Visible to the public Biblio

Found 891 results

Filters: Keyword is security of data  [Clear All Filters]
2020-02-26
Padmanaban, R., Thirumaran, M., Sanjana, Victoria, Moshika, A..  2019.  Security Analytics For Heterogeneous Web. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). :1–6.

In recent days, Enterprises are expanding their business efficiently through web applications which has paved the way for building good consumer relationship with its customers. The major threat faced by these enterprises is their inability to provide secure environments as the web applications are prone to severe vulnerabilities. As a result of this, many security standards and tools have been evolving to handle the vulnerabilities. Though there are many vulnerability detection tools available in the present, they do not provide sufficient information on the attack. For the long-term functioning of an organization, data along with efficient analytics on the vulnerabilities is required to enhance its reliability. The proposed model thus aims to make use of Machine Learning with Analytics to solve the problem in hand. Hence, the sequence of the attack is detected through the pattern using PAA and further the detected vulnerabilities are classified using Machine Learning technique such as SVM. Probabilistic results are provided in order to obtain numerical data sets which could be used for obtaining a report on user and application behavior. Dynamic and Reconfigurable PAA with SVM Classifier is a challenging task to analyze the vulnerabilities and impact of these vulnerabilities in heterogeneous web environment. This will enhance the former processing by analysis of the origin and the pattern of the attack in a more effective manner. Hence, the proposed system is designed to perform detection of attacks. The system works on the mitigation and prevention as part of the attack prediction.

Sokolov, S. A., Iliev, T. B., Stoyanov, I. S..  2019.  Analysis of Cybersecurity Threats in Cloud Applications Using Deep Learning Techniques. 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). :441–446.
In this paper we present techniques based on machine learning techniques on monitoring data for analysis of cybersecurity threats in cloud environments that incorporate enterprise applications from the fields of telecommunications and IoT. Cybersecurity is a term describing techniques for protecting computers, telecommunications equipment, applications, environments and data. In modern networks enormous volume of generated traffic can be observed. We propose several techniques such as Support Vector Machines, Neural networks and Deep Neural Networks in combination for analysis of monitoring data. An approach for combining classifier results based on performance weights is proposed. The proposed approach delivers promising results comparable to existing algorithms and is suitable for enterprise grade security applications.
2020-02-24
De, Asmit, Basu, Aditya, Ghosh, Swaroop, Jaeger, Trent.  2019.  FIXER: Flow Integrity Extensions for Embedded RISC-V. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :348–353.
With the recent proliferation of Internet of Things (IoT) and embedded devices, there is a growing need to develop a security framework to protect such devices. RISC-V is a promising open source architecture that targets low-power embedded devices and SoCs. However, there is a dearth of practical and low-overhead security solutions in the RISC-V architecture. Programs compiled using RISC-V toolchains are still vulnerable to code injection and code reuse attacks such as buffer overflow and return-oriented programming (ROP). In this paper, we propose FIXER, a hardware implemented security extension to RISC-V that provides a defense mechanism against such attacks. FIXER enforces fine-grained control-flow integrity (CFI) of running programs on backward edges (returns) and forward edges (calls) without requiring any architectural modifications to the RISC-V processor core. We implement FIXER on RocketChip, a RISC-V SoC platform, by leveraging the integrated Rocket Custom Coprocessor (RoCC) to detect and prevent attacks. Compared to existing software based solutions, FIXER reduces energy overhead by 60% at minimal execution time (1.5%) and area (2.9%) overheads.
Maunero, Nicoló, Prinetto, Paolo, Roascio, Gianluca.  2019.  CFI: Control Flow Integrity or Control Flow Interruption? 2019 IEEE East-West Design Test Symposium (EWDTS). :1–6.
Runtime memory vulnerabilities, especially present in widely used languages as C and C++, are exploited by attackers to corrupt code pointers and hijack the execution flow of a program running on a target system to force it to behave abnormally. This is the principle of modern Code Reuse Attacks (CRAs) and of famous attack paradigms as Return-Oriented Programming (ROP) and Jump-Oriented Programming (JOP), which have defeated the previous defenses against malicious code injection such as Data Execution Prevention (DEP). Control-Flow Integrity (CFI) is a promising approach to protect against such runtime attacks. Recently, many CFI solutions have been proposed, with both hardware and software implementations. But how can a defense based on complying with a graph calculated a priori efficiently deal with something unpredictable as exceptions and interrupt requests? The present paper focuses on this dichotomy by analysing some of the CFI-based defenses and showing how the unexpected trigger of an interrupt and the sudden execution of an Interrupt Service Routine (ISR) can circumvent them.
Srivastava, Ankush, Ghosh, Prokash.  2019.  An Efficient Memory Zeroization Technique Under Side-Channel Attacks. 2019 32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded Systems (VLSID). :76–81.
Protection of secured data content in volatile memories (processor caches, embedded RAMs etc) is essential in networking, wireless, automotive and other embedded secure applications. It is utmost important to protect secret data, like authentication credentials, cryptographic keys etc., stored over volatile memories which can be hacked during normal device operations. Several security attacks like cold boot, disclosure attack, data remanence, physical attack, cache attack etc. can extract the cryptographic keys or secure data from volatile memories of the system. The content protection of memory is typically done by assuring data deletion in minimum possible time to minimize data remanence effects. In today's state-of-the-art SoCs, dedicated hardwares are used to functionally erase the private memory contents in case of security violations. This paper, in general, proposes a novel approach of using existing memory built-in-self-test (MBIST) hardware to zeroize (initialize memory to all zeros) on-chip memory contents before it is being hacked either through different side channels or secuirty attacks. Our results show that the proposed MBIST based content zeroization approach is substantially faster than conventional techniques. By adopting the proposed approach, functional hardware requirement for memory zeroization can be waived.
2020-02-18
Chaturvedi, Shilpa, Simmhan, Yogesh.  2019.  Toward Resilient Stream Processing on Clouds Using Moving Target Defense. 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC). :134–142.
Big data platforms have grown popular for real-time stream processing on distributed clusters and clouds. However, execution of sensitive streaming applications on shared computing resources increases their vulnerabilities, and may lead to data leaks and injection of spurious logic that can compromise these applications. Here, we adopt Moving Target Defense (MTD) techniques into Fast Data platforms, and propose MTD strategies by which we can mitigate these attacks. Our strategies target the platform, application and data layers, which make these reusable, rather than the OS, virtual machine, or hardware layers, which are environment specific. We use Apache Storm as the canonical distributed stream processing platform for designing our MTD strategies, and offer a preliminary evaluation that indicates the feasibility and evaluates the performance overheads.
2020-02-17
Thomopoulos, Stelios C. A..  2019.  Maritime Situational Awareness Forensics Tools for a Common Information Sharing Environment (CISE). 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech). :1–5.
CISE stands for Common Information Sharing Environment and refers to an architecture and set of protocols, procedures and services for the exchange of data and information across Maritime Authorities of EU (European Union) Member States (MS's). In the context of enabling the implementation and adoption of CISE by different MS's, EU has funded a number of projects that enable the development of subsystems and adaptors intended to allow MS's to connect and make use of CISE. In this context, the Integrated Systems Laboratory (ISL) has led the development of the corresponding Hellenic and Cypriot CISE by developing a Control, Command & Information (C2I) system that unifies all partial maritime surveillance systems into one National Situational Picture Management (NSPM) system, and adaptors that allow the interconnection of the corresponding national legacy systems to CISE and the exchange of data, information and requests between the two MS's. Furthermore, a set of forensics tools that allow geospatial & time filtering and detection of anomalies, risk incidents, fake MMSIs, suspicious speed changes, collision paths, and gaps in AIS (Automatic Identification System), have been developed by combining motion models, AI, deep learning and fusion algorithms using data from different databases through CISE. This paper briefly discusses these developments within the EU CISE-2020, Hellenic CISE and CY-CISE projects and the benefits from the sharing of maritime data across CISE for both maritime surveillance and security. The prospect of using CISE for the creation of a considerably rich database that could be used for forensics analysis and detection of suspicious maritime traffic and maritime surveillance is discussed.
Rodriguez, Ariel, Okamura, Koji.  2019.  Generating Real Time Cyber Situational Awareness Information Through Social Media Data Mining. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 2:502–507.
With the rise of the internet many new data sources have emerged that can be used to help us gain insights into the cyber threat landscape and can allow us to better prepare for cyber attacks before they happen. With this in mind, we present an end to end real time cyber situational awareness system which aims to efficiently retrieve security relevant information from the social networking site Twitter.com. This system classifies and aggregates the data retrieved and provides real time cyber situational awareness information based on sentiment analysis and data analytics techniques. This research will assist security analysts to evaluate the level of cyber risk in their organization and proactively take actions to plan and prepare for potential attacks before they happen as well as contribute to the field through a cybersecurity tweet dataset.
Jacq, Olivier, Brosset, David, Kermarrec, Yvon, Simonin, Jacques.  2019.  Cyber Attacks Real Time Detection: Towards a Cyber Situational Awareness for Naval Systems. 2019 International Conference on Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–2.
Over the last years, the maritime sector has seen an important increase in digital systems on board. Whether used for platform management, navigation, logistics or office tasks, a modern ship can be seen as a fully featured, complex and moving information system. Meanwhile, cyber threats on the sector are real and, for instance, the year 2018 has seen a number of harmful public ransomware attacks impacting shore and ashore assets. Gaining cyber situation recognition, comprehension and projection through Maritime Cyber Situational Awareness is therefore a challenging but essential task for the sector. However, its elaboration has to face a number of issues, such as the collect and fusion of real-time data coming from the ships and an efficient visualization and situation sharing across maritime actors. In this paper, we describe our current work and results for maritime cyber situational awareness elaboration. Even if its development is still going on, the first operational feedback is very encouraging.
Ezick, James, Henretty, Tom, Baskaran, Muthu, Lethin, Richard, Feo, John, Tuan, Tai-Ching, Coley, Christopher, Leonard, Leslie, Agrawal, Rajeev, Parsons, Ben et al..  2019.  Combining Tensor Decompositions and Graph Analytics to Provide Cyber Situational Awareness at HPC Scale. 2019 IEEE High Performance Extreme Computing Conference (HPEC). :1–7.
This paper describes MADHAT (Multidimensional Anomaly Detection fusing HPC, Analytics, and Tensors), an integrated workflow that demonstrates the applicability of HPC resources to the problem of maintaining cyber situational awareness. MADHAT combines two high-performance packages: ENSIGN for large-scale sparse tensor decompositions and HAGGLE for graph analytics. Tensor decompositions isolate coherent patterns of network behavior in ways that common clustering methods based on distance metrics cannot. Parallelized graph analysis then uses directed queries on a representation that combines the elements of identified patterns with other available information (such as additional log fields, domain knowledge, network topology, whitelists and blacklists, prior feedback, and published alerts) to confirm or reject a threat hypothesis, collect context, and raise alerts. MADHAT was developed using the collaborative HPC Architecture for Cyber Situational Awareness (HACSAW) research environment and evaluated on structured network sensor logs collected from Defense Research and Engineering Network (DREN) sites using HPC resources at the U.S. Army Engineer Research and Development Center DoD Supercomputing Resource Center (ERDC DSRC). To date, MADHAT has analyzed logs with over 650 million entries.
Eckhart, Matthias, Ekelhart, Andreas, Weippl, Edgar.  2019.  Enhancing Cyber Situational Awareness for Cyber-Physical Systems through Digital Twins. 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1222–1225.
Operators of cyber-physical systems (CPSs) need to maintain awareness of the cyber situation in order to be able to adequately address potential issues in a timely manner. For instance, detecting early symptoms of cyber attacks may speed up the incident response process and mitigate consequences of attacks (e.g., business interruption, safety hazards). However, attaining a full understanding of the cyber situation may be challenging, given the complexity of CPSs and the ever-changing threat landscape. In particular, CPSs typically need to be continuously operational, may be sensitive to active scanning, and often provide only limited in-depth analysis capabilities. To address these challenges, we propose to utilize the concept of digital twins for enhancing cyber situational awareness. Digital twins, i.e., virtual replicas of systems, can run in parallel to their physical counterparts and allow deep inspection of their behavior without the risk of disrupting operational technology services. This paper reports our work in progress to develop a cyber situational awareness framework based on digital twins that provides a profound, holistic, and current view on the cyber situation that CPSs are in. More specifically, we present a prototype that provides real-time visualization features (i.e., system topology, program variables of devices) and enables a thorough, repeatable investigation process on a logic and network level. A brief explanation of technological use cases and outlook on future development efforts completes this work.
Yin, Mingyong, Wang, Qixu, Cao, Mingsheng.  2019.  An Attack Vector Evaluation Method for Smart City Security Protection. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–7.
In the network security risk assessment on critical information infrastructure of smart city, to describe attack vectors for predicting possible initial access is a challenging task. In this paper, an attack vector evaluation model based on weakness, path and action is proposed, and the formal representation and quantitative evaluation method are given. This method can support the assessment of attack vectors based on known and unknown weakness through combination of depend conditions. In addition, defense factors are also introduced, an attack vector evaluation model of integrated defense is proposed, and an application example of the model is given. The research work in this paper can provide a reference for the vulnerability assessment of attack vector.
Yee, George O. M..  2019.  Designing Good Security Metrics. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 2:580–585.
This paper begins with an introduction to security metrics, describing the need for security metrics, followed by a discussion of the nature of security metrics, including the challenges found with some security metrics used in the past. The paper then discusses what makes a good security metric and proposes a rigorous step-by-step method that can be applied to design good security metrics, and to test existing security metrics to see if they are good metrics. Application examples are included to illustrate the method.
Kim, Joonsoo, Kim, Kyeongho, Jang, Moonsu.  2019.  Cyber-Physical Battlefield Platform for Large-Scale Cybersecurity Exercises. 2019 11th International Conference on Cyber Conflict (CyCon). 900:1–19.
In this study, we propose a platform upon which a cyber security exercise environment can be built efficiently for national critical infrastructure protection, i.e. a cyber-physical battlefield (CPB), to simulate actual ICS/SCADA systems in operation. Among various design considerations, this paper mainly discusses scalability, mobility, reality, extensibility, consideration of the domain or vendor specificities, and the visualization of physical facilities and their damage as caused by cyber attacks. The main purpose of the study was to develop a platform that can maximize the coverage that encompasses such design considerations. We discuss the construction of the platform through the final design choices. The features of the platform that we attempt to achieve are closely related to the target cyber exercise format. Design choices were made considering the construction of a realistic ICS/SCADA exercise environment that meets the goals and matches the characteristics of the Cyber Conflict Exercise (CCE), an annual national exercise organized by the National Security Research Institute (NSR) of South Korea. CCE is a real-time attack-defense battlefield drill between 10 red teams who try to penetrate a multi-level organization network and 16 blue teams who try to defend the network. The exercise platform provides scalability and a significant degree of freedom in the design of a very large-scale CCE environment. It also allowed us to fuse techniques such as 3D-printing and augmented reality (AR) to achieve the exercise goals. This CPB platform can also be utilized in various ways for different types of cybersecurity exercise. The successful application of this platform in Locked Shields 2018 (LS18) is strong evidence of this; it showed the great potential of this platform to integrate high-level strategic or operational exercises effectively with low-level technical exercises. This paper also discusses several possible improvements of the platform which could be made for better integration, as well as various exercise environments that can be constructed given the scalability and extensibility of the platform.
Halabi, Talal, Bellaiche, Martine.  2019.  Security Risk-Aware Resource Provisioning Scheme for Cloud Computing Infrastructures. 2019 IEEE Conference on Communications and Network Security (CNS). :1–9.
The last decade has witnessed a growing interest in exploiting the advantages of Cloud Computing technology. However, the full migration of services and data to the Cloud is still cautious due to the lack of security assurance. Cloud Service Providers (CSPs)are urged to exert the necessary efforts to boost their reputation and improve their trustworthiness. Nevertheless, the uniform implementation of advanced security solutions across all their data centers is not the ideal solution, since customers' security requirements are usually not monolithic. In this paper, we aim at integrating the Cloud security risk into the process of resource provisioning to increase the security of Cloud data centers. First, we propose a quantitative security risk evaluation approach based on the definition of distinct security metrics and configurations adapted to the Cloud Computing environment. Then, the evaluated security risk levels are incorporated into a resource provisioning model in an InterCloud setting. Finally, we adopt two different metaheuristics approaches from the family of evolutionary computation to solve the security risk-aware resource provisioning problem. Simulations show that our model reduces the security risk within the Cloud infrastructure and demonstrate the efficiency and scalability of proposed solutions.
Pandelea, Alexandru-Ionut, Chiroiu, Mihai-Daniel.  2019.  Password Guessing Using Machine Learning on Wearables. 2019 22nd International Conference on Control Systems and Computer Science (CSCS). :304–311.
Wearables are now ubiquitous items equipped with a multitude of sensors such as GPS, accelerometer, or Bluetooth. The raw data from this sensors are typically used in a health context. However, we can also use it for security purposes. In this paper, we present a solution that aims at using data from the sensors of a wearable device to identify the password a user is typing on a keyboard by using machine learning algorithms. Hence, the purpose is to determine whether a malicious third party application could extract sensitive data through the raw data that it has access to.
Zhang, Lili, Han, Dianqi, Li, Ang, Li, Tao, Zhang, Yan, Zhang, Yanchao.  2019.  WristUnlock: Secure and Usable Smartphone Unlocking with Wrist Wearables. 2019 IEEE Conference on Communications and Network Security (CNS). :28–36.
We propose WristUnlock, a novel technique that uses a wrist wearable to unlock a smartphone in a secure and usable fashion. WristUnlock explores both the physical proximity and secure Bluetooth connection between the smartphone and wrist wearable. There are two modes in WristUnlock with different security and usability features. In the WristRaise mode, the user raises his smartphone in his natural way with the same arm carrying the wrist wearable; the smartphone gets unlocked if the acceleration data on the smartphone and wrist wearable satisfy an anticipated relationship specific to the user himself. In the WristTouch mode, the wrist wearable sends a random number to the smartphone through both the Bluetooth channel and a touch-based physical channel; the smartphone gets unlocked if the numbers received from both channels are equal. We thoroughly analyze the security of WristUnlock and confirm its high efficacy through detailed experiments.
Yang, Chen, Liu, Tingting, Zuo, Lulu, Hao, Zhiyong.  2019.  An Empirical Study on the Data Security and Privacy Awareness to Use Health Care Wearable Devices. 2019 16th International Conference on Service Systems and Service Management (ICSSSM). :1–6.
Recently, several health care wearable devices which can intervene in health and collect personal health data have emerged in the medical market. Although health care wearable devices promote the integration of multi-layer medical resources and bring new ways of health applications for users, it is inevitable that some problems will be brought. This is mainly manifested in the safety protection of medical and health data and the protection of user's privacy. From the users' point of view, the irrational use of medical and health data may bring psychological and physical negative effects to users. From the government's perspective, it may be sold by private businesses in the international arena and threaten national security. The most direct precaution against the problem is users' initiative. For better understanding, a research model is designed by the following five aspects: Security knowledge (SK), Security attitude (SAT), Security practice (SP), Security awareness (SAW) and Security conduct (SC). To verify the model, structural equation analysis which is an empirical approach was applied to examine the validity and all the results showed that SK, SAT, SP, SAW and SC are important factors affecting users' data security and privacy protection awareness.
Rizk, Dominick, Rizk, Rodrigue, Hsu, Sonya.  2019.  Applied Layered-Security Model to IoMT. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :227–227.
Nowadays, IoT has crossed all borders and become ubiquitous in everyday life. This emerging technology has a huge success in closing the gap between the digital and the real world. However, security and privacy become huge concerns especially in the medical field which prevent the healthcare industry from adopting it despite its benefits and potentials. This paper focuses on identifying potential security threats to the IoMT and presents the security mechanisms to remove any possible impediment from immune information security of IoMT. A summarized framework of the layered-security model is proposed followed by a specific assessment review of each layer.
Wang, Xinda, Sun, Kun, Batcheller, Archer, Jajodia, Sushil.  2019.  Detecting "0-Day" Vulnerability: An Empirical Study of Secret Security Patch in OSS. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :485–492.
Security patches in open source software (OSS) not only provide security fixes to identified vulnerabilities, but also make the vulnerable code public to the attackers. Therefore, armored attackers may misuse this information to launch N-day attacks on unpatched OSS versions. The best practice for preventing this type of N-day attacks is to keep upgrading the software to the latest version in no time. However, due to the concerns on reputation and easy software development management, software vendors may choose to secretly patch their vulnerabilities in a new version without reporting them to CVE or even providing any explicit description in their change logs. When those secretly patched vulnerabilities are being identified by armored attackers, they can be turned into powerful "0-day" attacks, which can be exploited to compromise not only unpatched version of the same software, but also similar types of OSS (e.g., SSL libraries) that may contain the same vulnerability due to code clone or similar design/implementation logic. Therefore, it is critical to identify secret security patches and downgrade the risk of those "0-day" attacks to at least "n-day" attacks. In this paper, we develop a defense system and implement a toolset to automatically identify secret security patches in open source software. To distinguish security patches from other patches, we first build a security patch database that contains more than 4700 security patches mapping to the records in CVE list. Next, we identify a set of features to help distinguish security patches from non-security ones using machine learning approaches. Finally, we use code clone identification mechanisms to discover similar patches or vulnerabilities in similar types of OSS. The experimental results show our approach can achieve good detection performance. A case study on OpenSSL, LibreSSL, and BoringSSL discovers 12 secret security patches.
Ullah, Imtiaz, Mahmoud, Qusay H..  2019.  A Two-Level Hybrid Model for Anomalous Activity Detection in IoT Networks. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–6.
In this paper we propose a two-level hybrid anomalous activity detection model for intrusion detection in IoT networks. The level-1 model uses flow-based anomaly detection, which is capable of classifying the network traffic as normal or anomalous. The flow-based features are extracted from the CICIDS2017 and UNSW-15 datasets. If an anomaly activity is detected then the flow is forwarded to the level-2 model to find the category of the anomaly by deeply examining the contents of the packet. The level-2 model uses Recursive Feature Elimination (RFE) to select significant features and Synthetic Minority Over-Sampling Technique (SMOTE) for oversampling and Edited Nearest Neighbors (ENN) for cleaning the CICIDS2017 and UNSW-15 datasets. Our proposed model precision, recall and F score for level-1 were measured 100% for the CICIDS2017 dataset and 99% for the UNSW-15 dataset, while the level-2 model precision, recall, and F score were measured at 100 % for the CICIDS2017 dataset and 97 % for the UNSW-15 dataset. The predictor we introduce in this paper provides a solid framework for the development of malicious activity detection in IoT networks.
Tunde-Onadele, Olufogorehan, He, Jingzhu, Dai, Ting, Gu, Xiaohui.  2019.  A Study on Container Vulnerability Exploit Detection. 2019 IEEE International Conference on Cloud Engineering (IC2E). :121–127.
Containers have become increasingly popular for deploying applications in cloud computing infrastructures. However, recent studies have shown that containers are prone to various security attacks. In this paper, we conduct a study on the effectiveness of various vulnerability detection schemes for containers. Specifically, we implement and evaluate a set of static and dynamic vulnerability attack detection schemes using 28 real world vulnerability exploits that widely exist in docker images. Our results show that the static vulnerability scanning scheme only detects 3 out of 28 tested vulnerabilities and dynamic anomaly detection schemes detect 22 vulnerability exploits. Combining static and dynamic schemes can further improve the detection rate to 86% (i.e., 24 out of 28 exploits). We also observe that the dynamic anomaly detection scheme can achieve more than 20 seconds lead time (i.e., a time window before attacks succeed) for a group of commonly seen attacks in containers that try to gain a shell and execute arbitrary code.
Guo, Qingrui, Xie, Peng, Li, Feng, Guo, Xuerang, Li, Yutao, Ma, Lin.  2019.  Research on Linkage Model of Network Resource Survey and Vulnerability Detection in Power Information System. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1068–1071.
this paper first analyses the new challenges of power information network management, difficulties of the power information network resource survey and vulnerability detection are proposed. Then, a linkage model of network resource survey and vulnerability detection is designed, and the framework of three modules in the model is described, meanwhile the process of network resources survey and vulnerability detection linkage is proposed. Finally, the implementation technologies are given corresponding to the main functions of each module.
Zou, Zhenwan, Hou, Yingsa, Yang, Huiting, Li, Mingxuan, Wang, Bin, Guo, Qingrui.  2019.  Research and Implementation of Intelligent Substation Information Security Risk Assessment Tool. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). :1306–1310.
In order to improve the information security level of intelligent substation, this paper proposes an intelligent substation information security assessment tool through the research and analysis of intelligent substation information security risk and information security assessment method, and proves that the tool can effectively detect it. It is of great significance to carry out research on industrial control systems, especially intelligent substation information security.
Shukla, Meha, Johnson, Shane D., Jones, Peter.  2019.  Does the NIS implementation strategy effectively address cyber security risks in the UK? 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–11.
This research explored how cyber security risks are managed across UK Critical National Infrastructure (CNI) sectors following implementation of the 2018 Networks and Information Security (NIS) legislation. Being in its infancy, there has been limited study into the effectiveness of this national framework for cyber risk management. The analysis of data gathered through interviews with key stakeholders against the NIS objectives indicated a collaborative implementation approach to improve cyber-risk management capabilities in CNI sectors. However, more work is required to bridge the gaps in the NIS framework to ensure holistic security across cyber spaces as well as non-cyber elements: cyber-physical security, cross-sector CNI service security measures, outcome-based regulatory assessments and risks due to connected smart technology implementations alongside legacy systems. This paper proposes ten key recommendations to counter the danger of not meeting the NIS key strategic objectives. In particular, it recommends that the approach to NIS implementation needs further alignment with its objectives, such as bringing a step-change in the cyber-security risk management capabilities of the CNI sectors.