Visible to the public Biblio

Filters: Keyword is Asymmetric Encryption  [Clear All Filters]
Valocký, F., Puchalik, M., Orgon, M..  2020.  Implementing Asymmetric Cryptography in High-Speed Data Transmission over Power Line. 2020 11th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0849–0854.
The article presents a proposal for implementing asymmetric cryptography, specifically the elliptic curves for the protection of high-speed data transmission in a corporate network created on the platform of PLC (Power Line Communications). The solution uses an open-source software library OpenSSL. As part of the design, an experimental workplace was set up, a DHCP and FTP server was established. The possibility of encryption with the selected own elliptic curve from the OpenSSL library was tested so that key pairs (public and private keys) were generated using a software tool. A shared secret was created between communication participants and subsequently, data encryption and decryption were performed.
Boas, Y. d S. V., Rocha, D. S., Barros, C. E. de, Martina, J. E..  2020.  SRVB cryptosystem: another attempt to revive Knapsack-based public-key encryption schemes. 2020 27th International Conference on Telecommunications (ICT). :1–6.
Public-key cryptography is a ubiquitous buildingblock of modern telecommunication technology. Among the most historically important, the knapsack-based encryption schemes, from the early years of public-key cryptography, performed particularly well in computational resources (time and memory), and mathematical and algorithmic simplicity. Although effective cryptanalyses readily curtailed their widespread adoption to several different attempts, the possibility of actual usage of knapsack-based asymmetric encryption schemes remains unsettled. This paper aims to present a novel construction that offers consistent security improvements on knapsack-based cryptography. We propose two improvements upon the original knapsack cryptosystem that address the most important types of attacks: the Diophantine approximationsbased attacks and the lattice problems oracle attacks. The proposed defences demonstrably preclude the types of attacks mentioned above, thus contributing to revive knapsack schemes or settle the matter negatively. Finally, we present the, a contest that is offering a prize for breaking our proposed cryptosystem.
Abbas, M. S., Mahdi, S. S., Hussien, S. A..  2020.  Security Improvement of Cloud Data Using Hybrid Cryptography and Steganography. 2020 International Conference on Computer Science and Software Engineering (CSASE). :123–127.
One of the significant advancements in information technology is Cloud computing, but the security issue of data storage is a big problem in the cloud environment. That is why a system is proposed in this paper for improving the security of cloud data using encryption, information concealment, and hashing functions. In the data encryption phase, we implemented hybrid encryption using the algorithm of AES symmetric encryption and the algorithm of RSA asymmetric encryption. Next, the encrypted data will be hidden in an image using LSB algorithm. In the data validation phase, we use the SHA hashing algorithm. Also, in our suggestion, we compress the data using the LZW algorithm before hiding it in the image. Thus, it allows hiding as much data as possible. By using information concealment technology and mixed encryption, we can achieve strong data security. In this paper, PSNR and SSIM values were calculated in addition to the graph to evaluate the image masking performance before and after applying the compression process. The results showed that PSNR values of stego-image are better for compressed data compared to data before compression.
Kabir, N., Kamal, S..  2020.  Secure Mobile Sensor Data Transfer using Asymmetric Cryptography Algorithms. 2020 International Conference on Cyber Warfare and Security (ICCWS). :1–6.
Mobile sensors are playing a vital role in various applications of a normal day life. Key size in securing data is an important issue to highlight in mobile sensor data transfer between a smart device and a data storage component. Such key size may affect memory storage and processing power of a mobile device. Therefore, we proposed a secure mobile sensor data transfer protocol called secure sensor protocol (SSP). SSP is based on Elliptic Curve Cryptography (ECC), which generates small size key in contrast to conventional asymmetric algorithms like RSA and Diffie Hellman. SSP receive values from light sensor and magnetic flux meter of a smart device. SSP encrypts mobile sensor data using ECC and afterwards it stores cipher information in MySQL database to receive remote data access. We compared the performance of the ECC with other existing asymmetric cryptography algorithms in terms of secure mobile sensor data transfer based on data encryption and decryption time, key size and encoded data size. In-addition, SSP shows better results than other cryptography algorithms in terms of secure mobile sensor data transfer.
Thinn, A. A., Thwin, M. M. S..  2020.  A Hybrid Solution for Confidential Data Transfer Using PKI, Modified AES Algorithm and Image as a Secret Key. 2020 IEEE Conference on Computer Applications(ICCA). :1–4.
Nowadays the provision of online services by government or business organizations has become a standard and necessary operation. Transferring data including the confidential or sensitive information via Internet or insecure network and exchange of them is also increased day by day. As a result, confidential information leakage and cyber threats are also heightened. Confidential information trading became one of the most profitable businesses. Encrypting the data is a solution to secure the data from being exposed. In this paper, we would like to propose a solution for the secure transfer of data using symmetric encryption, asymmetric encryption technologies and Key Generation Server as a mixed hybrid solution. A Symmetric encryption, modified AES algorithm, is used to encrypt data. Digital certificate is used both for data encryption and digital signing to assure data integrity. Key generation server is used to generate the second secret key from the publicly recognized information of a person and this key is used as a second secret key in the modified AES. The proposed hybrid solution can be utilized in any applications that require high confidentiality, integrity of data and non-repudiation.
ManJiang, D., Kai, C., ZengXi, W., LiPeng, Z..  2020.  Design of a Cloud Storage Security Encryption Algorithm for Power Bidding System. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:1875–1879.
To solve the problem of poor security and performance caused by traditional encryption algorithm in the cloud data storage of power bidding system, we proposes a hybrid encryption method based on symmetric encryption and asymmetric encryption. In this method, firstly, the plaintext upload file is divided into several blocks according to the proportion, then the large file block is encrypted by symmetrical encryption algorithm AES to ensure the encryption performance, and then the small file block and AES key are encrypted by asymmetric encryption algorithm ECC to ensure the file encryption strength and the security of key transmission. Finally, the ciphertext file is generated and stored in the cloud storage environment to prevent sensitive files Pieces from being stolen and destroyed. The experimental results show that the hybrid encryption method can improve the anti-attack ability of cloud storage files, ensure the security of file storage, and have high efficiency of file upload and download.
Mazlisham, M. H., Adnan, S. F. Syed, Isa, M. A. Mat, Mahad, Z., Asbullah, M. A..  2020.  Analysis of Rabin-P and RSA-OAEP Encryption Scheme on Microprocessor Platform. 2020 IEEE 10th Symposium on Computer Applications Industrial Electronics (ISCAIE). :292–296.

This paper presents an analysis of Rabin-P encryption scheme on microprocessor platform in term of runtime and energy consumption. A microprocessor is one of the devices utilized in the Internet of Things (IoT) structure. Therefore, in this work, the microprocessor selected is the Raspberry Pi that is powered with a smaller version of the Linux operating system for embedded devices, the Raspbian OS. A comparative analysis is then conducted for Rabin-p and RSA-OAEP cryptosystem in the Raspberry Pi setup. A conclusion can be made that Rabin-p performs faster in comparison to the RSA-OAEP cryptosystem in the microprocessor platform. Rabin-p can improve decryption efficiency by using only one modular exponentiation while produces a unique message after the decryption process.

Abusukhon, A., AlZu’bi, S..  2020.  New Direction of Cryptography: A Review on Text-to-Image Encryption Algorithms Based on RGB Color Value. 2020 Seventh International Conference on Software Defined Systems (SDS). :235–239.
Data encryption techniques are important for answering the question: How secure is the Internet for sending sensitive data. Keeping data secure while they are sent through the global network is a difficult task. This is because many hackers are fishing these data in order to get some benefits. The researchers have developed various types of encryption algorithms to protect data from attackers. These algorithms are mainly classified into two categories namely symmetric and asymmetric encryption algorithms. This survey sheds light on the recent work carried out on encrypting a text into an image based on the RGB color value and held a comparison between them based on various factors evolved from the literature.
Kumar, S., Singh, B. K., Akshita, Pundir, S., Batra, S., Joshi, R..  2020.  A survey on Symmetric and Asymmetric Key based Image Encryption. 2nd International Conference on Data, Engineering and Applications (IDEA). :1–5.
Image Encryption is a technique where an algorithm along with a set of characters called key encrypts the data into cipher text. The cipher text can be converted back into plaintext by decryption. This technique is employed for the security of data such that confidentiality, integrity and authenticity of data is maintained. In today's era security of information has become a crucial task, unauthorized access and use of data has become a noticeable issue. To provide the security required, there are several algorithms to suit the purposes. While the use and transferring of images has become easy and faster due to technological advancements especially wireless sensor network, image destruction and illegitimate use has become a potential threat. Different transfer mediums and various uses of images require different and appropriately suiting encryption approaches. Hence, in this paper we discuss the types of image encryption techniques. We have also discussed several encryption algorithms, their advantages and suitability.
Swetha, K., Kalyan, S. P., Pavan, V., Roshini, A..  2020.  A Modified Tiny Asymmetric Encryption for Secure Ftp to Network. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :1176–1180.
The target of this venture is to give the protected correspondence among the associated frameworks in the system. It gives the vital validation to the record moving in the system transmission. It comprises of 3 modules in particular encryption and unscrambling module, secret key verification to the information that needs to transmit through system. In this system, File Transfer Protocol can be used to execute Server-client innovation and the document can be scrambled and unscrambled by sending the end client through attachment programming of the end client.
Chinen, Kotaro, Anada, Hiroaki.  2019.  Construction and Evaluation of Attribute-Based Challenge-and-Response Authentication on Asymmetric Bilinear Map. 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW). :320–326.
We propose a construction of an attribute-based authentication scheme (ABAuth). Our ABAuth is a challenge-and-response protocol which uses an attribute-based key-encapsulation mechanisum (ABKEM). The ABKEM is basically the one proposed by Ostrovsky-Sahai-Waters (ACM-CCS 2007), but in contrast to the original ABKEM our ABKEM is based on an asymmetric bilinear map for better computational efficiency. We also give a proof of one-way-CCA security of ABKEM in the asymmetric case, which leads to concurrent man-in-the-middle security of ABAuth. We note that the selective security is often enough for the case of authentication in contrast to the case of encryption. Then we evaluate our ABAuth by implementation as well as by discussion. We use the TEPLA library TEPLA for the asymmetric bilinear map that is Type-3 pairing on the BN curve.
Wu, Zhengze, Zhang, Xiaohong, Zhong, Xiaoyong.  2019.  Generalized Chaos Synchronization Circuit Simulation and Asymmetric Image Encryption. IEEE Access. 7:37989–38008.
Generalized chaos systems have more complex dynamic behavior than conventional chaos systems. If a generalized response system can be synchronized with a conventional drive system, the flexible control parameters and unpredictable synchronization state will increase significantly. The study first constructs a four-dimensional nonlinear dynamic equation with quadratic variables as a drive system. The numerical simulation and analyses of the Lyapunov exponent show that it is also a chaotic system. Based on the generalized chaos synchronization (GCS) theory, a four-dimensional diffeomorphism function is designed, and the corresponding GCS response system is generated. Simultaneously, the structural and synchronous circuits of information interaction and control are constructed with Multisim™ software, with the circuit simulation resulting in a good agreement with the numerical calculations. In order to verify the practical effect of generalized synchronization, an RGB digital image secure communication scheme is proposed. We confuse a 24-bit true color image with the designed GCS system, extend the original image to 48-bits, analyze the scheme security from keyspace, key sensitivity and non-symmetric identity authentication, classical types of attacks, and statistical average from the histogram, image correlation. The research results show that this GCS system is simple and feasible, and the encryption algorithm is closely related to the confidential information, which can resist the differential attack. The scheme is suitable to be applied in network images or other multimedia safe communications.
Almajed, Hisham N., Almogren, Ahmad S..  2019.  SE-Enc: A Secure and Efficient Encoding Scheme Using Elliptic Curve Cryptography. IEEE Access. 7:175865–175878.
Many applications use asymmetric cryptography to secure communications between two parties. One of the main issues with asymmetric cryptography is the need for vast amounts of computation and storage. While this may be true, elliptic curve cryptography (ECC) is an approach to asymmetric cryptography used widely in low computation devices due to its effectiveness in generating small keys with a strong encryption mechanism. The ECC decreases power consumption and increases device performance, thereby making it suitable for a wide range of devices, ranging from sensors to the Internet of things (IoT) devices. It is necessary for the ECC to have a strong implementation to ensure secure communications, especially when encoding a message to an elliptic curve. It is equally important for the ECC to secure the mapping of the message to the curve used in the encryption. This work objective is to propose a trusted and proofed scheme that offers authenticated encryption (AE) for both encoding and mapping a message to the curve. In addition, this paper provides analytical results related to the security requirements of the proposed scheme against several encryption techniques. Additionally, a comparison is undertaken between the SE-Enc and other state-of-the-art encryption schemes to evaluate the performance of each scheme.
Mansour, Ahmad, Malik, Khalid M., Kaso, Niko.  2019.  AMOUN: Lightweight Scalable Multi-recipient Asymmetric Cryptographic Scheme. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0838–0846.
Securing multi-party communication is very challenging particularly in dynamic networks. Existing multi-recipient cryptographic schemes pose variety of limitations. These include: requiring trust among all recipients to make an agreement, high computational cost for both encryption and decryption, and additional communication overhead when group membership changes. To overcome these limitations, this paper introduces a novel multi-recipient asymmetric cryptographic scheme, AMOUN. This scheme enables the sender to possibly send different messages in one ciphertext to multiple recipients to better utilize network resources, while ensuring that each recipient only retrieves its own designated message. Security analysis demonstrates that proposed scheme is secure against well-known attacks. Evaluation results demonstrate that lightweight AMOUN outperforms RSA and Multi-RSA in terms of computational cost for both encryption and decryption. For a given prime size, in case of encryption, AMOUN achieves 86% and 98% lower average computational cost than RSA and Multi-RSA, respectively; while for decryption, it shows performance improvement of 98% compared to RSA and Multi-RSA.
Zeng, Ming, Zhang, Kai, Qian, Haifeng, Chen, Xiaofeng, Chen, Jie, Mu, Yi.  2019.  A Searchable Asymmetric Encryption Scheme with Support for Boolean Queries for Cloud Applications. The Computer Journal. 62:563–578.
Cloud computing is a new promising technology paradigm that can provide clients from the whole network with scalable storage resources and on-demand high-quality services. However, security concerns are raised when sensitive data are outsourced. Searchable encryption is a kind of cryptographic primitive that enables clients to selectively retrieve encrypted data, the existing schemes that support for sub-linear boolean queries are only considered in symmetric key setting, which makes a limitation for being widely deployed in many cloud applications. In order to address this issue, we propose a novel searchable asymmetric encryption scheme to support for sub-linear boolean query over encrypted data in a multi-client model that is extracted from an important observation that the outsourced database in cloud is continuously contributed and searched by multiple clients. For the purpose of introducing the scheme, we combine both the ideas of symmetric searchable encryption and public key searchable encryption and then design a novel secure inverted index. Furthermore, a detailed security analysis for our scheme is given under the simulation-based security definition. Finally, we conduct experiments for our construction on a real dataset (Enron) along with a performance analysis to show its practicality.
Li, Wei, Mclernon, Des, Wong, Kai-Kit, Wang, Shilian, Lei, Jing, Zaidi, Syed Ali Raza.  2019.  Asymmetric Physical Layer Encryption for Wireless Communications. IEEE Access. 7:46959–46967.
In this paper, we establish a cryptographic primitive for wireless communications. An asymmetric physical layer encryption (PLE) scheme based on elliptic curve cryptography is proposed. Compared with the conventional symmetric PLE, asymmetric PLE avoids the need of key distribution on a private channel, and it has more tools available for processing complex-domain signals to confuse possible eavesdroppers when compared with upper-layer public key encryption. We use quantized information entropy to measure the constellation confusion degree. The numerical results show that the proposed scheme provides greater confusion to eavesdroppers and yet does not affect the bit error rate (BER) of the intended receiver (the information entropy of the constellation increases to 17.5 for 9-bit quantization length). The scheme also has low latency and complexity [O(N2.37), where N is a fixed block size], which is particularly attractive for implementation.
Luo, Yuling, Ouyang, Xue, Liu, Junxiu, Cao, Lvchen.  2019.  An Image Encryption Method Based on Elliptic Curve Elgamal Encryption and Chaotic Systems. IEEE Access. 7:38507–38522.
Due to the potential security problem about key management and distribution for the symmetric image encryption schemes, a novel asymmetric image encryption method is proposed in this paper, which is based on the elliptic curve ElGamal (EC-ElGamal) cryptography and chaotic theory. Specifically, the SHA-512 hash is first adopted to generate the initial values of a chaotic system, and a crossover permutation in terms of chaotic index sequence is used to scramble the plain-image. Furthermore, the generated scrambled image is embedded into the elliptic curve for the encrypted by EC-ElGamal which can not only improve the security but also can help solve the key management problems. Finally, the diffusion combined chaos game with DNA sequence is executed to get the cipher image. The experimental analysis and performance comparisons demonstrate that the proposed method has high security, good efficiency, and strong robustness against the chosen-plaintext attack which make it have potential applications for the image secure communications.
Yue, Tongxu, Wang, Chuang, Zhu, Zhi-xiang.  2019.  Hybrid Encryption Algorithm Based on Wireless Sensor Networks. 2019 IEEE International Conference on Mechatronics and Automation (ICMA). :690–694.
Based on the analysis of existing wireless sensor networks(WSNs) security vulnerability, combining the characteristics of high encryption efficiency of the symmetric encryption algorithm and high encryption intensity of asymmetric encryption algorithm, a hybrid encryption algorithm based on wireless sensor networks is proposed. Firstly, by grouping plaintext messages, this algorithm uses advanced encryption standard (AES) of symmetric encryption algorithm and elliptic curve encryption (ECC) of asymmetric encryption algorithm to encrypt plaintext blocks, then uses data compression technology to get cipher blocks, and finally connects MAC address and AES key encrypted by ECC to form a complete ciphertext message. Through the description and implementation of the algorithm, the results show that the algorithm can reduce the encryption time, decryption time and total running time complexity without losing security.
Qin, Hao, Li, Zhi, Hu, Peng, Zhang, Yulong, Dai, Yuwen.  2019.  Research on Point-To-Point Encryption Method of Power System Communication Data Based on Block Chain Technology. 2019 12th International Conference on Intelligent Computation Technology and Automation (ICICTA). :328–332.
Aiming at the poor stability of traditional communication data encryption methods, a point-to-point encryption method of power system communication data based on block chain technology is studied and designed. According to the principle of asymmetric key encryption, the design method makes use of the decentralization and consensus mechanism of block chain technology to develop the public key distribution scheme. After the public key distribution is completed, the sender and receiver of communication data generate the transfer key and pair the key with the public key to realize the pairing between data points. Xor and modular exponentiation are performed on the communication data content, and prime Numbers are used to fill the content data block. The receiver decrypts the data according to the encryption identifier of the data content, and completes the design of the encryption method of communication data point to ground. Through the comparison with the traditional encryption method, it is proved that the larger the amount of encrypted data is, the more secure the communication data can be, and the stability performance is better than the traditional encryption method.
Touati, Lyes, Challal, Yacine.  2016.  Collaborative KP-ABE for cloud-based Internet of Things applications. 2016 IEEE International Conference on Communications (ICC). :1—7.

KP-ABE mechanism emerges as one of the most suitable security scheme for asymmetric encryption. It has been widely used to implement access control solutions. However, due to its expensive overhead, it is difficult to consider this cryptographic scheme in resource-limited networks, such as the IoT. As the cloud has become a key infrastructural support for IoT applications, it is interesting to exploit cloud resources to perform heavy operations. In this paper, a collaborative variant of KP-ABE named C-KP-ABE for cloud-based IoT applications is proposed. Our proposal is based on the use of computing power and storage capacities of cloud servers and trusted assistant nodes to run heavy operations. A performance analysis is conducted to show the effectiveness of the proposed solution.

Bouchaala, Mariem, Ghazel, Cherif, Saidane, Leila Azouz.  2019.  Revocable Sliced CipherText Policy Attribute Based Encryption Scheme in Cloud Computing. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :1860—1865.

Cloud Computing is the most promising paradigm in recent times. It offers a cost-efficient service to individual and industries. However, outsourcing sensitive data to entrusted Cloud servers presents a brake to Cloud migration. Consequently, improving the security of data access is the most critical task. As an efficient cryptographic technique, Ciphertext Policy Attribute Based Encryption(CP-ABE) develops and implements fine-grained, flexible and scalable access control model. However, existing CP-ABE based approaches suffer from some limitations namely revocation, data owner overhead and computational cost. In this paper, we propose a sliced revocable solution resolving the aforementioned issues abbreviated RS-CPABE. We applied splitting algorithm. We execute symmetric encryption with Advanced Encryption Standard (AES)in large data size and asymmetric encryption with CP-ABE in constant key length. We re-encrypt in case of revocation one single slice. To prove the proposed model, we expose security and performance evaluation.

Keleman, Levon, Matić, Danijel, Popović, Miroslav, Kaštelan, Ivan.  2019.  Secure firmware update in embedded systems. 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin). :16–19.
Great numbers of embedded devices are performing safety critical operations, which means it is very important to keep them operating without interference. Update is the weak point that could be exploited by potential attackers to gain access to the system, sabotage it or to simply steal someone else's intellectual property. This paper presents an implementation of secure update process for embedded systems which prevents man-in-the-middle attacks. By using a combination of hash functions, symmetric and asymmetric encryption algorithms it demonstrates how to achieve integrity, authenticity and confidentiality of the update package that is sent to the target hardware. It covers implementation starting from key exchange, next explaining update package encryption process and then decryption on the target hardware. It does not go into a detail about specific encryption algorithms that could be used. It presents a generalized model for secure update that could be adjusted to specific needs.
Liang, Shiaofang, Li, Mingchen, Li, Wenjing.  2019.  Research on Traceability Algorithm of Logistics Service Transaction Based on Blockchain. 2019 18th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES). :186–189.

The traditional logistics transaction lacks a perfect traceability mechanism, and the data information's integrity and safety are not guaranteed in the existing traceability system. In order to solve the problem of main body responsibility caused by the participation of many stakeholders and the uncompleted supervision system in the process of logistics service transaction, This paper proposes a traceability algorithm for logistics service transactions based on blockchain. Based on the logistics service supply chain and alliance chain, the paper firstly investigates the traditional logistics service supply chain, analyzes the existing problems, and combines the structural characteristics of the blockchain to propose a decentralized new logistics service supply chain concept model based on blockchain. Then, using Globe sandara 1 to standardize the physical products and data circulating in the new logistics service supply chain, form unified and standard traceable data, and propose a multi-dimensional traceable data model based on logistics service supply chain. Based on the proposed model, combined with the business process of the logistics service supply chain and asymmetric encryption, a blockchain-based logistics service transaction traceability algorithm is designed. Finally, the simulation results show that the algorithm realizes the end-to-end traceability of the logistics service supply chain, and the service transaction is transparent while ensuring the integrity and security of the data.

Quaum, M. A., Haider, S. Uddin, Haque, M. M..  2018.  An Improved Asymmetric Key Based Security Architecture for WSN. 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2). :1-5.

Ubiquitous Healthcare System (U-Healthcare) is a well-known application of wireless sensor networking (WSN). In this system, the sensors take less power for operating the function. As the data transfers between sensor and other stations is sensitive so there needs to provide a security scheme. Due to the low life of sensor nodes in Wireless Sensor Networks (WSN), asymmetric key based security (AKS) architecture is always considered as unsuitable for these types of networks. Several papers have been published in recent past years regarding how to incorporate AKS in WSN, Haque et al's Asymmetric key based Architecture (AKA) is one of them. But later it is found that this system has authentication problem and therefore prone to man-in-the-middle (MITM) attack, furthermore it is not a truly asymmetric based scheme. We address these issues in this paper and proposed a complete asymmetric approach using PEKS-PM (proposed by Pham in [8]) to remove impersonation attack. We also found some other vulnerabilities in the original AKA system and proposed solutions, therefore making it a better and enhanced asymmetric key based architecture.

Sen, N., Dantu, R., Vempati, J., Thompson, M..  2018.  Performance Analysis of Elliptic Curves for Real-Time Video Encryption. 2018 National Cyber Summit (NCS). :64-71.

The use of real-time video streaming is increasing day-by-day, and its security has become a serious issue now. Video encryption is a challenging task because of its large frame size. Video encryption can be done with symmetric key as well as asymmetric key encryption. Among different asymmetric key encryption technique, ECC performs better than other algorithms like RSA in terms of smaller key size and faster encryption and decryption operation. In this work, we have analyzed the performance of 18 different ECC curves and suggested some suitable curves for real-time video encryption.