and subsequently leveraged to actionable cyber-threat intelligence. In this work, we focus on the information gathering task, and present a novel crawling architecture for transparently harvesting data from security websites in the clear web, security forums in the social web, and hacker forums/marketplaces in the dark web. The proposed architecture adopts a two-phase approach to data harvesting. Initially a machine learning-based crawler is used to direct the harvesting towards websites of interest, while in the second phase state-of-the-art statistical language modelling techniques are used to represent the harvested information in a latent low-dimensional feature space and rank it based on its potential relevance to the task at hand. The proposed architecture is realised using exclusively open-source tools, and a preliminary evaluation with crowdsourced results demonstrates its effectiveness.

Koch, Robert.  2019.  Hidden in the Shadow: The Dark Web - A Growing Risk for Military Operations? 2019 11th International Conference on Cyber Conflict (CyCon). 900:1—24.

A multitude of leaked data can be purchased through the Dark Web nowadays. Recent reports highlight that the largest footprints of leaked data, which range from employee passwords to intellectual property, are linked to governmental institutions. According to OWL Cybersecurity, the US Navy is most affected. Thinking of leaked data like personal files, this can have a severe impact. For example, it can be the cornerstone for the start of sophisticated social engineering attacks, for getting credentials for illegal system access or installing malicious code in the target network. If personally identifiable information or sensitive data, access plans, strategies or intellectual property are traded on the Dark Web, this could pose a threat to the armed forces. The actual impact, role, and dimension of information treated in the Dark Web are rarely analysed. Is the available data authentic and useful? Can it endanger the capabilities of armed forces? These questions are even more challenging, as several well-known cases of deanonymization have been published over recent years, raising the question whether somebody really would use the Dark Web to sell highly sensitive information. In contrast, fake offers from scammers can be found regularly, only set up to cheat possible buyers. A victim of illegal offers on the Dark Web will typically not go to the police. The paper analyses the technical base of the Dark Web and examines possibilities of deanonymization. After an analysis of Dark Web marketplaces and the articles traded there, a discussion of the potential risks to military operations will be used to identify recommendations on how to minimize the risk. The analysis concludes that surveillance of the Dark Web is necessary to increase the chance of identifying sensitive information early; but actually the `open' internet, the surface web and the Deep Web, poses the more important risk factor, as it is - in practice - more difficult to surveil than the Dark Web, and only a small share of breached information is traded on the latter.

Schäfer, Matthias, Fuchs, Markus, Strohmeier, Martin, Engel, Markus, Liechti, Marc, Lenders, Vincent.  2019.  BlackWidow: Monitoring the Dark Web for Cyber Security Information. 2019 11th International Conference on Cyber Conflict (CyCon). 900:1—21.

The Dark Web, a conglomerate of services hidden from search engines and regular users, is used by cyber criminals to offer all kinds of illegal services and goods. Multiple Dark Web offerings are highly relevant for the cyber security domain in anticipating and preventing attacks, such as information about zero-day exploits, stolen datasets with login information, or botnets available for hire. In this work, we analyze and discuss the challenges related to information gathering in the Dark Web for cyber security intelligence purposes. To facilitate information collection and the analysis of large amounts of unstructured data, we present BlackWidow, a highly automated modular system that monitors Dark Web services and fuses the collected data in a single analytics framework. BlackWidow relies on a Docker-based micro service architecture which permits the combination of both preexisting and customized machine learning tools. BlackWidow represents all extracted data and the corresponding relationships extracted from posts in a large knowledge graph, which is made available to its security analyst users for search and interactive visual exploration. Using BlackWidow, we conduct a study of seven popular services on the Deep and Dark Web across three different languages with almost 100,000 users. Within less than two days of monitoring time, BlackWidow managed to collect years of relevant information in the areas of cyber security and fraud monitoring. We show that BlackWidow can infer relationships between authors and forums and detect trends for cybersecurity-related topics. Finally, we discuss exemplary case studies surrounding leaked data and preparation for malicious activity.

Yang, Ying, Yang, Lina, Yang, Meihong, Yu, Huanhuan, Zhu, Guichun, Chen, Zhenya, Chen, Lijuan.  2019.  Dark web forum correlation analysis research. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). :1216—1220.

With the rapid development of the Internet, the dark network has also been widely used in the Internet [1]. Due to the anonymity of the dark network, many illegal elements have committed illegal crimes on the dark. It is difficult for law enforcement officials to track the identity of these cyber criminals using traditional network survey techniques based on IP addresses [2]. The threat information is mainly from the dark web forum and the dark web market. In this paper, we introduce the current mainstream dark network communication system TOR and develop a visual dark web forum post association analysis system to graphically display the relationship between various forum messages and posters, and help law enforcement officers to explore deep levels. Clues to analyze crimes in the dark network.

Godawatte, Kithmini, Raza, Mansoor, Murtaza, Mohsin, Saeed, Ather.  2019.  Dark Web Along With The Dark Web Marketing And Surveillance. 2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT). :483—485.

Cybercrimes and cyber criminals widely use dark web and illegal functionalities of the dark web towards the world crisis. More than half of the criminal activities and the terror activities conducted through the dark web such as, cryptocurrency, selling human organs, red rooms, child pornography, arm deals, drug deals, hire assassins and hackers, hacking software and malware programs, etc. The law enforcement agencies such as FBI, NSA, Interpol, Mossad, FSB etc, are always conducting surveillance programs through the dark web to trace down the mass criminals and terrorists while stopping the crimes and the terror activities. This paper is about the dark web marketing and surveillance programs. In the deep end research will discuss the dark web access with securely and how the law enforcement agencies exponentially tracking down the users with terror behaviours and activities. Moreover, the paper discusses dark web sites which users can grab the dark web jihadist services and anonymous markets including safety precautions.

Yang, Ying, Yu, Huanhuan, Yang, Lina, Yang, Ming, Chen, Lijuan, Zhu, Guichun, Wen, Liqiang.  2019.  Hadoop-based Dark Web Threat Intelligence Analysis Framework. 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). :1088—1091.

With the development of network services and people's privacy requirements continue to increase. On the basis of providing anonymous user communication, it is necessary to protect the anonymity of the server. At the same time, there are many threatening crime messages in the dark network. However, many scholars lack the ability or expertise to conduct research on dark-net threat intelligence. Therefore, this paper designs a framework based on Hadoop is hidden threat intelligence. The framework uses HDFS as the underlying storage system to build a HBase-based distributed database to store and manage threat intelligence information. According to the heterogeneous type of the forum, the web crawler is used to collect data through the anonymous TOR tool. The framework is used to identify the characteristics of key dark network criminal networks, which is the basis for the later dark network research.

Duan, Huayi, Zheng, Yifeng, Du, Yuefeng, Zhou, Anxin, Wang, Cong, Au, Man Ho.  2019.  Aggregating Crowd Wisdom via Blockchain: A Private, Correct, and Robust Realization. 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom. :1—10.

Crowdsensing, driven by the proliferation of sensor-rich mobile devices, has emerged as a promising data sensing and aggregation paradigm. Despite useful, traditional crowdsensing systems typically rely on a centralized third-party platform for data collection and processing, which leads to concerns like single point of failure and lack of operation transparency. Such centralization hinders the wide adoption of crowdsensing by wary participants. We therefore explore an alternative design space of building crowdsensing systems atop the emerging decentralized blockchain technology. While enjoying the benefits brought by the public blockchain, we endeavor to achieve a consolidated set of desirable security properties with a proper choreography of latest techniques and our customized designs. We allow data providers to safely contribute data to the transparent blockchain with the confidentiality guarantee on individual data and differential privacy on the aggregation result. Meanwhile, we ensure the service correctness of data aggregation and sanitization by delicately employing hardware-assisted transparent enclave. Furthermore, we maintain the robustness of our system against faulty data providers that submit invalid data, with a customized zero-knowledge range proof scheme. The experiment results demonstrate the high efficiency of our designs on both mobile client and SGX-enabled server, as well as reasonable on-chain monetary cost of running our task contract on Ethereum.

Feyisetan, Oluwaseyi, Diethe, Tom, Drake, Thomas.  2019.  Leveraging Hierarchical Representations for Preserving Privacy and Utility in Text. 2019 IEEE International Conference on Data Mining (ICDM). :210—219.

Guaranteeing a certain level of user privacy in an arbitrary piece of text is a challenging issue. However, with this challenge comes the potential of unlocking access to vast data stores for training machine learning models and supporting data driven decisions. We address this problem through the lens of dx-privacy, a generalization of Differential Privacy to non Hamming distance metrics. In this work, we explore word representations in Hyperbolic space as a means of preserving privacy in text. We provide a proof satisfying dx-privacy, then we define a probability distribution in Hyperbolic space and describe a way to sample from it in high dimensions. Privacy is provided by perturbing vector representations of words in high dimensional Hyperbolic space to obtain a semantic generalization. We conduct a series of experiments to demonstrate the tradeoff between privacy and utility. Our privacy experiments illustrate protections against an authorship attribution algorithm while our utility experiments highlight the minimal impact of our perturbations on several downstream machine learning models. Compared to the Euclidean baseline, we observe \textbackslashtextgreater 20x greater guarantees on expected privacy against comparable worst case statistics.

Nisha, D, Sivaraman, E, Honnavalli, Prasad B.  2019.  Predicting and Preventing Malware in Machine Learning Model. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.

Machine learning is a major area in artificial intelligence, which enables computer to learn itself explicitly without programming. As machine learning is widely used in making decision automatically, attackers have strong intention to manipulate the prediction generated my machine learning model. In this paper we study about the different types of attacks and its countermeasures on machine learning model. By research we found that there are many security threats in various algorithms such as K-nearest-neighbors (KNN) classifier, random forest, AdaBoost, support vector machine (SVM), decision tree, we revisit existing security threads and check what are the possible countermeasures during the training and prediction phase of machine learning model. In machine learning model there are 2 types of attacks that is causative attack which occurs during the training phase and exploratory attack which occurs during the prediction phase, we will also discuss about the countermeasures on machine learning model, the countermeasures are data sanitization, algorithm robustness enhancement, and privacy preserving techniques.

Ashouri, Mohammadreza.  2019.  Detecting Input Sanitization Errors in Scala. 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW). :313—319.

Scala programming language combines object-oriented and functional programming in one concise, high-level language, and the language supports static types that help to avoid bugs in complex programs. This paper proposes a dynamic taint analyzer called ScalaTaint for Scala applications. The analyzer traces the propagation of malicious inputs from untrusted sources to sensitive sink methods in programs that can be exploited by adversaries. In this work, we evaluated the accuracy of ScalaTaint with a security benchmark suite including 7 projects in Scala. As a result, our analyzer could report 49 vulnerabilities within 753,372 lines of code. Moreover, the result of our performance measurement on ScalaBench shows 67% runtime overhead that demonstrates the usefulness and efficiently of our technique in comparison with similar tools.

Kassem, Ali, Ács, Gergely, Castelluccia, Claude, Palamidessi, Catuscia.  2019.  Differential Inference Testing: A Practical Approach to Evaluate Sanitizations of Datasets. 2019 IEEE Security and Privacy Workshops (SPW). :72—79.

In order to protect individuals' privacy, data have to be "well-sanitized" before sharing them, i.e. one has to remove any personal information before sharing data. However, it is not always clear when data shall be deemed well-sanitized. In this paper, we argue that the evaluation of sanitized data should be based on whether the data allows the inference of sensitive information that is specific to an individual, instead of being centered around the concept of re-identification. We propose a framework to evaluate the effectiveness of different sanitization techniques on a given dataset by measuring how much an individual's record from the sanitized dataset influences the inference of his/her own sensitive attribute. Our intent is not to accurately predict any sensitive attribute but rather to measure the impact of a single record on the inference of sensitive information. We demonstrate our approach by sanitizing two real datasets in different privacy models and evaluate/compare each sanitized dataset in our framework.

Fahrenkrog-Petersen, Stephan A., van der Aa, Han, Weidlich, Matthias.  2019.  PRETSA: Event Log Sanitization for Privacy-aware Process Discovery. 2019 International Conference on Process Mining (ICPM). :1—8.

Event logs that originate from information systems enable comprehensive analysis of business processes, e.g., by process model discovery. However, logs potentially contain sensitive information about individual employees involved in process execution that are only partially hidden by an obfuscation of the event data. In this paper, we therefore address the risk of privacy-disclosure attacks on event logs with pseudonymized employee information. To this end, we introduce PRETSA, a novel algorithm for event log sanitization that provides privacy guarantees in terms of k-anonymity and t-closeness. It thereby avoids disclosure of employee identities, their membership in the event log, and their characterization based on sensitive attributes, such as performance information. Through step-wise transformations of a prefix-tree representation of an event log, we maintain its high utility for discovery of a performance-annotated process model. Experiments with real-world data demonstrate that sanitization with PRETSA yields event logs of higher utility compared to methods that exploit frequency-based filtering, while providing the same privacy guarantees.

Liu, Chuanyi, Han, Peiyi, Dong, Yingfei, Pan, Hezhong, Duan, Shaoming, Fang, Binxing.  2019.  CloudDLP: Transparent and Automatic Data Sanitization for Browser-Based Cloud Storage. 2019 28th International Conference on Computer Communication and Networks (ICCCN). :1—8.

Because cloud storage services have been broadly used in enterprises for online sharing and collaboration, sensitive information in images or documents may be easily leaked outside the trust enterprise on-premises due to such cloud services. Existing solutions to this problem have not fully explored the tradeoffs among application performance, service scalability, and user data privacy. Therefore, we propose CloudDLP, a generic approach for enterprises to automatically sanitize sensitive data in images and documents in browser-based cloud storage. To the best of our knowledge, CloudDLP is the first system that automatically and transparently detects and sanitizes both sensitive images and textual documents without compromising user experience or application functionality on browser-based cloud storage. To prevent sensitive information escaping from on-premises, CloudDLP utilizes deep learning methods to detect sensitive information in both images and textual documents. We have evaluated the proposed method on a number of typical cloud applications. Our experimental results show that it can achieve transparent and automatic data sanitization on the cloud storage services with relatively low overheads, while preserving most application functionalities.

Wang, Wei-Chen, Lin, Ping-Hsien, Li, Yung-Chun, Ho, Chien-Chung, Chang, Yu-Ming, Chang, Yuan-Hao.  2019.  Toward Instantaneous Sanitization through Disturbance-induced Errors and Recycling Programming over 3D Flash Memory. 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1—8.

As data security has become one of the most crucial issues in modern storage system/application designs, the data sanitization techniques are regarded as the promising solution on 3D NAND flash-memory-based devices. Many excellent works had been proposed to exploit the in-place reprogramming, erasure and encryption techniques to achieve and implement the sanitization functionalities. However, existing sanitization approaches could lead to performance, disturbance overheads or even deciphered issues. Different from existing works, this work aims at exploring an instantaneous data sanitization scheme by taking advantage of programming disturbance properties. Our proposed design can not only achieve the instantaneous data sanitization by exploiting programming disturbance and error correction code properly, but also enhance the performance with the recycling programming design. The feasibility and capability of our proposed design are evaluated by a series of experiments on 3D NAND flash memory chips, for which we have very encouraging results. The experiment results show that the proposed design could achieve the instantaneous data sanitization with low overhead; besides, it improves the average response time and reduces the number of block erase count by up to 86.8% and 88.8%, respectively.

Paliath, Vivin, Shakarian, Paulo.  2019.  Reasoning about Sequential Cyberattacks. 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :855–862.
Cyber adversaries employ a variety of malware and exploits to attack computer systems, usually via sequential or “chained” attacks, that take advantage of vulnerability dependencies. In this paper, we introduce a formalism to model such attacks. We show that the determination of the set of capabilities gained by an attacker, which also translates to extent to which the system is compromised, corresponds with the convergence of a simple fixed-point operator. We then address the problem of determining the optimal/most-dangerous strategy for a cyber-adversary with respect to this model and find it to be an NP-Complete problem. To address this complexity we utilize an A*-based approach with an admissible heuristic, that incorporates the result of the fixed-point operator and uses memoization for greater efficiency. We provide an implementation and show through a suite of experiments, using both simulated and actual vulnerability data, that this method performs well in practice for identifying adversarial courses of action in this domain. On average, we found that our techniques decrease runtime by 82%.
Cerotti, D., Codetta-Raiteri, D., Egidi, L., Franceschinis, G., Portinale, L., Dondossola, G., Terruggia, R..  2019.  Analysis and Detection of Cyber Attack Processes targeting Smart Grids. 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :1–5.
This paper proposes an approach based on Bayesian Networks to support cyber security analysts in improving the cyber-security posture of the smart grid. We build a system model that exploits real world context information from both Information and Operational Technology environments in the smart grid, and we use it to demonstrate sample predictive and diagnostic analyses. The innovative contribution of this work is in the methodology capability of capturing the many dependencies involved in the assessment of security threats, and of supporting the security analysts in planning defense and detection mechanisms for energy digital infrastructures.