Visible to the public Biblio

Found 3791 results

Filters: Keyword is composability  [Clear All Filters]
2021-04-09
Soni, G., Sudhakar, R..  2020.  A L-IDS against Dropping Attack to Secure and Improve RPL Performance in WSN Aided IoT. 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN). :377—383.
In the Internet of Things (IoT), it is feasible to interconnect networks of different devices and all these different devices, such as smartphones, sensor devices, and vehicles, are controlled according to a particular user. These different devices are delivered and accept the information on the network. This thing is to motivate us to do work on IoT and the devices used are sensor nodes. The validation of data delivery completely depends on the checks of count data forwarding in each node. In this research, we propose the Link Hop Value-based Intrusion Detection System (L-IDS) against the blackhole attack in the IoT with the assist of WSN. The sensor nodes are connected to other nodes through the wireless link and exchange data routing, as well as data packets. The LHV value is identified as the attacker's presence by integrating the data delivery in each hop. The LHV is always equivalent to the Actual Value (AV). The RPL routing protocol is used IPv6 to address the concept of routing. The Routing procedure is interrupted by an attacker by creating routing loops. The performance of the proposed L-IDS is compared to the RPL routing security scheme based on existing trust. The proposed L-IDS procedure is validating the presence of the attacker at every source to destination data delivery. and also disables the presence of the attacker in the network. Network performance provides better results in the existence of a security scheme and also fully represents the inoperative presence of black hole attackers in the network. Performance metrics show better results in the presence of expected IDS and improve network reliability.
Yamato, K., Kourai, K., Saadawi, T..  2020.  Transparent IDS Offloading for Split-Memory Virtual Machines. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :833—838.
To enable virtual machines (VMs) with a large amount of memory to be flexibly migrated, split migration has been proposed. It divides a large-memory VM into small pieces and transfers them to multiple hosts. After the migration, the VM runs across those hosts and exchanges memory data between hosts using remote paging. For such a split-memory VM, however, it becomes difficult to securely run intrusion detection systems (IDS) outside the VM using a technique called IDS offloading. This paper proposes VMemTrans to support transparent IDS offloading for split-memory VMs. In VMemTrans, offloaded IDS can monitor a split-memory VM as if that memory were not distributed. To achieve this, VMemTrans enables IDS running in one host to transparently access VM's remote memory. To consider a trade-off, it provides two methods for obtaining memory data from remote hosts: self paging and proxy paging. We have implemented VMemTrans in KVM and compared the execution performance between the two methods.
Chytas, S. P., Maglaras, L., Derhab, A., Stamoulis, G..  2020.  Assessment of Machine Learning Techniques for Building an Efficient IDS. 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH). :165—170.
Intrusion Detection Systems (IDS) are the systems that detect and block any potential threats (e.g. DDoS attacks) in the network. In this project, we explore the performance of several machine learning techniques when used as parts of an IDS. We experiment with the CICIDS2017 dataset, one of the biggest and most complete IDS datasets in terms of having a realistic background traffic and incorporating a variety of cyber attacks. The techniques we present are applicable to any IDS dataset and can be used as a basis for deploying a real time IDS in complex environments.
Song, M., Lind, M..  2020.  Towards Automated Generation of Function Models from P IDs. 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). 1:1081—1084.
Although function model has been widely applied to develop various operator decision support systems, the modeling process is essentially a manual work, which takes significant efforts on knowledge acquisition. It would greatly improve the efficiency of modeling if relevant information can be automatically retrieved from engineering documents. This paper investigates the possibility of automated transformation from P&IDs to a function model called MFM via AutomationML. Semantics and modeling patterns of MFM are established in AutomationML, which can be utilized to convert plant topology models into MFM models. The proposed approach is demonstrated with a small use case. Further topics for extending the study are also discussed.
Mishra, A., Yadav, P..  2020.  Anomaly-based IDS to Detect Attack Using Various Artificial Intelligence Machine Learning Algorithms: A Review. 2nd International Conference on Data, Engineering and Applications (IDEA). :1—7.
Cyber-attacks are becoming more complex & increasing tasks in accurate intrusion detection (ID). Failure to avoid intrusion can reduce the reliability of security services, for example, integrity, Privacy & availability of data. The rapid proliferation of computer networks (CNs) has reformed the perception of network security. Easily accessible circumstances affect computer networks from many threats by hackers. Threats to a network are many & hypothetically devastating. Researchers have recognized an Intrusion Detection System (IDS) up to identifying attacks into a wide variety of environments. Several approaches to intrusion detection, usually identified as Signature-based Intrusion Detection Systems (SIDS) & Anomaly-based Intrusion Detection Systems (AIDS), were proposed in the literature to address computer safety hazards. This survey paper grants a review of current IDS, complete analysis of prominent new works & generally utilized dataset to evaluation determinations. It also introduces avoidance techniques utilized by attackers to avoid detection. This paper delivers a description of AIDS for attack detection. IDS is an applied research area in artificial intelligence (AI) that uses multiple machine learning algorithms.
Cui, H., Liu, C., Hong, X., Wu, J., Sun, D..  2020.  An Improved BICM-ID Receiver for the Time-Varying Underwater Acoustic Communications with DDPSK Modulation. 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). :1—4.
Double differential phase shift keying(DDPSK) modulation is an efficient method to compensate the Doppler shifts, whereas the phase noise will be amplified which results in the signal-to-noise ratio (SNR) loss. In this paper, we propose a novel receiver architecture for underwater acoustic DSSS communications with Doppler shifts. The proposed method adopts not only the DDPSK modulation to compensate the Doppler shifts, but also the improved bit-interleaved coded modulation with iterative decoding (BICM-ID) algorithm for DDPSK to recover the SNR loss. The improved DDPSK demodulator adopts the multi-symbol estimation to track the channel variation, and an extended trellis diagram is constructed for DDPSK demodulator. Theoretical simulation shows that our system can obtain around 10.2 dB gain over the uncoded performance, and 7.4 dB gain over the hard-decision decoding performance. Besides, the experiment conducted in the Songhua Lake also shows that the proposed receiver can achieve lower BER performance when Doppler shifts exists.
Noiprasong, P., Khurat, A..  2020.  An IDS Rule Redundancy Verification. 2020 17th International Joint Conference on Computer Science and Software Engineering (JCSSE). :110—115.
Intrusion Detection System (IDS) is a network security software and hardware widely used to detect anomaly network traffics by comparing the traffics against rules specified beforehand. Snort is one of the most famous open-source IDS system. To write a rule, Snort specifies structure and values in Snort manual. This specification is expressive enough to write in different way with the same meaning. If there are rule redundancy, it could distract performance. We, thus, propose a proof of semantical issues for Snort rule and found four pairs of Snort rule combinations that can cause redundancy. In addition, we create a tool to verify such redundancy between two rules on the public rulesets from Snort community and Emerging threat. As a result of our test, we found several redundancy issues in public rulesets if the user enables commented rules.
Usman, S., Winarno, I., Sudarsono, A..  2020.  Implementation of SDN-based IDS to protect Virtualization Server against HTTP DoS attacks. 2020 International Electronics Symposium (IES). :195—198.
Virtualization and Software-defined Networking (SDN) are emerging technologies that play a major role in cloud computing. Cloud computing provides efficient utilization, high performance, and resource availability on demand. However, virtualization environments are vulnerable to various types of intrusion attacks that involve installing malicious software and denial of services (DoS) attacks. Utilizing SDN technology, makes the idea of SDN-based security applications attractive in the fight against DoS attacks. Network intrusion detection system (IDS) which is used to perform network traffic analysis as a detection system implemented on SDN networks to protect virtualization servers from HTTP DoS attacks. The experimental results show that SDN-based IDS is able to detect and mitigate HTTP DoS attacks effectively.
Ravikumar, G., Singh, A., Babu, J. R., A, A. Moataz, Govindarasu, M..  2020.  D-IDS for Cyber-Physical DER Modbus System - Architecture, Modeling, Testbed-based Evaluation. 2020 Resilience Week (RWS). :153—159.
Increasing penetration of distributed energy resources (DERs) in distribution networks expands the cyberattack surface. Moreover, the widely used standard protocols for communicating DER inverters such as Modbus is more vulnerable to data-integrity attacks and denial of service (DoS) attacks because of its native clear-text packet format. This paper proposes a distributed intrusion detection system (D-IDS) architecture and algorithms for detecting anomalies on the DER Modbus communication. We devised a model-based approach to define physics-based threshold bands for analog data points and transaction-based threshold bands for both the analog and discrete data points. The proposed IDS algorithm uses the model- based approach to develop Modbus-specific IDS rule sets, which can enhance the detection accuracy of the anomalies either by data-integrity attacks or maloperation on cyber-physical DER Modbus devices. Further, the IDS algorithm autogenerates the Modbus-specific IDS rulesets in compliance with various open- source IDS rule syntax formats, such as Snort and Suricata, for seamless integration and mitigation of semantic/syntax errors in the development and production environment. We considered the IEEE 13-bus distribution grid, including DERs, as a case study. We conducted various DoS type attacks and data-integrity attacks on the hardware-in-the-loop (HIL) CPS DER testbed at ISU to evaluate the proposed D-IDS. Consequently, we computed the performance metrics such as IDS detection accuracy, IDS detection rate, and end-to-end latency. The results demonstrated that 100% detection accuracy, 100% detection rate for 60k DoS packets, 99.96% detection rate for 80k DoS packets, and 0.25 ms end-to-end latency between DERs to Control Center.
Fadhilah, D., Marzuki, M. I..  2020.  Performance Analysis of IDS Snort and IDS Suricata with Many-Core Processor in Virtual Machines Against Dos/DDoS Attacks. 2020 2nd International Conference on Broadband Communications, Wireless Sensors and Powering (BCWSP). :157—162.
The rapid development of technology makes it possible for a physical machine to be converted into a virtual machine, which can operate multiple operating systems that are running simultaneously and connected to the internet. DoS/DDoS attacks are cyber-attacks that can threaten the telecommunications sector because these attacks cause services to be disrupted and be difficult to access. There are several software tools for monitoring abnormal activities on the network, such as IDS Snort and IDS Suricata. From previous studies, IDS Suricata is superior to IDS Snort version 2 because IDS Suricata already supports multi-threading, while IDS Snort version 2 still only supports single-threading. This paper aims to conduct tests on IDS Snort version 3.0 which already supports multi-threading and IDS Suricata. This research was carried out on a virtual machine with 1 core, 2 core, and 4 core processor settings for CPU, memory, and capture packet attacks on IDS Snort version 3.0 and IDS Suricata. The attack scenario is divided into 2 parts: DoS attack scenario using 1 physical computer, and DDoS attack scenario using 5 physical computers. Based on overall testing, the results are: In general, IDS Snort version 3.0 is better than IDS Suricata. This is based on the results when using a maximum of 4 core processor, in which IDS Snort version 3.0 CPU usage is stable at 55% - 58%, a maximum memory of 3,000 MB, can detect DoS attacks with 27,034,751 packets, and DDoS attacks with 36,919,395 packets. Meanwhile, different results were obtained by IDS Suricata, in which CPU usage is better compared to IDS Snort version 3.0 with only 10% - 40% usage, and a maximum memory of 1,800 MB. However, the capabilities of detecting DoS attacks are smaller with 3,671,305 packets, and DDoS attacks with a total of 7,619,317 packets on a TCP Flood attack test.
Mir, N., Khan, M. A. U..  2020.  Copyright Protection for Online Text Information : Using Watermarking and Cryptography. 2020 3rd International Conference on Computer Applications Information Security (ICCAIS). :1—4.
Information and security are interdependent elements. Information security has evolved to be a matter of global interest and to achieve this; it requires tools, policies and assurance of technologies against any relevant security risks. Internet influx while providing a flexible means of sharing the online information economically has rapidly attracted countless writers. Text being an important constituent of online information sharing, creates a huge demand of intellectual copyright protection of text and web itself. Various visible watermarking techniques have been studied for text documents but few for web-based text. In this paper, web page watermarking and cryptography for online content copyrights protection is proposed utilizing the semantic and syntactic rules using HTML (Hypertext Markup Language) and is tested for English and Arabic languages.
Peng, X., Hongmei, Z., Lijie, C., Ying, H..  2020.  Analysis of Computer Network Information Security under the Background of Big Data. 2020 5th International Conference on Smart Grid and Electrical Automation (ICSGEA). :409—412.
In today's society, under the comprehensive arrival of the Internet era, the rapid development of technology has facilitated people's production and life, but it is also a “double-edged sword”, making people's personal information and other data subject to a greater threat of abuse. The unique features of big data technology, such as massive storage, parallel computing and efficient query, have created a breakthrough opportunity for the key technologies of large-scale network security situational awareness. On the basis of big data acquisition, preprocessing, distributed computing and mining and analysis, the big data analysis platform provides information security assurance services to the information system. This paper will discuss the security situational awareness in large-scale network environment and the promotion of big data technology in security perception.
Bhattacharya, M. P., Zavarsky, P., Butakov, S..  2020.  Enhancing the Security and Privacy of Self-Sovereign Identities on Hyperledger Indy Blockchain. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—7.
Self-sovereign identities provide user autonomy and immutability to individual identities and full control to their identity owners. The immutability and control are possible by implementing identities in a decentralized manner on blockchains that are specially designed for identity operations such as Hyperledger Indy. As with any type of identity, self-sovereign identities too deal with Personally Identifiable Information (PII) of the identity holders and comes with the usual risks of privacy and security. This study examined certain scenarios of personal data disclosure via credential exchanges between such identities and risks of man-in-the-middle attacks in the blockchain based identity system Hyperledger Indy. On the basis of the findings, the paper proposes the following enhancements: 1) A novel attribute sensitivity score model for self-sovereign identity agents to ascertain the sensitivity of attributes shared in credential exchanges 2) A method of mitigating man-in-the-middle attacks between peer self-sovereign identities and 3) A novel quantitative model for determining a credential issuer's reputation based on the number of issued credentials in a window period, which is then utilized to calculate an overall confidence level score for the issuer.
Lyshevski, S. E., Aved, A., Morrone, P..  2020.  Information-Centric Cyberattack Analysis and Spatiotemporal Networks Applied to Cyber-Physical Systems. 2020 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW). 1:172—177.
Cyber-physical systems (CPS) depend on cybersecurity to ensure functionality, data quality, cyberattack resilience, etc. There are known and unknown cyber threats and attacks that pose significant risks. Information assurance and information security are critical. Many systems are vulnerable to intelligence exploitation and cyberattacks. By investigating cybersecurity risks and formal representation of CPS using spatiotemporal dynamic graphs and networks, this paper investigates topics and solutions aimed to examine and empower: (1) Cybersecurity capabilities; (2) Information assurance and system vulnerabilities; (3) Detection of cyber threat and attacks; (4) Situational awareness; etc. We introduce statistically-characterized dynamic graphs, novel entropy-centric algorithms and calculi which promise to ensure near-real-time capabilities.
Ozkan, N., Tarhan, A. K., Gören, B., Filiz, İ, Özer, E..  2020.  Harmonizing IT Frameworks and Agile Methods: Challenges and Solutions for the case of COBIT and Scrum. 2020 15th Conference on Computer Science and Information Systems (FedCSIS). :709—719.
Information Technology (IT) is a complex domain. In order to properly manage IT related processes, several frameworks including ITIL (Information Technologies Infrastructure Library), COBIT (Control OBjectives for Information and related Technologies), IT Service CMMI (IT Service Capability Maturity Model) and many others have emerged in recent decades. Meanwhile, the prevalence of Agile methods has increased, posing the coexistence of Agile approach with different IT frameworks already adopted in organizations. More specifically, the pursuit of being agile in the area of digitalization pushes organizations to go for agile transformation while preserving full compliance to IT frameworks for the sake of their survival. The necessity for this coexistence, however, brings its own challenges and solutions for harmonizing the requirements of both parties. In this paper, we focus on harmonizing the requirements of COBIT and Scrum in a same organization, which is especially challenging when a full compliance to COBIT is expected. Therefore, this study aims to identifying the challenges of and possible solutions for the coexistence of Scrum and COBIT (version 4.1 in this case) in an organization, by considering two case studies: one from the literature and the case of Akbank delivered in this study. Thus, it extends the corresponding previous case study from two points: adds one more case study to enrich the results from the previous case study and provides more opportunity to make generalization by considering two independent cases.
Lin, T., Shi, Y., Shu, N., Cheng, D., Hong, X., Song, J., Gwee, B. H..  2020.  Deep Learning-Based Image Analysis Framework for Hardware Assurance of Digital Integrated Circuits. 2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). :1—6.
We propose an Artificial Intelligence (AI)/Deep Learning (DL)-based image analysis framework for hardware assurance of digital integrated circuits (ICs). Our aim is to examine and verify various hardware information from analyzing the Scanning Electron Microscope (SEM) images of an IC. In our proposed framework, we apply DL-based methods at all essential steps of the analysis. To the best of our knowledge, this is the first such framework that makes heavy use of DL-based methods at all essential analysis steps. Further, to reduce time and effort required in model re-training, we propose and demonstrate various automated or semi-automated training data preparation methods and demonstrate the effectiveness of using synthetic data to train a model. By applying our proposed framework to analyzing a set of SEM images of a large digital IC, we prove its efficacy. Our DL-based methods are fast, accurate, robust against noise, and can automate tasks that were previously performed mainly manually. Overall, we show that DL-based methods can largely increase the level of automation in hardware assurance of digital ICs and improve its accuracy.
Fourastier, Y., Baron, C., Thomas, C., Esteban, P..  2020.  Assurance levels for decision making in autonomous intelligent systems and their safety. 2020 IEEE 11th International Conference on Dependable Systems, Services and Technologies (DESSERT). :475—483.
The autonomy of intelligent systems and their safety rely on their ability for local decision making based on collected environmental information. This is even more for cyber-physical systems running safety critical activities. While this intelligence is partial and fragmented, and cognitive techniques are of limited maturity, the decision function must produce results whose validity and scope must be weighted in light of the underlying assumptions, unavoidable uncertainty and hypothetical safety limitation. Besides the cognitive techniques dependability, it is about the assurance level of the decision self-making. Beyond the pure decision-making capabilities of the autonomous intelligent system, we need techniques that guarantee the system assurance required for the intended use. Security mechanisms for cognitive systems may be consequently tightly intricated. We propose a trustworthiness module which is part of the system and its resulting safety. In this paper, we briefly review the state of the art regarding the dependability of cognitive techniques, the assurance level definition in this context, and related engineering practices. We elaborate regarding the design of autonomous intelligent systems safety, then we discuss its security design and approaches for the mitigation of safety violations by the cognitive functions.
Smith, B., Feather, M. S., Huntsberger, T., Bocchino, R..  2020.  Software Assurance of Autonomous Spacecraft Control. 2020 Annual Reliability and Maintainability Symposium (RAMS). :1—7.
Summary & Conclusions: The work described addresses assurance of a planning and execution software system being added to an in-orbit CubeSat to demonstrate autonomous control of that spacecraft. Our focus was on how to develop assurance of the correct operation of the added software in its operational context, our approach to which was to use an assurance case to guide and organize the information involved. The relatively manageable magnitude of the CubeSat and its autonomy demonstration experiment made it plausible to try out our assurance approach in a relatively short timeframe. Additionally, the time was ripe to inject useful assurance results into the ongoing development and testing of the autonomy demonstration. In conducting this, we sought to answer several questions about our assurance approach. The questions, and the conclusions we reached, are as follows: 1. Question: Would our approach to assurance apply to the introduction of a planning and execution software into an existing system? Conclusion: Yes. The use of an assurance case helped focus our attention on the more challenging aspects, notably the interactions between the added software and the existing software system into which it was being introduced. This guided us to choose a hazard analysis method specifically for software interactions. In addition, we were able to automate generation of assurance case elements from the hazard analysis' tabular representation. 2. Question: Would our methods prove understandable to the software engineers tasked with integrating the software into the CubeSat's existing system? Conclusion: Somewhat. In interim discussions with the software engineers we found the assurance case style, of decomposing an argument into smaller pieces, to be useful and understandable to organize discussion. Ultimately however we did not persuade them to adopt assurance cases as the means to present review information. We attribute this to reluctance to deviate from JPL's tried and true style of holding reviews. For the CubeSat project as a whole, hosting an autonomy demonstration was already a novelty. Combining this with presentation of review information via an assurance case, with which our reviewers would be unaccustomed, would have exacerbated the unfamiliarity. 3. Question: Would conducting our methods prove to be compatible with the (limited) time available of the software engineers? Conclusion: Yes. We used a series of six brief meetings (approximately one hour each) with the development team to first identify the interactions as the area on which to focus, and to then perform the hazard analysis on those interactions. We used the meetings to confirm, or correct as necessary, our understanding of the software system and the spacecraft context. Between meetings we studied the existing software documentation, did preliminary analyses by ourselves, and documented the results in a concise form suitable for discussion with the team. 4. Question: Would our methods yield useful results to the software engineers? Conclusion: Yes. The hazard analysis systematically confirmed existing hazards' mitigations, and drew attention to a mitigation whose implementation needed particular care. In some cases, the analysis identified potential hazards - and what to do about them - should some of the more sophisticated capabilities of the planning and execution software be used. These capabilities, not exercised in the initial experiments on the CubeSat, may be used in future experiments. We remain involved with the developers as they prepare for these future experiments, so our analysis results will be of benefit as these proceed.
2021-03-29
Pieper, P., Herdt, V., Große, D., Drechsler, R..  2020.  Dynamic Information Flow Tracking for Embedded Binaries using SystemC-based Virtual Prototypes. 2020 57th ACM/IEEE Design Automation Conference (DAC). :1—6.
Avoiding security vulnerabilities is very important for embedded systems. Dynamic Information Flow Tracking (DIFT) is a powerful technique to analyze SW with respect to security policies in order to protect the system against a broad range of security related exploits. However, existing DIFT approaches either do not exist for Virtual Prototypes (VPs) or fail to model complex hardware/software interactions.In this paper, we present a novel approach that enables early and accurate DIFT of binaries targeting embedded systems with custom peripherals. Leveraging the SystemC framework, our DIFT engine tracks accurate data flow information alongside the program execution to detect violations of security policies at run-time. We demonstrate the effectiveness and applicability of our approach by extensive experiments.
Liu, W., Niu, H., Luo, W., Deng, W., Wu, H., Dai, S., Qiao, Z., Feng, W..  2020.  Research on Technology of Embedded System Security Protection Component. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :21—27.

With the development of the Internet of Things (IoT), it has been widely deployed. As many embedded devices are connected to the network and massive amounts of security-sensitive data are stored in these devices, embedded devices in IoT have become the target of attackers. The trusted computing is a key technology to guarantee the security and trustworthiness of devices' execution environment. This paper focuses on security problems on IoT devices, and proposes a security architecture for IoT devices based on the trusted computing technology. This paper implements a security management system for IoT devices, which can perform integrity measurement, real-time monitoring and security management for embedded applications, providing a safe and reliable execution environment and whitelist-based security protection for IoT devices. This paper also designs and implements an embedded security protection system based on trusted computing technology, containing a measurement and control component in the kernel and a remote graphical management interface for administrators. The kernel layer enforces the integrity measurement and control of the embedded application on the device. The graphical management interface communicates with the remote embedded device through the TCP/IP protocol, and provides a feature-rich and user-friendly interaction interface. It implements functions such as knowledge base scanning, whitelist management, log management, security policy management, and cryptographic algorithm performance testing.

Zimmo, S., Refaey, A., Shami, A..  2020.  Trusted Boot for Embedded Systems Using Hypothesis Testing Benchmark. 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). :1—2.

Security has become a crucial consideration and is one of the most important design goals for an embedded system. This paper examines the type of boot sequence, and more specifically a trusted boot which utilizes the method of chain of trust. After defining these terms, this paper will examine the limitations of the existing safe boot, and finally propose the method of trusted boot based on hypothesis testing benchmark and the cost it takes to perform this method.

Gressl, L., Krisper, M., Steger, C., Neffe, U..  2020.  Towards Security Attack and Risk Assessment during Early System Design. 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1—8.

The advent of the Internet of Things (IoT) and Cyber-Physical Systems (CPS) enabled a new class of smart and interactive devices. With their continuous connectivity and their access to valuable information in both the digital and physical world, they are attractive targets for security attackers. Hence, with their integration into both the industry and consumer devices, they added a new surface for cybersecurity attacks. These potential threats call for special care of security vulnerabilities during the design of IoT devices and CPS. The design of secure systems is a complex task, especially if they must adhere to other constraints, such as performance, power consumption, and others. A range of design space exploration tools have been proposed in academics, which aim to support system designers in their task of finding the optimal selection of hardware components and task mappings. Said tools offer a limited way of modeling attack scenarios as constraints for a system under design. The framework proposed in this paper aims at closing this gap, offering system designers a way to consider security attacks and security risks during the early design phase. It offers designers to model security constraints from the view of potential attackers, assessing the probability of successful security attacks and security risk. The framework's feasibility and performance is demonstrated by revisiting a potential system design of an industry partner.

Kazemi, Z., Fazeli, M., Hély, D., Beroulle, V..  2020.  Hardware Security Vulnerability Assessment to Identify the Potential Risks in A Critical Embedded Application. 2020 IEEE 26th International Symposium on On-Line Testing and Robust System Design (IOLTS). :1—6.

Internet of Things (IoT) is experiencing significant growth in the safety-critical applications which have caused new security challenges. These devices are becoming targets for different types of physical attacks, which are exacerbated by their diversity and accessibility. Therefore, there is a strict necessity to support embedded software developers to identify and remediate the vulnerabilities and create resilient applications against such attacks. In this paper, we propose a hardware security vulnerability assessment based on fault injection of an embedded application. In our security assessment, we apply a fault injection attack by using our clock glitch generator on a critical medical IoT device. Furthermore, we analyze the potential risks of ignoring these attacks in this embedded application. The results will inform the embedded software developers of various security risks and the required steps to improve the security of similar MCU-based applications. Our hardware security assessment approach is easy to apply and can lead to secure embedded IoT applications against fault attacks.

Nikolov, N..  2020.  Research of MQTT, CoAP, HTTP and XMPP IoT Communication protocols for Embedded Systems. 2020 XXIX International Scientific Conference Electronics (ET). :1—4.

This paper describe most popular IoT protocols used for IoT embedded systems and research their advantage and disadvantage. Hardware stage used in this experiment is described in this article - it is used Esp32 and programming language C. It is very important to use corrected IoT protocol that is determines of purpose, hardware and software of system. There are so different IoT protocols, because they are cover vary requirements for vary cases.

DiMase, D., Collier, Z. A., Chandy, J., Cohen, B. S., D'Anna, G., Dunlap, H., Hallman, J., Mandelbaum, J., Ritchie, J., Vessels, L..  2020.  A Holistic Approach to Cyber Physical Systems Security and Resilience. 2020 IEEE Systems Security Symposium (SSS). :1—8.

A critical need exists for collaboration and action by government, industry, and academia to address cyber weaknesses or vulnerabilities inherent to embedded or cyber physical systems (CPS). These vulnerabilities are introduced as we leverage technologies, methods, products, and services from the global supply chain throughout a system's lifecycle. As adversaries are exploiting these weaknesses as access points for malicious purposes, solutions for system security and resilience become a priority call for action. The SAE G-32 Cyber Physical Systems Security Committee has been convened to address this complex challenge. The SAE G-32 will take a holistic systems engineering approach to integrate system security considerations to develop a Cyber Physical System Security Framework. This framework is intended to bring together multiple industries and develop a method and common language which will enable us to more effectively, efficiently, and consistently communicate a risk, cost, and performance trade space. The standard will allow System Integrators to make decisions utilizing a common framework and language to develop affordable, trustworthy, resilient, and secure systems.