Visible to the public Biblio

Found 944 results

Filters: Keyword is privacy  [Clear All Filters]
2020-02-18
Nasr, Milad, Shokri, Reza, Houmansadr, Amir.  2019.  Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-Box Inference Attacks against Centralized and Federated Learning. 2019 IEEE Symposium on Security and Privacy (SP). :739–753.
Deep neural networks are susceptible to various inference attacks as they remember information about their training data. We design white-box inference attacks to perform a comprehensive privacy analysis of deep learning models. We measure the privacy leakage through parameters of fully trained models as well as the parameter updates of models during training. We design inference algorithms for both centralized and federated learning, with respect to passive and active inference attackers, and assuming different adversary prior knowledge. We evaluate our novel white-box membership inference attacks against deep learning algorithms to trace their training data records. We show that a straightforward extension of the known black-box attacks to the white-box setting (through analyzing the outputs of activation functions) is ineffective. We therefore design new algorithms tailored to the white-box setting by exploiting the privacy vulnerabilities of the stochastic gradient descent algorithm, which is the algorithm used to train deep neural networks. We investigate the reasons why deep learning models may leak information about their training data. We then show that even well-generalized models are significantly susceptible to white-box membership inference attacks, by analyzing state-of-the-art pre-trained and publicly available models for the CIFAR dataset. We also show how adversarial participants, in the federated learning setting, can successfully run active membership inference attacks against other participants, even when the global model achieves high prediction accuracies.
2020-02-17
Jolfaei, Alireza, Kant, Krishna.  2019.  Privacy and Security of Connected Vehicles in Intelligent Transportation System. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks – Supplemental Volume (DSN-S). :9–10.
The paper considers data security and privacy issues in intelligent transportation systems which involve data streams coming out from individual vehicles to road side units. In this environment, there are issues in regards to the scalability of key management and computation limitations at the edge of the network. To address these issues, we suggest the formation of groups in the vehicular layer, where a group leader is assigned to communicate with group members and the road side unit. We propose a lightweight permutation mechanism for preserving the confidentiality and privacy of sensory data.
Shang, Jiacheng, Wu, Jie.  2019.  A Usable Authentication System Using Wrist-Worn Photoplethysmography Sensors on Smartwatches. 2019 IEEE Conference on Communications and Network Security (CNS). :1–9.
Smartwatches are expected to become the world's best-selling electronic product after smartphones. Various smart-watches have been released to the private consumer market, but the data on smartwatches is not well protected. In this paper, we show for the first time that photoplethysmography (PPG)signals influenced by hand gestures can be used to authenticate users on smartwatches. The insight is that muscle and tendon movements caused by hand gestures compress the arterial geometry with different degrees, which has a significant impact on the blood flow. Based on this insight, novel approaches are proposed to detect the starting point and ending point of the hand gesture from raw PPG signals and determine if these PPG signals are from a normal user or an attacker. Different from existing solutions, our approach leverages the PPG sensors that are available on most smartwatches and does not need to collect training data from attackers. Also, our system can be used in more general scenarios wherever users can perform hand gestures and is robust against shoulder surfing attacks. We conduct various experiments to evaluate the performance of our system and show that our system achieves an average authentication accuracy of 96.31 % and an average true rejection rate of at least 91.64% against two types of attacks.
Hylamia, Sam, Yan, Wenqing, Rohner, Christian, Voigt, Thiemo.  2019.  Tiek: Two-tier Authentication and Key Distribution for Wearable Devices. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–6.
Wearable devices, such as implantable medical devices and smart wearables, are becoming increasingly popular with applications that vary from casual activity monitoring to critical medical uses. Unsurprisingly, numerous security vulnerabilities have been found in this class of devices. Yet, research on physical measurement-based authentication and key distribution assumes that body-worn devices are benign and uncompromised. Tiek is a novel authentication and key distribution protocol which addresses this issue. We utilize two sources of randomness to perform device authentication and key distribution simultaneously but through separate means. This creates a two-tier authorization scheme that enables devices to join the network while protecting them from each other. We describe Tiek and analyze its security.
Chowdhury, Mohammad Jabed Morshed, Colman, Alan, Kabir, Muhammad Ashad, Han, Jun, Sarda, Paul.  2019.  Continuous Authorization in Subject-Driven Data Sharing Using Wearable Devices. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :327–333.
Sharing personal data with other people or organizations over the web has become a common phenomena of our modern life. This type of sharing is usually managed by access control mechanisms that include access control model and policies. However, these models are designed from the organizational perspective and do not provide sufficient flexibility and control to the individuals. Therefore, individuals often cannot control sharing of their personal data based on their personal context. In addition, the existing context-aware access control models usually check contextual condition once at the beginning of the access and do not evaluate the context during an on-going access. Moreover, individuals do not have control to define how often they want to evaluate the context condition for an ongoing access. Wearable devices such as Fitbit and Apple Smart Watch have recently become increasingly popular. This has made it possible to gather an individual's real-time contextual information (e.g., location, blood-pressure etc.) which can be used to enforce continuous authorization to the individual's data resources. In this paper, we introduce a novel data sharing policy model for continuous authorization in subject-driven data sharing. A software prototype has been implemented employing a wearable device to demonstrate continuous authorization. Our continuous authorization framework provides more control to the individuals by enabling revocation of on-going access to shared data if the specified context condition becomes invalid.
Wang, Chen, Liu, Jian, Guo, Xiaonan, Wang, Yan, Chen, Yingying.  2019.  WristSpy: Snooping Passcodes in Mobile Payment Using Wrist-worn Wearables. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :2071–2079.
Mobile payment has drawn considerable attention due to its convenience of paying via personal mobile devices at anytime and anywhere, and passcodes (i.e., PINs or patterns) are the first choice of most consumers to authorize the payment. This paper demonstrates a serious security breach and aims to raise the awareness of the public that the passcodes for authorizing transactions in mobile payments can be leaked by exploiting the embedded sensors in wearable devices (e.g., smartwatches). We present a passcode inference system, WristSpy, which examines to what extent the user's PIN/pattern during the mobile payment could be revealed from a single wrist-worn wearable device under different passcode input scenarios involving either two hands or a single hand. In particular, WristSpy has the capability to accurately reconstruct fine-grained hand movement trajectories and infer PINs/patterns when mobile and wearable devices are on two hands through building a Euclidean distance-based model and developing a training-free parallel PIN/pattern inference algorithm. When both devices are on the same single hand, a highly challenging case, WristSpy extracts multi-dimensional features by capturing the dynamics of minute hand vibrations and performs machine-learning based classification to identify PIN entries. Extensive experiments with 15 volunteers and 1600 passcode inputs demonstrate that an adversary is able to recover a user's PIN/pattern with up to 92% success rate within 5 tries under various input scenarios.
MacDermott, Áine, Lea, Stephen, Iqbal, Farkhund, Idowu, Ibrahim, Shah, Babar.  2019.  Forensic Analysis of Wearable Devices: Fitbit, Garmin and HETP Watches. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–6.
Wearable technology has been on an exponential rise and shows no signs of slowing down. One category of wearable technology is Fitness bands, which have the potential to show a user's activity levels and location data. Such information stored in fitness bands is just the beginning of a long trail of evidence fitness bands can store, which represents a huge opportunity to digital forensic practitioners. On the surface of recent work and research in this area, there does not appear to be any similar work that has already taken place on fitness bands and particularly, the devices in this study, a Garmin Forerunner 110, a Fitbit Charge HR and a Generic low-cost HETP fitness tracker. In this paper, we present our analysis of these devices for any possible digital evidence in a forensically sound manner, identifying files of interest and location data on the device. Data accuracy and validity of the evidence is shown, as a test run scenario wearing all of the devices allowed for data comparison analysis.
Pandelea, Alexandru-Ionut, Chiroiu, Mihai-Daniel.  2019.  Password Guessing Using Machine Learning on Wearables. 2019 22nd International Conference on Control Systems and Computer Science (CSCS). :304–311.
Wearables are now ubiquitous items equipped with a multitude of sensors such as GPS, accelerometer, or Bluetooth. The raw data from this sensors are typically used in a health context. However, we can also use it for security purposes. In this paper, we present a solution that aims at using data from the sensors of a wearable device to identify the password a user is typing on a keyboard by using machine learning algorithms. Hence, the purpose is to determine whether a malicious third party application could extract sensitive data through the raw data that it has access to.
Zhang, Lili, Han, Dianqi, Li, Ang, Li, Tao, Zhang, Yan, Zhang, Yanchao.  2019.  WristUnlock: Secure and Usable Smartphone Unlocking with Wrist Wearables. 2019 IEEE Conference on Communications and Network Security (CNS). :28–36.
We propose WristUnlock, a novel technique that uses a wrist wearable to unlock a smartphone in a secure and usable fashion. WristUnlock explores both the physical proximity and secure Bluetooth connection between the smartphone and wrist wearable. There are two modes in WristUnlock with different security and usability features. In the WristRaise mode, the user raises his smartphone in his natural way with the same arm carrying the wrist wearable; the smartphone gets unlocked if the acceleration data on the smartphone and wrist wearable satisfy an anticipated relationship specific to the user himself. In the WristTouch mode, the wrist wearable sends a random number to the smartphone through both the Bluetooth channel and a touch-based physical channel; the smartphone gets unlocked if the numbers received from both channels are equal. We thoroughly analyze the security of WristUnlock and confirm its high efficacy through detailed experiments.
Hassan, Mehmood, Mansoor, Khwaja, Tahir, Shahzaib, Iqbal, Waseem.  2019.  Enhanced Lightweight Cloud-assisted Mutual Authentication Scheme for Wearable Devices. 2019 International Conference on Applied and Engineering Mathematics (ICAEM). :62–67.
With the emergence of IoT, wearable devices are drawing attention and becoming part of our daily life. These wearable devices collect private information about their wearers. Mostly, a secure authentication process is used to verify a legitimate user that relies on the mobile terminal. Similarly, remote cloud services are used for verification and authentication of both wearable devices and wearers. Security is necessary to preserve the privacy of users. Some traditional authentication protocols are proposed which have vulnerabilities and are prone to different attacks like forgery, de-synchronization, and un-traceability issues. To address these vulnerabilities, recently, Wu et al. (2017) proposed a cloud-assisted authentication scheme which is costly in terms of computations required. Therefore this paper proposed an improved, lightweight and computationally efficient authentication scheme for wearable devices. The proposed scheme provides similar level of security as compared to Wu's (2017) scheme but requires 41.2% lesser computations.
Yang, Chen, Liu, Tingting, Zuo, Lulu, Hao, Zhiyong.  2019.  An Empirical Study on the Data Security and Privacy Awareness to Use Health Care Wearable Devices. 2019 16th International Conference on Service Systems and Service Management (ICSSSM). :1–6.
Recently, several health care wearable devices which can intervene in health and collect personal health data have emerged in the medical market. Although health care wearable devices promote the integration of multi-layer medical resources and bring new ways of health applications for users, it is inevitable that some problems will be brought. This is mainly manifested in the safety protection of medical and health data and the protection of user's privacy. From the users' point of view, the irrational use of medical and health data may bring psychological and physical negative effects to users. From the government's perspective, it may be sold by private businesses in the international arena and threaten national security. The most direct precaution against the problem is users' initiative. For better understanding, a research model is designed by the following five aspects: Security knowledge (SK), Security attitude (SAT), Security practice (SP), Security awareness (SAW) and Security conduct (SC). To verify the model, structural equation analysis which is an empirical approach was applied to examine the validity and all the results showed that SK, SAT, SP, SAW and SC are important factors affecting users' data security and privacy protection awareness.
Rizk, Dominick, Rizk, Rodrigue, Hsu, Sonya.  2019.  Applied Layered-Security Model to IoMT. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :227–227.
Nowadays, IoT has crossed all borders and become ubiquitous in everyday life. This emerging technology has a huge success in closing the gap between the digital and the real world. However, security and privacy become huge concerns especially in the medical field which prevent the healthcare industry from adopting it despite its benefits and potentials. This paper focuses on identifying potential security threats to the IoMT and presents the security mechanisms to remove any possible impediment from immune information security of IoMT. A summarized framework of the layered-security model is proposed followed by a specific assessment review of each layer.
Wen, Jinming, Yu, Wei.  2019.  Exact Sparse Signal Recovery via Orthogonal Matching Pursuit with Prior Information. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :5003–5007.
The orthogonal matching pursuit (OMP) algorithm is a commonly used algorithm for recovering K-sparse signals x ∈ ℝn from linear model y = Ax, where A ∈ ℝm×n is a sensing matrix. A fundamental question in the performance analysis of OMP is the characterization of the probability that it can exactly recover x for random matrix A. Although in many practical applications, in addition to the sparsity, x usually also has some additional property (for example, the nonzero entries of x independently and identically follow the Gaussian distribution), none of existing analysis uses these properties to answer the above question. In this paper, we first show that the prior distribution information of x can be used to provide an upper bound on \textbackslashtextbar\textbackslashtextbarx\textbackslashtextbar\textbackslashtextbar21/\textbackslashtextbar\textbackslashtextbarx\textbackslashtextbar\textbackslashtextbar22, and then explore the bound to develop a better lower bound on the probability of exact recovery with OMP in K iterations. Simulation tests are presented to illustrate the superiority of the new bound.
Chalise, Batu K..  2019.  ADMM-based Beamforming Optimization for Physical Layer Security in a Full-duplex Relay System. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :4734–4738.
Although beamforming optimization problems in full-duplex communication systems can be optimally solved with the semidefinite relaxation (SDR) approach, its computational complexity increases rapidly when the problem size increases. In order to circumvent this issue, in this paper, we propose an alternating direction of multiplier method (ADMM) which minimizes the augmented Lagrangian of the dual of the SDR and handles the inequality constraints with the use of slack variables. The proposed ADMM is then applied for optimizing the relay beamformer to maximize the secrecy rate. Simulation results show that the proposed ADMM performs as good as the SDR approach.
Zamula, Alexander, Rassomakhin, Sergii, Krasnobayev, Victor, Morozov, Vladyslav.  2019.  Synthesis of Discrete Complex Nonlinear Signals with Necessary Properties of Correlation Functions. 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON). :999–1002.
The main information and communication systems (ICS) effectiveness parameters are: reliability, resiliency, network bandwidth, service quality, profitability and cost, malware protection, information security, etc. Most modern ICS refers to multiuser systems, which implement the most promising method of distributing subscribers (users), namely, the code distribution, at which, subscribers are provided with appropriate forms of discrete sequences (signatures). Since in multiuser systems, channels code division is based on signal difference, then the ICS construction and systems performance indicators are determined by the chosen signals properties. Distributed spectrum technology is the promising direction of information security for telecommunication systems. Currently used data generation and processing methods, as well as the broadband signal classes used as a physical data carrier, are not enough for the necessary level of information security (information secrecy, imitation resistance) as well as noise immunity (impedance reception, structural secrecy) of the necessary (for some ICS applications). In this case, discrete sequences (DS) that are based on nonlinear construction rules and have improved correlation, ensemble and structural properties should be used as DS that extend the spectrum (manipulate carrier frequency). In particular, with the use of such signals as the physical carrier of information or synchronization signals, the time expenditures on the disclosure of the signal structure used are increasing and the setting of "optima", in terms of the counteracting station, obstacles becomes problematic. Complex signals obtained on such sequences basis have structural properties, similar to random (pseudorandom) sequences, as well as necessary correlation and ensemble properties. For designing signals for applications applied for measuring delay time, signal detecting, synchronizing stations and etc, side-lobe levels of autocorrelation function (ACF) minimization is essential. In this paper, the problem of optimizing the synthesis of nonlinear discrete sequences, which have improved ensemble, structural and autocorrelation properties, is formulated and solved. The use of nonlinear discrete signals, which are formed on the basis of such sequences, will provide necessary values for impedance protection, structural and information secrecy of ICS operation. Increased requirements for ICS information security, formation and performance data in terms of internal and external threats (influences), determine objectively existing technical and scientific controversy to be solved is goal of this work.The paper presents the results of solving the actual problem of performance indicators improvements for information and communication systems, in particular secrecy, information security and noise immunity with interfering influences, based on the nonlinear discrete cryptographic signals (CS) new classes synthesis with the necessary properties.
Moquin, S. J., Kim, SangYun, Blair, Nicholas, Farnell, Chris, Di, Jia, Mantooth, H. Alan.  2019.  Enhanced Uptime and Firmware Cybersecurity for Grid-Connected Power Electronics. 2019 IEEE CyberPELS (CyberPELS). :1–6.
A distributed energy resource prototype is used to show cybersecurity best practices. These best practices include straightforward security techniques, such as encrypted serial communication. The best practices include more sophisticated security techniques, such as a method to evaluate and respond to firmware integrity at run-time. The prototype uses embedded Linux, a hardware-assisted monitor, one or more digital signal processors, and grid-connected power electronics. Security features to protect communication, firmware, power flow, and hardware are developed. The firmware run-time integrity security is presently evaluated, and shown to maintain power electronics uptime during firmware updating. The firmware run-time security feature can be extended to allow software rejuvenation, multi-mission controls, and greater flexibility and security in controls.
Ullah, N., Ali, S. M., Khan, B., Mehmood, C. A., Anwar, S. M., Majid, M., Farid, U., Nawaz, M. A., Ullah, Z..  2019.  Energy Efficiency: Digital Signal Processing Interactions Within Smart Grid. 2019 International Conference on Engineering and Emerging Technologies (ICEET). :1–6.
Smart Grid (SG) is regarded as complex electrical power system due to massive penetration of Renewable Energy Resources and Distribution Generations. The implementation of adjustable speed drives, advance power electronic devices, and electric arc furnaces are incorporated in SG (the transition from conventional power system). Moreover, SG is an advance, automated, controlled, efficient, digital, and intelligent system that ensures pertinent benefits, such as: (a) consumer empowerment, (b) advanced communication infrastructure, (c) user-friendly system, and (d) supports bi-directional power flow. Digital Signal Processing (DSP) is key tool for SG deployment and provides key solutions to a vast array of complex SG challenges. This research provides a comprehensive study on DSP interactions within SG. The prominent challenges posed by conventional grid, such as: (a) monitoring and control, (b) Electric Vehicles infrastructure, (c) cyber data injection attack, (d) Demand Response management and (e) cyber data injection attack are thoroughly investigated in this research.
Goncharov, Nikita, Dushkin, Alexander, Goncharov, Igor.  2019.  Mathematical Modeling of the Security Management Process of an Information System in Conditions of Unauthorized External Influences. 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA). :77–82.
In this paper, we consider one of the approaches to the study of the characteristics of an information system that is under the influence of various factors, and their management using neural networks and wavelet transforms based on determining the relationship between the modified state of the information system and the possibility of dynamic analysis of effects. At the same time, the process of influencing the information system includes the following components: impact on the components providing the functions of the information system; determination of the result of exposure; analysis of the result of exposure; response to the result of exposure. As an input signal, the characteristics of the means that affect are taken. The system includes an adaptive response unit, the input of which receives signals about the prerequisites for changes, and at the output, this unit generates signals for the inclusion of appropriate means to eliminate or compensate for these prerequisites or directly the changes in the information system.
Liu, Xiaochen, Gao, Yuanyuan, Zang, Guozhen, Sha, Nan.  2019.  Artificial-Noise-Aided Robust Beamforming for MISOME Wiretap Channels with Security QoS. 2019 IEEE 19th International Conference on Communication Technology (ICCT). :795–799.
This paper studies secure communication from a multi-antenna transmitter to a single-antenna receiver in the presence of multiple multi-antenna eavesdroppers, considering constraints of security quality of service (QoS), i.e., minimum allowable signal-to-interference-and-noise ratio (SINR) at receiver and maximum tolerable SINR at eavesdroppers. The robust joint optimal beamforming (RJOBF) of secret signal and artificial noise (AN) is designed to minimize transmit power while estimation errors of channel state information (CSI) for wiretap channels are taken into consideration. The formulated design problem is shown to be nonconvex and we transfer it into linear matrix inequalities (LMIs) along with semidefinite relaxation (SDR) technique. The simulation results illustrate that our proposed RJOBF is efficient for power saving in security communication.
de Andrade Bragagnolle, Thiago, Pereira Nogueira, Marcelo, de Oliveira Santos, Melissa, do Prado, Afonso José, Ferreira, André Alves, de Mello Fagotto, Eric Alberto, Aldaya, Ivan, Abbade, Marcelo Luís Francisco.  2019.  All-Optical Spectral Shuffling of Signals Traveling through Different Optical Routes. 2019 21st International Conference on Transparent Optical Networks (ICTON). :1–4.
A recent proposed physical layer encryption technique uses an all-optical setup based on spatial light modulators to split two or more wavelength division multiplexed (WDM) signals in several spectral slices and to shuffle these slices. As a result, eavesdroppers aimed to recover information from a single target signal need to handle all the signals involved in the shuffling process. In this work, computer simulations are used to analyse the case where the shuffled signals propagate through different optical routes. From a security point of view, this is an interesting possibility because it obliges eavesdroppers to tap different optical fibres/ cables. On the other hand, each shuffled signal experiences different physical impairments and the deleterious consequences of these effects must be carefully investigated. Our results indicate that, in a metropolitan area network environment, penalties caused by attenuation and dispersion differences may be easily compensated with digital signal processing algorithms that are presently deployed.
Pérez García, Julio César, Ortiz Guerra, Erik, Barriquello, Carlos Henrique, Dalla Costa, Marco Antônio, Reguera, Vitalio Alfonso.  2019.  Faster-Than-Nyquist Signaling for Physical Layer Security on Wireless Smart Grid. 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America). :1–6.
Wireless networks offer great flexibility and ease of deployment for the rapid implementation of smart grids. However, these data network technologies are prone to security issues. Especially, the risk of eavesdropping attacks increases due to the inherent characteristics of the wireless medium. In this context, physical layer security can augment secrecy through appropriate coding and signal processing. In this paper we consider the use of faster-than-Nyquist signaling to introduce artificial noise in the wireless network segment of the smart grid; with the aim of reinforce the information security at the physical layer. The results show that the proposed scheme can significantly improves the secrecy rate of the channel. Guaranteeing, in coexistence with other security mechanisms and despite the presence of potential eavesdroppers, a reliable and secure flow of information for smart grids.
Facon, Adrien, Guilley, Sylvain, Ngo, Xuan-Thuy, Perianin, Thomas.  2019.  Hardware-enabled AI for Embedded Security: A New Paradigm. 2019 3rd International Conference on Recent Advances in Signal Processing, Telecommunications Computing (SigTelCom). :80–84.

As chips become more and more connected, they are more exposed (both to network and to physical attacks). Therefore one shall ensure they enjoy a sufficient protection level. Security within chips is accordingly becoming a hot topic. Incident detection and reporting is one novel function expected from chips. In this talk, we explain why it is worthwhile to resort to Artificial Intelligence (AI) for security event handling. Drivers are the need to aggregate multiple and heterogeneous security sensors, the need to digest this information quickly to produce exploitable information, and so while maintaining a low false positive detection rate. Key features are adequate learning procedures and fast and secure classification accelerated by hardware. A challenge is to embed such security-oriented AI logic, while not compromising chip power budget and silicon area. This talk accounts for the opportunities permitted by the symbiotic encounter between chip security and AI.

Ionita, Drd. Irene.  2019.  Cybersecurity concerns on real time monitoring in electrical transmission and distribution systems (SMART GRIDS). 2019 54th International Universities Power Engineering Conference (UPEC). :1–4.
The virtual world does not observe national borders, has no uniform legal system, and does not have a common perception of security and privacy issues. It is however, relatively homogenous in terms of technology.A cyberattack on an energy delivery system can have significant impacts on the availability of a system to perform critical functions as well as the integrity of the system and the confidentiality of sensitive information.
Hiller, Jens, Komanns, Karsten, Dahlmanns, Markus, Wehrle, Klaus.  2019.  Regaining Insight and Control on SMGW-based Secure Communication in Smart Grids. 2019 AEIT International Annual Conference (AEIT). :1–6.
Smart Grids require extensive communication to enable safe and stable energy supply in the age of decentralized and dynamic energy production and consumption. To protect the communication in this critical infrastructure, public authorities mandate smart meter gateways (SMGWs) to be in control of the communication security. To this end, the SMGW intercepts all inbound and outbound communication of its premise, e.g., a factory or smart home, and forwards it on secure channels that the SMGW established itself. However, using the SMGW as proxy, local devices can neither review the security of these remote connections established by the SMGW nor enforce higher security guarantees than established by the all in one configuration of the SMGW which does not allow for use case-specific security settings. We present mechanisms that enable local devices to regain this insight and control over the full connection, i.e., up to the final receiver, while retaining the SMGW's ability to ensure a suitable security level. Our evaluation shows modest computation and transmission overheads for this increased security in the critical smart grid infrastructure.
Liu, Donglan, Liu, Xin, Zhang, Hao, Yu, Hao, Wang, Wenting, Ma, Lei, Chen, Jianfei, Li, Dong.  2019.  Research on End-to-End Security Authentication Protocol of NB-IoT for Smart Grid Based on Physical Unclonable Function. 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN). :239–244.
As a national strategic hot spot, the Internet of Things (IoT) has shown its vigor and vitality. With the development of IoT, its application in power grid is more and more extensive. As an advanced technology for information sensing and transmission, IoT has been applied extensively in power generation, transmission, transformation, distribution, utilization and other processes, and will develop with broad prospect in smart grid. Narrow Band Internet of Things (NB-IoT) is of broad application prospects in production management, life-cycle asset management and smart power utilization of smart grid. Its characteristics and security demands of application domain present a challenge for the security of electric power business. However, current protocols either need dual authentication and key agreements, or have poor compatibility with current network architecture. In order to improve the high security of power network data transmission, an end-to-end security authentication protocol of NB-IoT for smart grid based on physical unclonable function and state secret algorithm SM3 is proposed in this paper. A self-controllable NB-IoT application layer security architecture was designed by introducing the domestic cryptographic algorithm, extending the existing key derivation structure of LTE, and combining the physical unclonable function to ensure the generation of encryption keys between NB-IoT terminals and power grid business platforms. The protocol of this paper realizes secure data transmission and bidirectional identity authentication between IoT devices and terminals. It is of low communication costs, lightweight and flexible key update. In addition, the protocol also supports terminal authentication during key agreement, which furtherly enhances the security of business systems in smart grid.