Biblio
Computational Intelligence (CI) algorithms/techniques are packaged in a variety of disparate frameworks/applications that all vary with respect to specific supported functionality and implementation decisions that drastically change performance. Developers looking to employ different CI techniques are faced with a series of trade-offs in selecting the appropriate library/framework. These include resource consumption, features, portability, interface complexity, ease of parallelization, etc. Considerations such as language compatibility and familiarity with a particular library make the choice of libraries even more difficult. The paper introduces MeetCI, an open source software framework for computational intelligence software design automation that facilitates the application design decisions and their software implementation process. MeetCI abstracts away specific framework details of CI techniques designed within a variety of libraries. This allows CI users to benefit from a variety of current frameworks without investigating the nuances of each library/framework. Using an XML file, developed in accordance with the specifications, the user can design a CI application generically, and utilize various CI software without having to redesign their entire technology stack. Switching between libraries in MeetCI is trivial and accessing the right library to satisfy a user's goals can be done easily and effectively. The paper discusses the framework's use in design of various applications. The design process is illustrated with four different examples from expert systems and machine learning domains, including the development of an expert system for security evaluation, two classification problems and a prediction problem with recurrent neural networks.
This paper investigates the use of deep reinforcement learning (DRL) in the design of a "universal" MAC protocol referred to as Deep-reinforcement Learning Multiple Access (DLMA). The design framework is partially inspired by the vision of DARPA SC2, a 3-year competition whereby competitors are to come up with a clean-slate design that "best share spectrum with any network(s), in any environment, without prior knowledge, leveraging on machine-learning technique". While the scope of DARPA SC2 is broad and involves the redesign of PHY, MAC, and Network layers, this paper's focus is narrower and only involves the MAC design. In particular, we consider the problem of sharing time slots among a multiple of time-slotted networks that adopt different MAC protocols. One of the MAC protocols is DLMA. The other two are TDMA and ALOHA. The DRL agents of DLMA do not know that the other two MAC protocols are TDMA and ALOHA. Yet, by a series of observations of the environment, its own actions, and the rewards - in accordance with the DRL algorithmic framework - a DRL agent can learn the optimal MAC strategy for harmonious co-existence with TDMA and ALOHA nodes. In particular, the use of neural networks in DRL (as opposed to traditional reinforcement learning) allows for fast convergence to optimal solutions and robustness against perturbation in hyper- parameter settings, two essential properties for practical deployment of DLMA in real wireless networks.
Corpora used to learn open-domain Question-Answering (QA) models are typically collected from a wide variety of topics or domains. Since QA requires understanding natural language, open-domain QA models generally need very large training corpora. A simple way to alleviate data demand is to restrict the domain covered by the QA model, leading thus to domain-specific QA models. While learning improved QA models for a specific domain is still challenging due to the lack of sufficient training data in the topic of interest, additional training data can be obtained from related topic domains. Thus, instead of learning a single open-domain QA model, we investigate domain adaptation approaches in order to create multiple improved domain-specific QA models. We demonstrate that this can be achieved by stratifying the source dataset, without the need of searching for complementary data unlike many other domain adaptation approaches. We propose a deep architecture that jointly exploits convolutional and recurrent networks for learning domain-specific features while transferring domain-shared features. That is, we use transferable features to enable model adaptation from multiple source domains. We consider different transference approaches designed to learn span-level and sentence-level QA models. We found that domain-adaptation greatly improves sentence-level QA performance, and span-level QA benefits from sentence information. Finally, we also show that a simple clustering algorithm may be employed when the topic domains are unknown and the resulting loss in accuracy is negligible.
The rapid rise of cyber-crime activities and the growing number of devices threatened by them place software security issues in the spotlight. As around 90% of all attacks exploit known types of security issues, finding vulnerable components and applying existing mitigation techniques is a viable practical approach for fighting against cyber-crime. In this paper, we investigate how the state-of-the-art machine learning techniques, including a popular deep learning algorithm, perform in predicting functions with possible security vulnerabilities in JavaScript programs. We applied 8 machine learning algorithms to build prediction models using a new dataset constructed for this research from the vulnerability information in public databases of the Node Security Project and the Snyk platform, and code fixing patches from GitHub. We used static source code metrics as predictors and an extensive grid-search algorithm to find the best performing models. We also examined the effect of various re-sampling strategies to handle the imbalanced nature of the dataset. The best performing algorithm was KNN, which created a model for the prediction of vulnerable functions with an F-measure of 0.76 (0.91 precision and 0.66 recall). Moreover, deep learning, tree and forest based classifiers, and SVM were competitive with F-measures over 0.70. Although the F-measures did not vary significantly with the re-sampling strategies, the distribution of precision and recall did change. No re-sampling seemed to produce models preferring high precision, while re-sampling strategies balanced the IR measures.
Routers are important devices in the networks that carry the burden of transmitting information among the communication devices on the Internet. If a malicious adversary wants to intercept the information or paralyze the network, it can directly attack the routers and then achieve the suspicious goals. Thus, preventing router security is of great importance. However, router systems are notoriously difficult to understand or diagnose for their inaccessibility and heterogeneity. The common way of gaining access to the router system and detecting the anomaly behaviors is to inspect the router syslogs or monitor the packets of information flowing to the routers. These approaches just diagnose the routers from one aspect but do not consider them from multiple views. In this paper, we propose an approach to detect the anomalies and faults of the routers with multiple information learning. We try to use the routers' information not from the developer's view but from the user' s view, which does not need any expert knowledge. First, we do the offline learning to transform the benign or corrupted user actions into the syslogs. Then, we try to decide whether the input routers' conditions are poor or not with clustering. During the detection phase, we use the distance between the event and the cluster to decide if it is the anomaly event and we can provide the corresponding solutions. We have applied our approach in a university network which contains Cisco, Huawei and Dlink routers for three months. We aligned our experiment with former work as a baseline for comparison. Our approach can gain 89.6% accuracy in detecting the attacks which is 5.1% higher than the former work. The results show that our approach performs in limited time as well as memory usages and has high detection and low false positives.
Trust Relationships have shown great potential to improve recommendation quality, especially for cold start and sparse users. Since each user trust their friends in different degrees, there are numbers of works been proposed to take Trust Strength into account for recommender systems. However, these methods ignore the information of trust directions between users. In this paper, we propose a novel method to adaptively learn directive trust strength to improve trust-aware recommender systems. Advancing previous works, we propose to establish direction of trust strength by modeling the implicit relationships between users with roles of trusters and trustees. Specially, under new trust strength with directions, how to compute the directive trust strength is becoming a new challenge. Therefore, we present a novel method to adaptively learn directive trust strengths in a unified framework by enforcing the trust strength into range of [0, 1] through a mapping function. Our experiments on Epinions and Ciao datasets demonstrate that the proposed algorithm can effectively outperform several state-of-art algorithms on both MAE and RMSE metrics.
The risk of cyber-attacks exploiting vulnerable organisations has increased significantly over the past several years. These attacks may combine to exploit a vulnerability breach within a system's protection strategy, which has the potential for loss, damage or destruction of assets. Consequently, every vulnerability has an accompanying risk, which is defined as the "intersection of assets, threats, and vulnerabilities" [1]. This research project aims to experimentally compare the similarity-based ranking of cyber security information utilising a recommendation environment. The Memory-Based Collaborative Filtering technique was employed, specifically the User-Based and Item-Based approaches. These systems utilised information from the National Vulnerability Database, specifically for the identification and similarity-based ranking of cyber-security vulnerability information, relating to hardware and software applications. Experiments were performed using the Item-Based technique, to identify the optimum system parameters, evaluated through the AUC evaluation metric. Once identified, the Item-Based technique was compared with the User-Based technique which utilised the parameters identified from the previous experiments. During these experiments, the Pearson's Correlation Coefficient and the Cosine similarity measure was used. From these experiments, it was identified that utilised the Item-Based technique which employed the Cosine similarity measure, an AUC evaluation metric of 0.80225 was achieved.
Recommender systems try to predict the preferences of users for specific items. These systems suffer from profile injection attacks, where the attackers have some prior knowledge of the system ratings and their goal is to promote or demote a particular item introducing abnormal (anomalous) ratings. The detection of both cases is a challenging problem. In this paper, we propose a framework to spot anomalous rating profiles (outliers), where the outliers hurriedly create a profile that injects into the system either random ratings or specific ratings, without any prior knowledge of the existing ratings. The proposed detection method is based on the unpredictable behavior of the outliers in a validation set, on the user-item rating matrix and on the similarity between users. The proposed system is totally unsupervised, and in the last step it uses the k-means clustering method automatically spotting the spurious profiles. For the cases where labeling sample data is available, a random forest classifier is trained to show how supervised methods outperforms unsupervised ones. Experimental results on the MovieLens 100k and the MovieLens 1M datasets demonstrate the high performance of the proposed schemata.
Ransomware, as a specialized form of malicious software, has recently emerged as a major threat in computer security. With an ability to lock out user access to their content, recent ransomware attacks have caused severe impact at an individual and organizational level. While research in malware detection can be adapted directly for ransomware, specific structural properties of ransomware can further improve the quality of detection. In this paper, we adapt the deep learning methods used in malware detection for detecting ransomware from emulation sequences. We present specialized recurrent neural networks for capturing local event patterns in ransomware sequences using the concept of attention mechanisms. We demonstrate the performance of enhanced LSTM models on a sequence dataset derived by the emulation of ransomware executables targeting the Windows environment.
This paper presents a control strategy for Cyber-Physical System defense developed in the framework of the European Project ATENA, that concerns Critical Infrastructure (CI) protection. The aim of the controller is to find the optimal security configuration, in terms of countermeasures to implement, in order to address the system vulnerabilities. The attack/defense problem is modeled as a multi-agent general sum game, where the aim of the defender is to prevent the most damage possible by finding an optimal trade-off between prevention actions and their costs. The problem is solved utilizing Reinforcement Learning and simulation results provide a proof of the proposed concept, showing how the defender of the protected CI is able to minimize the damage caused by his her opponents by finding the Nash equilibrium of the game in the zero-sum variant, and, in a more general scenario, by driving the attacker in the position where the damage she/he can cause to the infrastructure is lower than the cost it has to sustain to enforce her/his attack strategy.
Advancements in semiconductor domain gave way to realize numerous applications in Video Surveillance using Computer vision and Deep learning, Video Surveillances in Industrial automation, Security, ADAS, Live traffic analysis etc. through image understanding improves efficiency. Image understanding requires input data with high precision which is dependent on Image resolution and location of camera. The data of interest can be thermal image or live feed coming for various sensors. Composite(CVBS) is a popular video interface capable of streaming upto HD(1920x1080) quality. Unlike high speed serial interfaces like HDMI/MIPI CSI, Analog composite video interface is a single wire standard supporting longer distances. Image understanding requires edge detection and classification for further processing. Sobel filter is one the most used edge detection filter which can be embedded into live stream. This paper proposes Zynq FPGA based system design for video surveillance with Sobel edge detection, where the input Composite video decoded (Analog CVBS input to YCbCr digital output), processed in HW and streamed to HDMI display simultaneously storing in SD memory for later processing. The HW design is scalable for resolutions from VGA to Full HD for 60fps and 4K for 24fps. The system is built on Xilinx ZC702 platform and TVP5146 to showcase the functional path.
With the rapid development of information technology, video surveillance system has become a key part in the security and protection system of modern cities. Especially in prisons, surveillance cameras could be found almost everywhere. However, with the continuous expansion of the surveillance network, surveillance cameras not only bring convenience, but also produce a massive amount of monitoring data, which poses huge challenges to storage, analytics and retrieval. The smart monitoring system equipped with intelligent video analytics technology can monitor as well as pre-alarm abnormal events or behaviours, which is a hot research direction in the field of surveillance. This paper combines deep learning methods, using the state-of-the-art framework for instance segmentation, called Mask R-CNN, to train the fine-tuning network on our datasets, which can efficiently detect objects in a video image while simultaneously generating a high-quality segmentation mask for each instance. The experiment show that our network is simple to train and easy to generalize to other datasets, and the mask average precision is nearly up to 98.5% on our own datasets.
Anomaly detection on security logs is receiving more and more attention. Authentication events are an important component of security logs, and being able to produce trustful and accurate predictions minimizes the effort of cyber-experts to stop false attacks. Observed events are classified into Normal, for legitimate user behavior, and Malicious, for malevolent actions. These classes are consistently excessively imbalanced which makes the classification problem harder; in the commonly used Los Alamos dataset, the malicious class comprises only 0.00033% of the total. This work proposes a novel method to extract advanced composite features, and a supervised learning technique for classifying authentication logs trustfully; the models are Random Forest, LogitBoost, Logistic Regression, and ultimately Majority Voting which leverages the predictions of the previous models and gives the final prediction for each authentication event. We measure the performance of our experiments by using the False Negative Rate and False Positive Rate. In overall we achieve 0 False Negative Rate (i.e. no attack was missed), and on average a False Positive Rate of 0.0019.
Software insecurity is being identified as one of the leading causes of security breaches. In this paper, we revisited one of the strategies in solving software insecurity, which is the use of software quality metrics. We utilized a multilayer deep feedforward network in examining whether there is a combination of metrics that can predict the appearance of security-related bugs. We also applied the traditional machine learning algorithms such as decision tree, random forest, naïve bayes, and support vector machines and compared the results with that of the Deep Learning technique. The results have successfully demonstrated that it was possible to develop an effective predictive model to forecast software insecurity based on the software metrics and using Deep Learning. All the models generated have shown an accuracy of more than sixty percent with Deep Learning leading the list. This finding proved that utilizing Deep Learning methods and a combination of software metrics can be tapped to create a better forecasting model thereby aiding software developers in predicting security bugs.
Critical Infrastructures (CIs) use Supervisory Control And Data Acquisition (SCADA) systems for remote control and monitoring. Sophisticated security measures are needed to address malicious intrusions, which are steadily increasing in number and variety due to the massive spread of connectivity and standardisation of open SCADA protocols. Traditional Intrusion Detection Systems (IDSs) cannot detect attacks that are not already present in their databases. Therefore, in this paper, we assess Machine Learning (ML) for intrusion detection in SCADA systems using a real data set collected from a gas pipeline system and provided by the Mississippi State University (MSU). The contribution of this paper is two-fold: 1) The evaluation of four techniques for missing data estimation and two techniques for data normalization, 2) The performances of Support Vector Machine (SVM), and Random Forest (RF) are assessed in terms of accuracy, precision, recall and F1score for intrusion detection. Two cases are differentiated: binary and categorical classifications. Our experiments reveal that RF detect intrusions effectively, with an F1score of respectively \textbackslashtextgreater 99%.
Traditional anti-virus technologies have failed to keep pace with proliferation of malware due to slow process of their signatures and heuristics updates. Similarly, there are limitations of time and resources in order to perform manual analysis on each malware. There is a need to learn from this vast quantity of data, containing cyber attack pattern, in an automated manner to proactively adapt to ever-evolving threats. Machine learning offers unique advantages to learn from past cyber attacks to handle future cyber threats. The purpose of this research is to propose a framework for multi-classification of malware into well-known categories by applying different machine learning models over corpus of malware analysis reports. These reports are generated through an open source malware sandbox in an automated manner. We applied extensive pre-modeling techniques for data cleaning, features exploration and features engineering to prepare training and test datasets. Best possible hyper-parameters are selected to build machine learning models. These prepared datasets are then used to train the machine learning classifiers and to compare their prediction accuracy. Finally, these results are validated through a comprehensive 10-fold cross-validation methodology. The best results are achieved through Gaussian Naive Bayes classifier with random accuracy of 96% and 10-Fold Cross Validation accuracy of 91.2%. The said framework can be deployed in an operational environment to learn from malware attacks for proactively adapting matching counter measures.