Visible to the public Biblio

Found 179 results

Filters: Keyword is Games  [Clear All Filters]
2021-11-29
Fujita, Kentaro, Zhang, Yuanyu, Sasabe, Masahiro, Kasahara, Shoji.  2020.  Mining Pool Selection Problem in the Presence of Block Withholding Attack. 2020 IEEE International Conference on Blockchain (Blockchain). :321–326.
Mining, the process where multiple miners compete to add blocks to Proof-of-Work (PoW) blockchains, is of great importance to maintain the tamper-resistance feature of blockchains. In current blockchain networks, miners usually form groups, called mining pools, to improve their revenues. When multiple pools exist, a fundamental mining pool selection problem arises: which pool should each miner join to maximize its revenue? In addition, the existence of mining pools also leads to another critical issue, i.e., Block WithHolding (BWH) attack, where a pool sends some of its miners as spies to another pool to gain extra revenues without contributing to the mining of the infiltrated pool. This paper therefore aims to investigate the mining pool selection issue (i.e., the stable population distribution of miners in the pools) in the presence of BWH attack from the perspective of evolutionary game theory. We first derive the expected revenue density of each pool to determine the expected payoff of miners in that pool. Based on the expected payoffs, we formulate replicator dynamics to represent the growth rates of the populations in all pools. Using the replicator dynamics, we obtain the rest points of the growth rates and discuss their stability to identify the Evolutionarily Stable States (ESSs) (i.e., stable population distributions) of the game. Simulation and numerical results are also provided to corroborate our analysis and to illustrate the theoretical findings.
2021-10-12
El-Sobky, Mariam, Sarhan, Hisham, Abu-ElKheir, Mervat.  2020.  Security Assessment of the Contextual Multi-Armed Bandit - RL Algorithm for Link Adaptation. 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES). :514–519.
Industry is increasingly adopting Reinforcement Learning algorithms (RL) in production without thoroughly analyzing their security features. In addition to the potential threats that may arise if the functionality of these algorithms is compromised while in operation. One of the well-known RL algorithms is the Contextual Multi-Armed Bandit (CMAB) algorithm. In this paper, we explore how the CMAB can be used to solve the Link Adaptation problem - a well-known problem in the telecommunication industry by learning the optimal transmission parameters that will maximize a communication link's throughput. We analyze the potential vulnerabilities of the algorithm and how they may adversely affect link parameters computation. Additionally, we present a provable security assessment for the Contextual Multi-Armed Bandit Reinforcement Learning (CMAB-RL) algorithm in a network simulated environment using Ray. This is by demonstrating CMAB security vulnerabilities theoretically and practically. Some security controls are proposed for CMAB agent and the surrounding environment. In order to fix those vulnerabilities and mitigate the risk. These controls can be applied to other RL agents in order to design more robust and secure RL agents.
2021-09-16
Zhao, Bing-Qing, Wang, Hui-Ming, Jiang, Jia-Cheng.  2020.  Safeguarding Backscatter RFID Communication against Proactive Eavesdropping. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Passive radio frequency identification (RFID) systems raise new transmission secrecy protection challenges against the special proactive eavesdropper, since it is able to both enhance the information wiretap and interfere with the information detection at the RFID reader simultaneously by broadcasting its own continuous wave (CW) signal. To defend against proactive eavesdropping attacks, we propose an artificial noise (AN) aided secure transmission scheme for the RFID reader, which superimposes an AN signal on the CW signal to confuse the proactive eavesdropper. The power allocation between the AN signal and the CW signal are optimized to maximize the secrecy rate. Furthermore, we model the attack and defense process between the proactive eavesdropper and the RFID reader as a hierarchical security game, and prove it can achieve the equilibrium. Simulation results show the superiority of our proposed scheme in terms of the secrecy rate and the interactions between the RFID reader and the proactive eavesdropper.
2021-09-07
Sasahara, Hampei, Sarıta\c s, Serkan, Sandberg, Henrik.  2020.  Asymptotic Security of Control Systems by Covert Reaction: Repeated Signaling Game with Undisclosed Belief. 2020 59th IEEE Conference on Decision and Control (CDC). :3243–3248.
This study investigates the relationship between resilience of control systems to attacks and the information available to malicious attackers. Specifically, it is shown that control systems are guaranteed to be secure in an asymptotic manner by rendering reactions against potentially harmful actions covert. The behaviors of the attacker and the defender are analyzed through a repeated signaling game with an undisclosed belief under covert reactions. In the typical setting of signaling games, reactions conducted by the defender are supposed to be public information and the measurability enables the attacker to accurately trace transitions of the defender's belief on existence of a malicious attacker. In contrast, the belief in the game considered in this paper is undisclosed and hence common equilibrium concepts can no longer be employed for the analysis. To surmount this difficulty, a novel framework for decision of reasonable strategies of the players in the game is introduced. Based on the presented framework, it is revealed that any reasonable strategy chosen by a rational malicious attacker converges to the benign behavior as long as the reactions performed by the defender are unobservable to the attacker. The result provides an explicit relationship between resilience and information, which indicates the importance of covertness of reactions for designing secure control systems.
2021-08-31
Adamov, Alexander, Carlsson, Anders.  2020.  Reinforcement Learning for Anti-Ransomware Testing. 2020 IEEE East-West Design Test Symposium (EWDTS). :1–5.
In this paper, we are going to verify the possibility to create a ransomware simulation that will use an arbitrary combination of known tactics and techniques to bypass an anti-malware defense. To verify this hypothesis, we conducted an experiment in which an agent was trained with the help of reinforcement learning to run the ransomware simulator in a way that can bypass anti-ransomware solution and encrypt the target files. The novelty of the proposed method lies in applying reinforcement learning to anti-ransomware testing that may help to identify weaknesses in the anti-ransomware defense and fix them before a real attack happens.
2021-08-11
Nan, Satyaki, Brahma, Swastik, Kamhoua, Charles A., Njilla, Laurent L..  2020.  On Development of a Game‐Theoretic Model for Deception‐Based Security. Modeling and Design of Secure Internet of Things. :123–140.
This chapter presents a game‐theoretic model to analyze attack–defense scenarios that use fake nodes (computing devices) for deception under consideration of the system deploying defense resources to protect individual nodes in a cost‐effective manner. The developed model has important applications in the Internet of Battlefield Things (IoBT). Our game‐theoretic model illustrates how the concept of the Nash equilibrium can be used by the defender to intelligently choose which nodes should be used for performing a computation task while deceiving the attacker into expending resources for attacking fake nodes. Our model considers the fact that defense resources may become compromised under an attack and suggests that the defender, in a probabilistic manner, may utilize unprotected nodes for performing a computation while the attacker is deceived into attacking a node with defense resources installed. The chapter also presents a deception‐based strategy to protect a target node that can be accessed via a tree network. Numerical results provide insights into the strategic deception techniques presented in this chapter.
Xi, Bowei, Kamhoua, Charles A..  2020.  A Hypergame‐Based Defense Strategy Toward Cyber Deception in Internet of Battlefield Things (IoBT). Modeling and Design of Secure Internet of Things. :59–77.
In this chapter, we develop a defense strategy to secure Internet of Battlefield Things (IoBT) based on a hypergame employing deceptive techniques. The hypergame is played multiple rounds. At each round, the adversary updates its perception of the attack graph and chooses the next node to compromise. The defender updates its perceived list of compromised nodes and actively feeds false signals to the adversary to create deception. The hypergame developed in this chapter provides an important theoretical framework for us to model how a cyberattack spreads on a network and the interaction between the adversary and the defender. It also provides quantitative metrics such as the time it takes the adversary to explore the network and compromise the target nodes. Based on these metrics, the defender can reboot the network devices and reset the network topology in time to clean up all potentially compromised devices and to protect the critical nodes. The hypergame provides useful guidance on how to create cyber deceptions so that the adversary cannot obtain information about the correct network topology and can be deterred from reaching the target critical nodes on a military network while it is in service.
2021-08-02
Zhou, Zan, Xu, Changqiao, Ma, Tengchao, Kuang, Xiaohui.  2020.  Multi-vNIC Intelligent Mutation: A Moving Target Defense to thwart Client-side DNS Cache Attack. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—6.
As massive research efforts are poured into server-side DNS security enhancement in online cloud service platforms, sophisticated APTs tend to develop client-side DNS attacks, where defenders only have limited resources and abilities. The collaborative DNS attack is a representative newest client-side paradigm to stealthily undermine user cache by falsifying DNS responses. Different from existing static methods, in this paper, we propose a moving target defense solution named multi-vNIC intelligent mutation to free defenders from arduous work and thwart elusive client-side DNS attack in the meantime. Multiple virtual network interface cards are created and switched in a mutating manner. Thus attackers have to blindly guess the actual NIC with a high risk of exposure. Firstly, we construct a dynamic game-theoretic model to capture the main characteristics of both attacker and defender. Secondly, a reinforcement learning mechanism is developed to generate adaptive optimal defense strategy. Experiment results also highlight the security performance of our defense method compared to several state-of-the-art technologies.
2021-07-28
Grimsman, David, Hespanha, João P., Marden, Jason R..  2020.  Stackelberg Equilibria for Two-Player Network Routing Games on Parallel Networks. 2020 American Control Conference (ACC). :5364—5369.
We consider a two-player zero-sum network routing game in which a router wants to maximize the amount of legitimate traffic that flows from a given source node to a destination node and an attacker wants to block as much legitimate traffic as possible by flooding the network with malicious traffic. We address scenarios with asymmetric information, in which the router must reveal its policy before the attacker decides how to distribute the malicious traffic among the network links, which is naturally modeled by the notion of Stackelberg equilibria. The paper focuses on parallel networks, and includes three main contributions: we show that computing the optimal attack policy against a given routing policy is an NP-hard problem; we establish conditions under which the Stackelberg equilibria lead to no regret; and we provide a metric that can be used to quantify how uncertainty about the attacker's capabilities limits the router's performance.
2021-07-08
Chiariotti, Federico, Signori, Alberto, Campagnaro, Filippo, Zorzi, Michele.  2020.  Underwater Jamming Attacks as Incomplete Information Games. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1033—1038.
Autonomous Underwater Vehicles (AUVs) have several fundamental civilian and military applications, and Denial of Service (DoS) attacks against their communications are a serious threat. In this work, we analyze such an attack using game theory in an asymmetric scenario, in which the node under attack does not know the position of the jammer that blocks its signals. The jammer has a dual objective, namely, disrupting communications and forcing the legitimate transmitter to spend more energy protecting its own transmissions. Our model shows that, if both nodes act rationally, the transmitter is able to quickly reduce its disadvantage, estimating the location of the jammer and responding optimally to the attack.
2021-07-07
Suciu, George, Hussain, Ijaz, Petrescu, Gabriel.  2020.  Role of Ubiquitous Computing and Mobile WSN Technologies and Implementation. 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). :1–6.
Computing capabilities such as real time data, unlimited connection, data from sensors, environmental analysis, automated decisions (machine learning) are demanded by many areas like industry for example decision making, machine learning, by research and military, for example GPS, sensor data collection. The possibility to make these features compatible with each domain that demands them is known as ubiquitous computing. Ubiquitous computing includes network topologies such as wireless sensor networks (WSN) which can help further improving the existing communication, for example the Internet. Also, ubiquitous computing is included in the Internet of Things (IoT) applications. In this article, it is discussed the mobility of WSN and its advantages and innovations, which make possible implementations for smart home and office. Knowing the growing number of mobile users, we place the mobile phone as the key factor of the future ubiquitous wireless networks. With secure computing, communicating, and storage capacities of mobile devices, they can be taken advantage of in terms of architecture in the sense of scalability, energy efficiency, packet delay, etc. Our work targets to present a structure from a ubiquitous computing point of view for researchers who have an interest in ubiquitous computing and want to research on the analysis, to implement a novel method structure for the ubiquitous computing system in military sectors. Also, this paper presents security and privacy issues in ubiquitous sensor networks (USN).
2021-06-24
Gamagedara Arachchilage, Nalin Asanka, Hameed, Mumtaz Abdul.  2020.  Designing a Serious Game: Teaching Developers to Embed Privacy into Software Systems. 2020 35th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW). :7—12.
Software applications continue to challenge user privacy when users interact with them. Privacy practices (e.g. Data Minimisation (DM), Privacy by Design (PbD) or General Data Protection Regulation (GDPR)) and related “privacy engineering” methodologies exist and provide clear instructions for developers to implement privacy into software systems they develop that preserve user privacy. However, those practices and methodologies are not yet a common practice in the software development community. There has been no previous research focused on developing “educational” interventions such as serious games to enhance software developers' coding behaviour. Therefore, this research proposes a game design framework as an educational tool for software developers to improve (secure) coding behaviour, so they can develop privacy-preserving software applications that people can use. The elements of the proposed framework were incorporated into a gaming application scenario that enhances the software developers' coding behaviour through their motivation. The proposed work not only enables the development of privacy-preserving software systems but also helping the software development community to put privacy guidelines and engineering methodologies into practice.
2021-06-02
Scarabaggio, Paolo, Carli, Raffaele, Dotoli, Mariagrazia.  2020.  A game-theoretic control approach for the optimal energy storage under power flow constraints in distribution networks. 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). :1281—1286.
Traditionally, the management of power distribution networks relies on the centralized implementation of the optimal power flow and, in particular, the minimization of the generation cost and transmission losses. Nevertheless, the increasing penetration of both renewable energy sources and independent players such as ancillary service providers in modern networks have made this centralized framework inadequate. Against this background, we propose a noncooperative game-theoretic framework for optimally controlling energy storage systems (ESSs) in power distribution networks. Specifically, in this paper we address a power grid model that comprehends traditional loads, distributed generation sources and several independent energy storage providers, each owning an individual ESS. Through a rolling-horizon approach, the latter participate in the grid optimization process, aiming both at increasing the penetration of distributed generation and leveling the power injection from the transmission grid. Our framework incorporates not only economic factors but also grid stability aspects, including the power flow constraints. The paper fully describes the distribution grid model as well as the underlying market hypotheses and policies needed to force the energy storage providers to find a feasible equilibrium for the network. Numerical experiments based on the IEEE 33-bus system confirm the effectiveness and resiliency of the proposed framework.
2021-06-01
Plager, Trenton, Zhu, Ying, Blackmon, Douglas A..  2020.  Creating a VR Experience of Solitary Confinement. 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). :692—693.
The goal of this project is to create a realistic VR experience of solitary confinement and study its impact on users. Although there have been active debates and studies on this subject, very few people have personal experience of solitary confinement. Our first aim is to create such an experience in VR to raise the awareness of solitary confinement. We also want to conduct user studies to compare the VR solitary confinement experience with other types of media experiences, such as films or personal narrations. Finally, we want to study people’s sense of time in such a VR environment.
Xing, Hang, Zhou, Chunjie, Ye, Xinhao, Zhu, Meipan.  2020.  An Edge-Cloud Synergy Integrated Security Decision-Making Method for Industrial Cyber-Physical Systems. 2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS). :989–995.
With the introduction of new technologies such as cloud computing and big data, the security issues of industrial cyber-physical systems (ICPSs) have become more complicated. Meanwhile, a lot of current security research lacks adaptation to industrial system upgrades. In this paper, an edge-cloud synergy framework for security decision-making is proposed, which takes advantage of the huge convenience and advantages brought by cloud computing and edge computing, and can make security decisions on a global perspective. Under this framework, a combination of Bayesian network-based risk assessment and stochastic game model-based security decision-making is proposed to generate an optimal defense strategy to minimize system losses. This method trains models in the clouds and infers at the edge computing nodes to achieve rapid defense strategy generation. Finally, a case study on the hardware-in-the-loop simulation platform proves the feasibility of the approach.
2021-05-26
Yang, Wenti, Wang, Ruimiao, Guan, Zhitao, Wu, Longfei, Du, Xiaojiang, Guizani, Mohsen.  2020.  A Lightweight Attribute Based Encryption Scheme with Constant Size Ciphertext for Internet of Things. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—6.

The Internet of Things technology has been used in a wide range of fields, ranging from industrial applications to individual lives. As a result, a massive amount of sensitive data is generated and transmitted by IoT devices. Those data may be accessed by a large number of complex users. Therefore, it is necessary to adopt an encryption scheme with access control to achieve more flexible and secure access to sensitive data. The Ciphertext Policy Attribute-Based Encryption (CP-ABE) can achieve access control while encrypting data can match the requirements mentioned above. However, the long ciphertext and the slow decryption operation makes it difficult to be used in most IoT devices which have limited memory size and computing capability. This paper proposes a modified CP-ABE scheme, which can implement the full security (adaptive security) under the access structure of AND gate. Moreover, the decryption overhead and the length of ciphertext are constant. Finally, the analysis and experiments prove the feasibility of our scheme.

2021-05-25
Ramasubramanian, Bhaskar, Niu, Luyao, Clark, Andrew, Bushnell, Linda, Poovendran, Radha.  2020.  Privacy-Preserving Resilience of Cyber-Physical Systems to Adversaries. 2020 59th IEEE Conference on Decision and Control (CDC). :3785–3792.

A cyber-physical system (CPS) is expected to be resilient to more than one type of adversary. In this paper, we consider a CPS that has to satisfy a linear temporal logic (LTL) objective in the presence of two kinds of adversaries. The first adversary has the ability to tamper with inputs to the CPS to influence satisfaction of the LTL objective. The interaction of the CPS with this adversary is modeled as a stochastic game. We synthesize a controller for the CPS to maximize the probability of satisfying the LTL objective under any policy of this adversary. The second adversary is an eavesdropper who can observe labeled trajectories of the CPS generated from the previous step. It could then use this information to launch other kinds of attacks. A labeled trajectory is a sequence of labels, where a label is associated to a state and is linked to the satisfaction of the LTL objective at that state. We use differential privacy to quantify the indistinguishability between states that are related to each other when the eavesdropper sees a labeled trajectory. Two trajectories of equal length will be differentially private if they are differentially private at each state along the respective trajectories. We use a skewed Kantorovich metric to compute distances between probability distributions over states resulting from actions chosen according to policies from related states in order to quantify differential privacy. Moreover, we do this in a manner that does not affect the satisfaction probability of the LTL objective. We validate our approach on a simulation of a UAV that has to satisfy an LTL objective in an adversarial environment.

2021-04-27
Tahsini, A., Dunstatter, N., Guirguis, M., Ahmed, C. M..  2020.  DeepBLOC: A Framework for Securing CPS through Deep Reinforcement Learning on Stochastic Games. 2020 IEEE Conference on Communications and Network Security (CNS). :1–9.

One important aspect in protecting Cyber Physical System (CPS) is ensuring that the proper control and measurement signals are propagated within the control loop. The CPS research community has been developing a large set of check blocks that can be integrated within the control loop to check signals against various types of attacks (e.g., false data injection attacks). Unfortunately, it is not possible to integrate all these “checks” within the control loop as the overhead introduced when checking signals may violate the delay constraints of the control loop. Moreover, these blocks do not completely operate in isolation of each other as dependencies exist among them in terms of their effectiveness against detecting a subset of attacks. Thus, it becomes a challenging and complex problem to assign the proper checks, especially with the presence of a rational adversary who can observe the check blocks assigned and optimizes her own attack strategies accordingly. This paper tackles the inherent state-action space explosion that arises in securing CPS through developing DeepBLOC (DB)-a framework in which Deep Reinforcement Learning algorithms are utilized to provide optimal/sub-optimal assignments of check blocks to signals. The framework models stochastic games between the adversary and the CPS defender and derives mixed strategies for assigning check blocks to ensure the integrity of the propagated signals while abiding to the real-time constraints dictated by the control loop. Through extensive simulation experiments and a real implementation on a water purification system, we show that DB achieves assignment strategies that outperform other strategies and heuristics.

2021-04-08
Jin, R., He, X., Dai, H..  2019.  On the Security-Privacy Tradeoff in Collaborative Security: A Quantitative Information Flow Game Perspective. IEEE Transactions on Information Forensics and Security. 14:3273–3286.
To contest the rapidly developing cyber-attacks, numerous collaborative security schemes, in which multiple security entities can exchange their observations and other relevant data to achieve more effective security decisions, are proposed and developed in the literature. However, the security-related information shared among the security entities may contain some sensitive information and such information exchange can raise privacy concerns, especially when these entities belong to different organizations. With such consideration, the interplay between the attacker and the collaborative entities is formulated as Quantitative Information Flow (QIF) games, in which the QIF theory is adapted to measure the collaboration gain and the privacy loss of the entities in the information sharing process. In particular, three games are considered, each corresponding to one possible scenario of interest in practice. Based on the game-theoretic analysis, the expected behaviors of both the attacker and the security entities are obtained. In addition, the simulation results are presented to validate the analysis.
2021-03-29
Kotra, A., Eldosouky, A., Sengupta, S..  2020.  Every Anonymization Begins with k: A Game-Theoretic Approach for Optimized k Selection in k-Anonymization. 2020 International Conference on Advances in Computing and Communication Engineering (ICACCE). :1–6.
Privacy preservation is one of the greatest concerns when data is shared between different organizations. On the one hand, releasing data for research purposes is inevitable. On the other hand, sharing this data can jeopardize users' privacy. An effective solution, for the sharing organizations, is to use anonymization techniques to hide the users' sensitive information. One of the most popular anonymization techniques is k-Anonymization in which any data record is indistinguishable from at least k-1 other records. However, one of the fundamental challenges in choosing the value of k is the trade-off between achieving a higher privacy and the information loss associated with the anonymization. In this paper, the problem of choosing the optimal anonymization level for k-anonymization, under possible attacks, is studied when multiple organizations share their data to a common platform. In particular, two common types of attacks are considered that can target the k-anonymization technique. To this end, a novel game-theoretic framework is proposed to model the interactions between the sharing organizations and the attacker. The problem is formulated as a static game and its different Nash equilibria solutions are analytically derived. Simulation results show that the proposed framework can significantly improve the utility of the sharing organizations through optimizing the choice of k value.
Xu, Z., Easwaran, A..  2020.  A Game-Theoretic Approach to Secure Estimation and Control for Cyber-Physical Systems with a Digital Twin. 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS). :20–29.
Cyber-Physical Systems (CPSs) play an increasingly significant role in many critical applications. These valuable applications attract various sophisticated attacks. This paper considers a stealthy estimation attack, which aims to modify the state estimation of the CPSs. The intelligent attackers can learn defense strategies and use clandestine attack strategies to avoid detection. To address the issue, we design a Chi-square detector in a Digital Twin (DT), which is an online digital model of the physical system. We use a Signaling Game with Evidence (SGE) to find the optimal attack and defense strategies. Our analytical results show that the proposed defense strategies can mitigate the impact of the attack on the physical estimation and guarantee the stability of the CPSs. Finally, we use an illustrative application to evaluate the performance of the proposed framework.
Liao, S., Wu, J., Li, J., Bashir, A. K..  2020.  Proof-of-Balance: Game-Theoretic Consensus for Controller Load Balancing of SDN. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :231–236.
Software Defined Networking (SDN) focus on the isolation of control plane and data plane, greatly enhancing the network's support for heterogeneity and flexibility. However, although the programmable network greatly improves the performance of all aspects of the network, flexible load balancing across controllers still challenges the current SDN architecture. Complex application scenarios lead to flexible and changeable communication requirements, making it difficult to guarantee the Quality of Service (QoS) for SDN users. To address this issue, this paper proposes a paradigm that uses blockchain to incentive safe load balancing for multiple controllers. We proposed a controller consortium blockchain for secure and efficient load balancing of multi-controllers, which includes a new cryptographic currency balance coin and a novel consensus mechanism Proof-of-Balance (PoB). In addition, we have designed a novel game theory-based incentive mechanism to incentive controllers with tight communication resources to offload tasks to idle controllers. The security analysis and performance simulation results indicate the superiority and effectiveness of the proposed scheme.
Solovey, R., Lavrova, D..  2020.  Game-Theoretic Approach to Self-Regulation of Dynamic Network Infrastructure to Protect Against Cyber Attacks. 2020 International Scientific and Technical Conference Modern Computer Network Technologies (MoNeTeC). :1–7.
The paper presents the concept of applying a game theory approach in infrastructure of wireless dynamic networks to counter computer attacks. The applying of this approach will allow to create mechanism for adaptive reconfiguration of network structure in the context of implementation various types of computer attacks and to provide continuous operation of network even in conditions of destructive information impacts.
Dai, Q., Shi, L..  2020.  A Game-Theoretic Analysis of Cyber Attack-Mitigation in Centralized Feeder Automation System. 2020 IEEE Power Energy Society General Meeting (PESGM). :1–5.
The intelligent electronic devices widely deployed across the distribution network are inevitably making the feeder automation (FA) system more vulnerable to cyber-attacks, which would lead to disastrous socio-economic impacts. This paper proposes a three-stage game-theoretic framework that the defender allocates limited security resources to minimize the economic impacts on FA system while the attacker deploys limited attack resources to maximize the corresponding impacts. Meanwhile, the probability of successful attack is calculated based on the Bayesian attack graph, and a fault-tolerant location technique for centralized FA system is elaborately considered during analysis. The proposed game-theoretic framework is converted into a two-level zero-sum game model and solved by the particle swarm optimization (PSO) combined with a generalized reduced gradient algorithm. Finally, the proposed model is validated on distribution network for RBTS bus 2.
2021-03-22
Fan, X., Zhang, F., Turamat, E., Tong, C., Wu, J. H., Wang, K..  2020.  Provenance-based Classification Policy based on Encrypted Search. 2020 2nd International Conference on Industrial Artificial Intelligence (IAI). :1–6.
As an important type of cloud data, digital provenance is arousing increasing attention on improving system performance. Currently, provenance has been employed to provide cues regarding access control and to estimate data quality. However, provenance itself might also be sensitive information. Therefore, provenance might be encrypted and stored in the Cloud. In this paper, we provide a mechanism to classify cloud documents by searching specific keywords from their encrypted provenance, and we prove our scheme achieves semantic security. In term of application of the proposed techniques, considering that files are classified to store separately in the cloud, in order to facilitate the regulation and security protection for the files, the classification policies can use provenance as conditions to determine the category of a document. Such as the easiest sample policy goes like: the documents have been reviewed twice can be classified as “public accessible”, which can be accessed by the public.