Visible to the public Biblio

Filters: Keyword is performance evaluation  [Clear All Filters]
2020-08-03
Maxa, Jean-Aimé, Ben Mahmoud, Mohamed Slim, Larrieu, Nicolas.  2019.  Performance evaluation of a new secure routing protocol for UAV Ad hoc Network. 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). :1–10.

UAANET (UAV Ad hoc Network) is defined as an autonomous system made of swarm of UAVs (Unmanned Aerial Vehicle) and GCS (Ground Control Station). Compared to other types of MANET (Mobile Ad hoc network), UAANET have some unique features and bring several challenges. One of them is the design of routing protocol. It must be efficient for creating routes between nodes and dynamically adjusting to the rapidly changing topology. It must also be secure to protect the integrity of the network against malicious attackers. In this paper, we will present the architecture and the performance evaluation (based on both real-life experimental and emulation studies) of a secure routing protocol called SUAP (Secure UAV Ad hoc routing Protocol). SUAP ensures routing services between nodes to exchange real-time traffic and also guarantees message authentication and integrity to protect the network integrity. Additional security mechanisms were added to detect Wormhole attacks. Wormhole attacks represent a high level of risk for UAV ad hoc network and this is the reason why we choose to focus on this specific multi node attack. Through performance evaluation campaign, our results show that SUAP ensures the expected security services against different types of attacks while providing an acceptable quality of service for real-time data exchanges.

2020-07-27
Tun, May Thet, Nyaung, Dim En, Phyu, Myat Pwint.  2019.  Performance Evaluation of Intrusion Detection Streaming Transactions Using Apache Kafka and Spark Streaming. 2019 International Conference on Advanced Information Technologies (ICAIT). :25–30.
In the information era, the size of network traffic is complex because of massive Internet-based services and rapid amounts of data. The more network traffic has enhanced, the more cyberattacks have dramatically increased. Therefore, cybersecurity intrusion detection has been a challenge in the current research area in recent years. The Intrusion detection system requires high-level protection and detects modern and complex attacks with more accuracy. Nowadays, big data analytics is the main key to solve marketing, security and privacy in an extremely competitive financial market and government. If a huge amount of stream data flows within a short period time, it is difficult to analyze real-time decision making. Performance analysis is extremely important for administrators and developers to avoid bottlenecks. The paper aims to reduce time-consuming by using Apache Kafka and Spark Streaming. Experiments on the UNSWNB-15 dataset indicate that the integration of Apache Kafka and Spark Streaming can perform better in terms of processing time and fault-tolerance on the huge amount of data. According to the results, the fault tolerance can be provided by the multiple brokers of Kafka and parallel recovery of Spark Streaming. And then, the multiple partitions of Apache Kafka increase the processing time in the integration of Apache Kafka and Spark Streaming.
2020-07-20
Shi, Yang, Wang, Xiaoping, Fan, Hongfei.  2017.  Light-weight white-box encryption scheme with random padding for wearable consumer electronic devices. IEEE Transactions on Consumer Electronics. 63:44–52.
Wearable devices can be potentially captured or accessed in an unauthorized manner because of their physical nature. In such cases, they are in white-box attack contexts, where the adversary may have total visibility on the implementation of the built-in cryptosystem, with full control over its execution platform. Dealing with white-box attacks on wearable devices is undoubtedly a challenge. To serve as a countermeasure against threats in such contexts, we propose a lightweight encryption scheme to protect the confidentiality of data against white-box attacks. We constructed the scheme's encryption and decryption algorithms on a substitution-permutation network that consisted of random secret components. Moreover, the encryption algorithm uses random padding that does not need to be correctly decrypted as part of the input. This feature enables non-bijective linear transformations to be used in each encryption round to achieve strong security. The required storage for static data is relatively small and the algorithms perform well on various devices, which indicates that the proposed scheme satisfies the requirements of wearable computing in terms of limited memory and low computational power.
2020-07-16
Hasani, Abbas, Haghjoo, Farhad, Bak, Claus Leth, Faria da Silva, Filipe.  2019.  Performance Evaluation of Some Industrial Loss of Field Protection Schemes Using a Realistic Model in The RTDS. 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1—5.

Loss of field (LOF) relay, with ANSI code 40, is one of the most important protection functions for synchronous generators in power plants. Although many LOF protection schemes have been presented in the literature during the last decades, a few numbers of them such as impedance and admittance based schemes are accepted by the industry. This paper explores and compares the performances of some industrial LOF protection schemes through simulation studies and from speed, reliability and security viewpoints. The simulation studies are carried out in the real-time-digital-simulator, where a realistic power generation unit is developed by employing the phase domain model of synchronous generator. Using such a realistic system, various types of LOF events can be simulated in accordance with IEEE Standard C37.102-2006, so that the performance of any method can be evaluated through careful LOF studies.

2020-07-03
Danilchenko, Victor, Theobald, Matthew, Cohen, Daniel.  2019.  Bootstrapping Security Configuration for IoT Devices on Networks with TLS Inspection. 2019 IEEE Globecom Workshops (GC Wkshps). :1—7.

In the modern security-conscious world, Deep Packet Inspection (DPI) proxies are increasingly often used on industrial and enterprise networks to perform TLS unwrapping on all outbound connections. However, enabling TLS unwrapping requires local devices to have the DPI proxy Certificate Authority certificates installed. While for conventional computing devices this is addressed via enterprise management, it's a difficult problem for Internet of Things ("IoT") devices which are generally not under enterprise management, and may not even be capable of it due to their resource-constrained nature. Thus, for typical IoT devices, being installed on a network with DPI requires either manual device configuration or custom DPI proxy configuration, both of which solutions have significant shortcomings. This poses a serious challenge to the deployment of IoT devices on DPI-enabled intranets. The authors propose a solution to this problem: a method of installing on IoT devices the CA certificates for DPI proxy CAs, as well as other security configuration ("security bootstrapping"). The proposed solution respects the DPI policies, while allowing the commissioning of IoT and IIoT devices without the need for additional manual configuration either at device scope or at network scope. This is accomplished by performing the bootstrap operation over unsecured connection, and downloading certificates using TLS validation at application level. The resulting solution is light-weight and secure, yet does not require validation of the DPI proxy's CA certificates in order to perform the security bootstrapping, thus avoiding the chicken-and-egg problem inherent in using TLS on DPI-enabled intranets.

2020-06-29
Sebbar, Anass, Zkik, Karim, Baadi, Youssef, Boulmalf, Mohammed, ECH-CHERIF El KETTANI, Mohamed Dafir.  2019.  Using advanced detection and prevention technique to mitigate threats in SDN architecture. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :90–95.
Software defined networks represent a new centralized network abstraction that aims to ease configuration and facilitate applications and services deployment to manage the upper layers. However, SDN faces several challenges that slow down its implementation such as security which represents one of the top concerns of SDN experts. Indeed, SDN inherits all security matters from traditional networks and suffers from some additional vulnerability due to its centralized and unique architecture. Using traditional security devices and solutions to mitigate SDN threats can be very complicated and can negatively effect the networks performance. In this paper we propose a study that measures the impact of using some well-known security solution to mitigate intrusions on SDN's performances. We will also present an algorithm named KPG-MT adapted to SDN architecture that aims to mitigate threats such as a Man in the Middle, Deny of Services and malware-based attacks. An implementation of our algorithm based on multiple attacks' scenarios and mitigation processes will be made to prove the efficiency of the proposed framework.
Wehbi, Khadijeh, Hong, Liang, Al-salah, Tulha, Bhutta, Adeel A.  2019.  A Survey on Machine Learning Based Detection on DDoS Attacks for IoT Systems. 2019 SoutheastCon. :1–6.
Internet of Things (IoT) is transforming the way we live today, improving the quality of living standard and growing the world economy by having smart devices around us making decisions and performing our daily tasks and chores. However, securing the IoT system from malicious attacks is a very challenging task. Some of the most common malicious attacks are Denial of service (DoS), and Distributed Denial of service (DDoS) attacks, which have been causing major security threats to all networks and specifically to limited resource IoT devices. As security will always be a primary factor for enabling most IoT applications, developing a comprehensive detection method that effectively defends against DDoS attacks and can provide 100% detection for DDoS attacks in IoT is a primary goal for the future of IoT. The development of such a method requires a deep understanding of the methods that have been used thus far in the detection of DDoS attacks in the IoT environment. In our survey, we try to emphasize some of the most recent Machine Learning (ML) approaches developed for the detection of DDoS attacks in IoT networks along with their advantage and disadvantages. Comparison between the performances of selected approaches is also provided.
2020-06-26
Niedermaier, Matthias, Fischer, Florian, Merli, Dominik, Sigl, Georg.  2019.  Network Scanning and Mapping for IIoT Edge Node Device Security. 2019 International Conference on Applied Electronics (AE). :1—6.

The amount of connected devices in the industrial environment is growing continuously, due to the ongoing demands of new features like predictive maintenance. New business models require more data, collected by IIoT edge node sensors based on inexpensive and low performance Microcontroller Units (MCUs). A negative side effect of this rise of interconnections is the increased attack surface, enabled by a larger network with more network services. Attaching badly documented and cheap devices to industrial networks often without permission of the administrator even further increases the security risk. A decent method to monitor the network and detect “unwanted” devices is network scanning. Typically, this scanning procedure is executed by a computer or server in each sub-network. In this paper, we introduce network scanning and mapping as a building block to scan directly from the Industrial Internet of Things (IIoT) edge node devices. This module scans the network in a pseudo-random periodic manner to discover devices and detect changes in the network structure. Furthermore, we validate our approach in an industrial testbed to show the feasibility of this approach.

2020-06-15
Gorbachov, Valeriy, Batiaa, Abdulrahman Kataeba, Ponomarenko, Olha, Kotkova, Oksana.  2019.  Impact Evaluation of Embedded Security Mechanisms on System Performance. 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S T). :407–410.
Experience in designing general-purpose systems that enforce security goals shows that achieving universality, security, and performance remains a very difficult challenge. As a result, two directions emerged in designing, one of which focused on universality and performance with limited security mechanisms, and another - on robust security with reasonable performance for limited sets of applications. In the first case, popular but unsecure systems were created, and various efforts were subsequently made to upgrade the protected infrastructure for such systems. In the work, the latter approach is considered. It is obvious that the inclusion of built-in security mechanisms leads to a decrease in system performance. The paper considers a reference monitor and the assessment of its impact on system performance. For this purpose, the functional structure of reference monitor is built and the analytical model of impact evaluation on system performance is proposed.
2020-06-03
Cedillo, Priscila, Camacho, Jessica, Campos, Karina, Bermeo, Alexandra.  2019.  A Forensics Activity Logger to Extract User Activity from Mobile Devices. 2019 Sixth International Conference on eDemocracy eGovernment (ICEDEG). :286—290.

Nowadays, mobile devices have become one of the most popular instruments used by a person on its regular life, mainly due to the importance of their applications. In that context, mobile devices store user's personal information and even more data, becoming a personal tracker for daily activities that provides important information about the user. Derived from this gathering of information, many tools are available to use on mobile devices, with the restrain that each tool only provides isolated information about a specific application or activity. Therefore, the present work proposes a tool that allows investigators to obtain a complete report and timeline of the activities that were performed on the device. This report incorporates the information provided by many sources into a unique set of data. Also, by means of an example, it is presented the operation of the solution, which shows the feasibility in the use of this tool and shows the way in which investigators have to apply the tool.

2020-06-01
Alizai, Zahoor Ahmed, Tareen, Noquia Fatima, Jadoon, Iqra.  2018.  Improved IoT Device Authentication Scheme Using Device Capability and Digital Signatures. 2018 International Conference on Applied and Engineering Mathematics (ICAEM). :1–5.
Internet of Things (IoT) device authentication is weighed as a very important step from security perspective. Privacy and security of the IoT devices and applications is the major issue. From security perspective, important issue that needs to be addressed is the authentication mechanism, it has to be secure from different types of attacks and is easy to implement. The paper gives general idea about how different authentication mechanisms work, and then secure and efficient multi-factor device authentication scheme idea is proposed. The proposed scheme idea uses digital signatures and device capability to authenticate a device. In the proposed scheme device will only be allowed into the network if it is successfully authenticated through multi-factor authentication otherwise the authentication process fails and whole authentication process will restart. By analyzing the proposed scheme idea, it can be seen that the scheme is efficient and has less over head. The scheme not only authenticates the device very efficiently through multi-factor authentication but also authenticates the authentication server with the help of digital signatures. The proposed scheme also mitigates the common attacks like replay and man in the middle because of nonce and timestamp.
Utomo, Subroto Budhi, Hendradjaya, Bayu.  2018.  Multifactor Authentication on Mobile Secure Attendance System. 2018 International Conference on ICT for Smart Society (ICISS). :1–5.
BYOD (Bring Your Own Device) trends allows employees to use the smartphone as a tool in everyday work and also as an attendance device. The security of employee attendance system is important to ensure that employees do not commit fraud in recording attendance and when monitoring activities at working hours. In this paper, we propose a combination of fingerprint, secure android ID, and GPS as authentication factors, also addition of anti emulator and anti fake location module turn Mobile Attendance System into Mobile Secure Attendance System. Testing based on scenarios that have been adapted to various possible frauds is done to prove whether the system can minimize the occurrence of fraud in attendance recording and monitoring of employee activities.
2020-05-15
Ascia, Giuseppe, Catania, Vincenzo, Monteleone, Salvatore, Palesi, Maurizio, Patti, Davide, Jose, John.  2019.  Networks-on-Chip based Deep Neural Networks Accelerators for IoT Edge Devices. 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :227—234.
The need for performing deep neural network inferences on resource-constrained embedded devices (e.g., Internet of Things nodes) requires specialized architectures to achieve the best trade-off among performance, energy, and cost. One of the most promising architectures in this context is based on massive parallel and specialized cores interconnected by means of a Network-on-Chip (NoC). In this paper, we extensively evaluate NoC-based deep neural network accelerators by exploring the design space spanned by several architectural parameters including, network size, routing algorithm, local memory size, link width, and number of memory interfaces. We show how latency is mainly dominated by the on-chip communication whereas energy consumption is mainly accounted by memory (both on-chip and off-chip). The outcome of the analysis, thus, pushes toward a research line devoted to the optimization of the on-chip communication fabric and the memory subsystem for performance improvement and energy efficiency, respectively.
J.Y.V., Manoj Kumar, Swain, Ayas Kanta, Kumar, Sudeendra, Sahoo, Sauvagya Ranjan, Mahapatra, Kamalakanta.  2018.  Run Time Mitigation of Performance Degradation Hardware Trojan Attacks in Network on Chip. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :738—743.
Globalization of semiconductor design and manufacturing has led to several hardware security issues. The problem of Hardware Trojans (HT) is one such security issue discussed widely in industry and academia. Adversary design engineer can insert the HT to leak confidential data, cause a denial of service attack or any other intention specific to the design. HT in cryptographic modules and processors are widely discussed. HT in Multi-Processor System on Chips (MPSoC) are also catastrophic, as most of the military applications use MPSoCs. Network on Chips (NoC) are standard communication infrastructure in modern day MPSoC. In this paper, we present a novel hardware Trojan which is capable of inducing performance degradation and denial of service attacks in a NoC. The presence of the Hardware Trojan in a NoC can compromise the crucial details of packets communicated through NoC. The proposed Trojan is triggered by a particular complex bit pattern from input messages and tries to mislead the packets away from the destined addresses. A mitigation method based on bit shuffling mechanism inside the router with a key directly extracted from input message is proposed to limit the adverse effects of the Trojan. The performance of a 4×4 NoC is evaluated under uniform traffic with the proposed Trojan and mitigation method. Simulation results show that the proposed mitigation scheme is useful in limiting the malicious effect of hardware Trojan.
2020-04-03
Gerl, Armin, Becher, Stefan.  2019.  Policy-Based De-Identification Test Framework. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:356—357.
Protecting privacy of individuals is a basic right, which has to be considered in our data-centered society in which new technologies emerge rapidly. To preserve the privacy of individuals de-identifying technologies have been developed including pseudonymization, personal privacy anonymization, and privacy models. Each having several variations with different properties and contexts which poses the challenge for the proper selection and application of de-identification methods. We tackle this challenge proposing a policy-based de-identification test framework for a systematic approach to experimenting and evaluation of various combinations of methods and their interplay. Evaluation of the experimental results regarding performance and utility is considered within the framework. We propose a domain-specific language, expressing the required complex configuration options, including data-set, policy generator, and various de-identification methods.
2020-03-16
Zhou, Yaqiu, Ren, Yongmao, Zhou, Xu, Yang, Wanghong, Qin, Yifang.  2019.  A Scientific Data Traffic Scheduling Algorithm Based on Software-Defined Networking. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :62–67.
Compared to ordinary Internet applications, the transfer of scientific data flows often has higher requirements for network performance. The network security devices and systems often affect the efficiency of scientific data transfer. As a new type of network architecture, Software-defined Networking (SDN) decouples the data plane from the control plane. Its programmability allows users to customize the network transfer path and makes the network more intelligent. The Science DMZ model is a private network for scientific data flow transfer, which can improve performance under the premise of ensuring network security. This paper combines SDN with Science DMZ, designs and implements an SDN-based traffic scheduling algorithm considering the load of link. In addition to distinguishing scientific data flow from common data flow, the algorithm further distinguishes the scientific data flows of different applications and performs different traffic scheduling of scientific data for specific link states. Experiments results proved that the algorithm can effectively improve the transmission performance of scientific data flow.
Kholidy, Hisham A..  2019.  Towards A Scalable Symmetric Key Cryptographic Scheme: Performance Evaluation and Security Analysis. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–6.
In most applications, security attributes are pretty difficult to meet but it becomes even a bigger challenge when talking about Grid Computing. To secure data passes in Grid Systems, we need a professional scheme that does not affect the overall performance of the grid system. Therefore, we previously developed a new security scheme “ULTRA GRIDSEC” that is used to accelerate the performance of the symmetric key encryption algorithms for both stream and block cipher encryption algorithms. The scheme is used to accelerate the security of data pass between elements of our newly developed pure peer-to-peer desktop grid framework, “HIMAN”. It also enhances the security of the encrypted data resulted from the scheme and prevents the problem of weak keys of the encryption algorithms. This paper covers the analysis and evaluation of this scheme showing the different factors affecting the scheme performance, and covers the efficiency of the scheme from the security prospective. The experimental results are highlighted for two types of encryption algorithms, TDES as an example for the block cipher algorithms, and RC4 as an example for the stream cipher algorithms. The scheme speeds up the former algorithm by 202.12% and the latter one by 439.7%. These accelerations are also based on the running machine's capabilities.
2020-03-09
Babu, T. Kishore, Guruprakash, C. D..  2019.  A Systematic Review of the Third Party Auditing in Cloud Security: Security Analysis, Computation Overhead and Performance Evaluation. 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). :86–91.
Cloud storage offers a considerable efficiency and security to the user's data and provide high flexibility to the user. The hackers make attempt of several attacks to steal the data that increase the concern of data security in cloud. The Third Party Auditing (TPA) method is introduced to check the data integrity. There are several TPA methods developed to improve the privacy and efficiency of the data integrity checking method. Various methods involved in TPA, have been analyzed in this review in terms of function, security and overall performance. Merkel Hash Tree (MHT) method provides efficiency and security in checking the integrity of data. The computational overhead of the proof verify is also analyzed in this review. The communication cost of the most TPA methods observed as low and there is a need of improvement in security of the public auditing.
2020-02-26
Tandon, Aditya, Srivastava, Prakash.  2019.  Trust-Based Enhanced Secure Routing against Rank and Sybil Attacks in IoT. 2019 Twelfth International Conference on Contemporary Computing (IC3). :1–7.

The Internet of Things (IoT) is an emerging technology that plays a vital role in interconnecting various objects into a network to provide desired services within its resource constrained characteristics. In IoT, the Routing Protocol for Low power and Lossy network (RPL) is the standardized proactive routing protocol that achieves satisfying resource consumption, but it does not consider the node's routing behavior for forwarding data packets. The malicious intruders exploit these loopholes for launching various forms of routing attacks. Different security mechanisms have been introduced for detecting these attacks singly. However, the launch of multiple attacks such as Rank attack and Sybil attacks simultaneously in the IoT network is one of the devastating and destructive situations. This problem can be solved by establishing secure routing with trustworthy nodes. The trustworthiness of the nodes is determined using trust evaluation methods, where the parameters considered are based on the factors that influence in detecting the attacks. In this work, Providing Routing Security using the Technique of Collective Trust (PROTECT) mechanism is introduced, and it aims to provide a secure RPL routing by simultaneously detecting both Rank and Sybil attacks in the network. The advantage of the proposed scheme is highlighted by comparing its performance with the performance of the Sec-Trust protocol in terms of detection accuracy, energy consumption, and throughput.

2020-02-17
Hiller, Jens, Komanns, Karsten, Dahlmanns, Markus, Wehrle, Klaus.  2019.  Regaining Insight and Control on SMGW-based Secure Communication in Smart Grids. 2019 AEIT International Annual Conference (AEIT). :1–6.
Smart Grids require extensive communication to enable safe and stable energy supply in the age of decentralized and dynamic energy production and consumption. To protect the communication in this critical infrastructure, public authorities mandate smart meter gateways (SMGWs) to be in control of the communication security. To this end, the SMGW intercepts all inbound and outbound communication of its premise, e.g., a factory or smart home, and forwards it on secure channels that the SMGW established itself. However, using the SMGW as proxy, local devices can neither review the security of these remote connections established by the SMGW nor enforce higher security guarantees than established by the all in one configuration of the SMGW which does not allow for use case-specific security settings. We present mechanisms that enable local devices to regain this insight and control over the full connection, i.e., up to the final receiver, while retaining the SMGW's ability to ensure a suitable security level. Our evaluation shows modest computation and transmission overheads for this increased security in the critical smart grid infrastructure.
2020-02-10
Naseem, Faraz, Babun, Leonardo, Kaygusuz, Cengiz, Moquin, S.J., Farnell, Chris, Mantooth, Alan, Uluagac, A. Selcuk.  2019.  CSPoweR-Watch: A Cyber-Resilient Residential Power Management System. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :768–775.

Modern Energy Management Systems (EMS) are becoming increasingly complex in order to address the urgent issue of global energy consumption. These systems retrieve vital information from various Internet-connected resources in a smart grid to function effectively. However, relying on such resources results in them being susceptible to cyber attacks. Malicious actors can exploit the interconnections between the resources to perform nefarious tasks such as modifying critical firmware, sending bogus sensor data, or stealing sensitive information. To address this issue, we propose a novel framework that integrates PowerWatch, a solution that detects compromised devices in the smart grid with Cyber-secure Power Router (CSPR), a smart energy management system. The goal is to ascertain whether or not such a device has operated maliciously. To achieve this, PowerWatch utilizes a machine learning model that analyzes information from system and library call lists extracted from CSPR in order to detect malicious activity in the EMS. To test the efficacy of our framework, a number of unique attack scenarios were performed on a realistic testbed that comprises functional versions of CSPR and PowerWatch to monitor the electrical environment for suspicious activity. Our performance evaluation investigates the effectiveness of this first-of-its-kind merger and provides insight into the feasibility of developing future cybersecure EMS. The results of our experimental procedures yielded 100% accuracy for each of the attack scenarios. Finally, our implementation demonstrates that the integration of PowerWatch and CSPR is effective and yields minimal overhead to the EMS.

Yao, Chuhao, Wang, Jiahong, Kodama, Eiichiro.  2019.  A Spam Review Detection Method by Verifying Consistency among Multiple Review Sites. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :2825–2830.

In recent years, websites that incorporate user reviews, such as Amazon, IMDB and YELP, have become exceedingly popular. As an important factor affecting users purchasing behavior, review information has been becoming increasingly important, and accordingly, the reliability of review information becomes an important issue. This paper proposes a method to more accurately detect the appearance period of spam reviews and to identify the spam reviews by verifying the consistency of review information among multiple review sites. Evaluation experiments were conducted to show the accuracy of the detection results, and compared the newly proposed method with our previously proposed method.

2020-01-27
Li, Zhangtan, Cheng, Liang, Zhang, Yang.  2019.  Tracking Sensitive Information and Operations in Integrated Clinical Environment. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :192–199.
Integrated Clinical Environment (ICE) is a standardized framework for achieving device interoperability in medical cyber-physical systems. The ICE utilizes high-level supervisory apps and a low-level communication middleware to coordinate medical devices. The need to design complex ICE systems that are both safe and effective has presented numerous challenges, including interoperability, context-aware intelligence, security and privacy. In this paper, we present a data flow analysis framework for the ICE systems. The framework performs the combination of static and dynamic analysis for the sensitive data and operations in the ICE systems. Our experiments demonstrate that the data flow analysis framework can record how the medical devices transmit sensitive data and perform misuse detection by tracing the runtime context of the sensitive operations.
Inayoshi, Hiroki, Kakei, Shohei, Takimoto, Eiji, Mouri, Koichi, Saito, Shoichi.  2019.  Prevention of Data Leakage due to Implicit Information Flows in Android Applications. 2019 14th Asia Joint Conference on Information Security (AsiaJCIS). :103–110.
Dynamic Taint Analysis (DTA) technique has been developed for analysis and understanding behavior of Android applications and privacy policy enforcement. Meanwhile, implicit information flows (IIFs) are major concern of security researchers because IIFs can evade DTA technique easily and give attackers an advantage over the researchers. Some researchers suggested approaches to the issue and developed analysis systems supporting privacy policy enforcement against IIF-accompanied attacks; however, there is still no effective technique of comprehensive analysis and privacy policy enforcement against IIF-accompanied attacks. In this paper, we propose an IIF detection technique to enforce privacy policy against IIF-accompanied attacks in Android applications. We developed a new analysis tool, called Smalien, that can discover data leakage caused by IIF-contained information flows as well as explicit information flows. We demonstrated practicability of Smalien by applying it to 16 IIF tricks from ScrubDroid and two IIF tricks from DroidBench. Smalien enforced privacy policy successfully against all the tricks except one trick because the trick loads code dynamically from a remote server at runtime, and Smalien cannot analyze any code outside of a target application. The results show that our approach can be a solution to the current attacker-superior situation.
2020-01-20
Zhu, Lipeng, Fu, Xiaotong, Yao, Yao, Zhang, Yuqing, Wang, He.  2019.  FIoT: Detecting the Memory Corruption in Lightweight IoT Device Firmware. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :248–255.
The IoT industry has developed rapidly in recent years, which has attracted the attention of security researchers. However, the researchers are hampered by the wide variety of IoT device operating systems and their hardware architectures. Especially for the lightweight IoT devices, many manufacturers do not provide the device firmware images, embedded firmware source code or even the develop documents. As a result, it hinders traditional static analysis and dynamic analysis techniques. In this paper, we propose a novel dynamic analysis framework, called FIoT, which aims at finding memory corruption vulnerabilities in lightweight IoT device firmware images. The key idea is dynamically run the binary code snippets through symbolic execution with carrying out a fuzzing test. Specifically, we generate code snippets through traversing the control-flow graph (CFG) in a backward manner. We improved the CFG recovery approach and backward slice approach for better performance. To reduce the influence of the binary firmware, FIoT leverages loading address determination analysis and library function identification approach. We have implemented a prototype of FIoT and conducted experiments. Our results show that FIoT can complete the Fuzzing test within 40 seconds in average. Considering 170 seconds for static analysis, FIoT can load and analyze a lightweight IoT firmware within 210 seconds in total. Furthermore, we illustrate the effectiveness of FIoT by applying it over 115 firmware images from 17 manufacturers. We have found 35 images exist memory corruptions, which are all zero-day vulnerabilities.