Visible to the public Biblio

Found 610 results

Filters: Keyword is Training  [Clear All Filters]
Berman, Maxwell, Adams, Stephen, Sherburne, Tim, Fleming, Cody, Beling, Peter.  2019.  Active Learning to Improve Static Analysis. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). :1322–1327.
Static analysis tools are programs that run on source code prior to their compilation to binary executables and attempt to find flaws or defects in the code during the early stages of development. If left unresolved, these flaws could pose security risks. While numerous static analysis tools exist, there is no single tool that is optimal. Therefore, many static analysis tools are often used to analyze code. Further, some of the alerts generated by the static analysis tools are low-priority or false alarms. Machine learning algorithms have been developed to distinguish between true alerts and false alarms, however significant man hours need to be dedicated to labeling data sets for training. This study investigates the use of active learning to reduce the number of labeled alerts needed to adequately train a classifier. The numerical experiments demonstrate that a query by committee active learning algorithm can be utilized to significantly reduce the number of labeled alerts needed to achieve similar performance as a classifier trained on a data set of nearly 60,000 labeled alerts.
Gepperth, Alexander, Pfülb, Benedikt.  2021.  Image Modeling with Deep Convolutional Gaussian Mixture Models. 2021 International Joint Conference on Neural Networks (IJCNN). :1–9.
In this conceptual work, we present Deep Convolutional Gaussian Mixture Models (DCGMMs): a new formulation of deep hierarchical Gaussian Mixture Models (GMMs) that is particularly suitable for describing and generating images. Vanilla (i.e., flat) GMMs require a very large number of components to describe images well, leading to long training times and memory issues. DCGMMs avoid this by a stacked architecture of multiple GMM layers, linked by convolution and pooling operations. This allows to exploit the compositionality of images in a similar way as deep CNNs do. DCGMMs can be trained end-to-end by Stochastic Gradient Descent. This sets them apart from vanilla GMMs which are trained by Expectation-Maximization, requiring a prior k-means initialization which is infeasible in a layered structure. For generating sharp images with DCGMMs, we introduce a new gradient-based technique for sampling through non-invertible operations like convolution and pooling. Based on the MNIST and FashionMNIST datasets, we validate the DCGMMs model by demonstrating its superiority over flat GMMs for clustering, sampling and outlier detection.
Killedar, Vinayak, Pokala, Praveen Kumar, Sekhar Seelamantula, Chandra.  2021.  Sparsity Driven Latent Space Sampling for Generative Prior Based Compressive Sensing. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2895—2899.
We address the problem of recovering signals from compressed measurements based on generative priors. Recently, generative-model based compressive sensing (GMCS) methods have shown superior performance over traditional compressive sensing (CS) techniques in recovering signals from fewer measurements. However, it is possible to further improve the performance of GMCS by introducing controlled sparsity in the latent-space. We propose a proximal meta-learning (PML) algorithm to enforce sparsity in the latent-space while training the generator. Enforcing sparsity naturally leads to a union-of-submanifolds model in the solution space. The overall framework is named as sparsity driven latent space sampling (SDLSS). In addition, we derive the sample complexity bounds for the proposed model. Furthermore, we demonstrate the efficacy of the proposed framework over the state-of-the-art techniques with application to CS on standard datasets such as MNIST and CIFAR-10. In particular, we evaluate the performance of the proposed method as a function of the number of measurements and sparsity factor in the latent space using standard objective measures. Our findings show that the sparsity driven latent space sampling approach improves the accuracy and aids in faster recovery of the signal in GMCS.
Sooraksa, Nanta.  2021.  A Survey of using Computational Intelligence (CI) and Artificial Intelligence (AI) in Human Resource (HR) Analytics. 2021 7th International Conference on Engineering, Applied Sciences and Technology (ICEAST). :129—132.
Human Resource (HR) Analytics has been increasingly attracted attention for a past decade. This is because the study field is adopted data-driven approaches to be processed and interpreted for meaningful insights in human resources. The field is involved in HR decision making helping to understand why people, organization, or other business performance behaved the way they do. Embracing the available tools for decision making and learning in the field of computational intelligence (CI) and Artificial Intelligence (AI) to the field of HR, this creates tremendous opportunities for HR Analytics in practical aspects. However, there are still inadequate applications in this area. This paper serves as a survey of using the tools and their applications in HR involving recruitment, retention, reward and retirement. An example of using CI and AI for career development and training in the era of disruption is conceptually proposed.
Laputenko, Andrey.  2021.  Assessing Trustworthiness of IoT Applications Using Logic Circuits. 2021 IEEE East-West Design & Test Symposium (EWDTS). :1—4.
The paper describes a methodology for assessing non-functional requirements, such as trust characteristics for applications running on computationally constrained devices in the Internet of Things. The methodology is demonstrated through an example of a microcontroller-based temperature monitoring system. The concepts of trust and trustworthiness for software and devices of the Internet of Things are complex characteristics for describing the correct and secure operation of such systems and include aspects of operational and information security, reliability, resilience and privacy. Machine learning models, which are increasingly often used for such tasks in recent years, are resource-consuming software implementations. The paper proposes to use a logic circuit model to implement the above algorithms as an additional module for computationally constrained devices for checking the trustworthiness of applications running on them. Such a module could be implemented as a hardware, for example, as an FPGA in order to achieve more effectiveness.
Tartaglione, Enzo, Grangetto, Marco, Cavagnino, Davide, Botta, Marco.  2021.  Delving in the loss landscape to embed robust watermarks into neural networks. 2020 25th International Conference on Pattern Recognition (ICPR). :1243—1250.
In the last decade the use of artificial neural networks (ANNs) in many fields like image processing or speech recognition has become a common practice because of their effectiveness to solve complex tasks. However, in such a rush, very little attention has been paid to security aspects. In this work we explore the possibility to embed a watermark into the ANN parameters. We exploit model redundancy and adaptation capacity to lock a subset of its parameters to carry the watermark sequence. The watermark can be extracted in a simple way to claim copyright on models but can be very easily attacked with model fine-tuning. To tackle this culprit we devise a novel watermark aware training strategy. We aim at delving into the loss landscape to find an optimal configuration of the parameters such that we are robust to fine-tuning attacks towards the watermarked parameters. Our experimental results on classical ANN models trained on well-known MNIST and CIFAR-10 datasets show that the proposed approach makes the embedded watermark robust to fine-tuning and compression attacks.
Zhang, Dayin, Chen, Xiaojun, Shi, Jinqiao, Wang, Dakui, Zeng, Shuai.  2021.  A Differential Privacy Collaborative Deep Learning Algorithm in Pervasive Edge Computing Environment. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :347—354.
With the development of 5G technology and intelligent terminals, the future direction of the Industrial Internet of Things (IIoT) evolution is Pervasive Edge Computing (PEC). In the pervasive edge computing environment, intelligent terminals can perform calculations and data processing. By migrating part of the original cloud computing model's calculations to intelligent terminals, the intelligent terminal can complete model training without uploading local data to a remote server. Pervasive edge computing solves the problem of data islands and is also successfully applied in scenarios such as vehicle interconnection and video surveillance. However, pervasive edge computing is facing great security problems. Suppose the remote server is honest but curious. In that case, it can still design algorithms for the intelligent terminal to execute and infer sensitive content such as their identity data and private pictures through the information returned by the intelligent terminal. In this paper, we research the problem of honest but curious remote servers infringing intelligent terminal privacy and propose a differential privacy collaborative deep learning algorithm in the pervasive edge computing environment. We use a Gaussian mechanism that meets the differential privacy guarantee to add noise on the first layer of the neural network to protect the data of the intelligent terminal and use analytical moments accountant technology to track the cumulative privacy loss. Experiments show that with the Gaussian mechanism, the training data of intelligent terminals can be protected reduction inaccuracy.
McDonnell, Serena, Nada, Omar, Abid, Muhammad Rizwan, Amjadian, Ehsan.  2021.  CyberBERT: A Deep Dynamic-State Session-Based Recommender System for Cyber Threat Recognition. 2021 IEEE Aerospace Conference (50100). :1—12.
Session-based recommendation is the task of predicting user actions during short online sessions. The user is considered to be anonymous in this setting, with no past behavior history available. Predicting anonymous users' next actions and their preferences in the absence of historical user behavior information is valuable from a cybersecurity and aerospace perspective, as cybersecurity measures rely on the prompt classification of novel threats. Our offered solution builds upon the previous representation learning work originating from natural language processing, namely BERT, which stands for Bidirectional Encoder Representations from Transformers (Devlin et al., 2018). In this paper we propose CyberBERT, the first deep session-based recommender system to employ bidirectional transformers to model the intent of anonymous users within a session. The session-based setting lends itself to applications in threat recognition, through monitoring of real-time user behavior using the CyberBERT architecture. We evaluate the efficiency of this dynamic state method using the Windows PE Malware API sequence dataset (Catak and Yazi, 2019), which contains behavior for 7107 API call sequences executed by 8 classes of malware. We compare the proposed CyberBERT solution to two high-performing benchmark algorithms on the malware dataset: LSTM (Long Short-term Memory) and transformer encoder (Vaswani et al., 2017). We also evaluate the method using the YOOCHOOSE 1/64 dataset, which is a session-based recommendation dataset that contains 37,483 items, 719,470 sessions, and 31,637,239 clicks. Our experiments demonstrate the advantage of a bidirectional architecture over the unidirectional approach, as well as the flexibility of the CyberBERT solution in modelling the intent of anonymous users in a session. Our system achieves state-of-the-art measured by F1 score on the Windows PE Malware API sequence dataset, and state-of-the-art for P@20 and MRR@20 on YOOCHOOSE 1/64. As CyberBERT allows for user behavior monitoring in the absence of behavior history, it acts as a robust malware classification system that can recognize threats in aerospace systems, where malicious actors may be interacting with a system for the first time. This work provides the backbone for systems that aim to protect aviation and aerospace applications from prospective third-party applications and malware.
Rathod, Viraj, Parekh, Chandresh, Dholariya, Dharati.  2021.  AI & ML Based Anamoly Detection and Response Using Ember Dataset. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1–5.
In the era of rapid technological growth, malicious traffic has drawn increased attention. Most well-known offensive security assessment todays are heavily focused on pre-compromise. The amount of anomalous data in today's context is massive. Analyzing the data using primitive methods would be highly challenging. Solution to it is: If we can detect adversary behaviors in the early stage of compromise, one can prevent and safeguard themselves from various attacks including ransomwares and Zero-day attacks. Integration of new technologies Artificial Intelligence & Machine Learning with manual Anomaly Detection can provide automated machine-based detection which in return can provide the fast, error free, simplify & scalable Threat Detection & Response System. Endpoint Detection & Response (EDR) tools provide a unified view of complex intrusions using known adversarial behaviors to identify intrusion events. We have used the EMBER dataset, which is a labelled benchmark dataset. It is used to train machine learning models to detect malicious portable executable files. This dataset consists of features derived from 1.1 million binary files: 900,000 training samples among which 300,000 were malicious, 300,000 were benevolent, 300,000 un-labelled, and 200,000 evaluation samples among which 100K were malicious, 100K were benign. We have also included open-source code for extracting features from additional binaries, enabling the addition of additional sample features to the dataset.
Taylor, Michael A., Larson, Eric C., Thornton, Mitchell A..  2021.  Rapid Ransomware Detection through Side Channel Exploitation. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :47–54.
A new method for the detection of ransomware in an infected host is described and evaluated. The method utilizes data streams from on-board sensors to fingerprint the initiation of a ransomware infection. These sensor streams, which are common in modern computing systems, are used as a side channel for understanding the state of the system. It is shown that ransomware detection can be achieved in a rapid manner and that the use of slight, yet distinguishable changes in the physical state of a system as derived from a machine learning predictive model is an effective technique. A feature vector, consisting of various sensor outputs, is coupled with a detection criteria to predict the binary state of ransomware present versus normal operation. An advantage of this approach is that previously unknown or zero-day version s of ransomware are vulnerable to this detection method since no apriori knowledge of the malware characteristics are required. Experiments are carried out with a variety of different system loads and with different encryption methods used during a ransomware attack. Two test systems were utilized with one having a relatively low amount of available sensor data and the other having a relatively high amount of available sensor data. The average time for attack detection in the "sensor-rich" system was 7.79 seconds with an average Matthews correlation coefficient of 0.8905 for binary system state predictions regardless of encryption method and system load. The model flagged all attacks tested.
Pagán, Alexander, Elleithy, Khaled.  2021.  A Multi-Layered Defense Approach to Safeguard Against Ransomware. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0942–0947.
There has been a significant rise in ransomware attacks over the last few years. Cyber attackers have made use of tried and true ransomware viruses to target the government, health care, and educational institutions. Ransomware variants can be purchased on the dark web by amateurs giving them the same attack tools used by professional cyber attackers without experience or skill. Traditional antivirus and antimalware products have improved, but they alone fall short when it comes to catching and stopping ransomware attacks. Employee training has become one of the most important aspects of being prepared for attempted cyberattacks. However, training alone only goes so far; human error is still the main entry point for malware and ransomware infections. In this paper, we propose a multi-layered defense approach to safeguard against ransomware. We have come to the startling realization that it is not a matter of “if” your organization will be hit with ransomware, but “when” your organization will be hit with ransomware. If an organization is not adequately prepared for an attack or how to respond to an attack, the effects can be costly and devastating. Our approach proposes having innovative antimalware software on the local machines, properly configured firewalls, active DNS/Web filtering, email security, backups, and staff training. With the implementation of this layered defense, the attempt can be caught and stopped at multiple points in the event of an attempted ransomware attack. If the attack were successful, the layered defense provides the option for recovery of affected data without paying a ransom.
Koutsouris, Nikolaos, Vassilakis, Costas, Kolokotronis, Nicholas.  2021.  Cyber-Security Training Evaluation Metrics. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :192—197.
Cyber-security training has evolved into an imperative need, aiming to provide cyber-security professionals with the knowledge and skills required to confront cyber-attacks that are increasing in number and sophistication. Training activities are typically associated with evaluation means, aimed to assess the extent to which the trainee has acquired the knowledge and skills whose development is targeted by the training programme, while cyber-security awareness and skill level evaluation means may be used to support additional security-related aspects of organizations. In this paper, we review trainee performance assessment metrics in cyber-security training, aiming to assist designers of cyber-security training activities to identify the most prominent trainee performance assessment means for their training programmes, while additional research directions involving cyber-security training evaluation metrics are also identified.
Angelogianni, Anna, Politis, Ilias, Polvanesi, Pier Luigi, Pastor, Antonio, Xenakis, Christos.  2021.  Unveiling the user requirements of a cyber range for 5G security testing and training. 2021 IEEE 26th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1—6.
Cyber ranges are proven to be effective towards the direction of cyber security training. Nevertheless, the existing literature in the area of cyber ranges does not cover, to our best knowledge, the field of 5G security training. 5G networks, though, reprise a significant field for modern cyber security, introducing a novel threat landscape. In parallel, the demand for skilled cyber security specialists is high and still rising. Therefore, it is of utmost importance to provide all means to experts aiming to increase their preparedness level in the case of an unwanted event. The EU funded SPIDER project proposes an innovative Cyber Range as a Service (CRaaS) platform for 5G cyber security testing and training. This paper aims to present the evaluation framework, followed by SPIDER, for the extraction of the user requirements. To validate the defined user requirements, SPIDER leveraged of questionnaires which included both closed and open format questions and were circulated among the personnel of telecommunication providers, vendors, security service providers, managers, engineers, cyber security personnel and researchers. Here, we demonstrate a selected set of the most critical questions and responses received. From the conducted analysis we reach to some important conclusions regarding 5G testing and training capabilities that should be offered by a cyber range, in addition to the analysis of the different perceptions between cyber security and 5G experts.
Diakoumakos, Jason, Chaskos, Evangelos, Kolokotronis, Nicholas, Lepouras, George.  2021.  Cyber-Range Federation and Cyber-Security Games: A Gamification Scoring Model. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :186—191.
Professional training is essential for organizations to successfully defend their assets against cyber-attacks. Successful detection and prevention of security incidents demands that personnel is not just aware about the potential threats, but its security expertise goes far beyond the necessary background knowledge. To fill-in the gap for competent security professionals, platforms offering realistic training environments and scenarios are designed that are referred to as cyber-ranges. Multiple cyber-ranges listed under a common platform can simulate more complex environments, referred as cyber-range federations. Security education approaches often implement gamification mechanics to increase trainees’ engagement and maximize the outcome of the training process. Scoring is an integral part of a gamification scheme, allowing both the trainee and the trainer to monitor the former’s performance and progress. In this article, a novel scoring model is presented that is designed to be agnostic with respect to the source of information: either a CR or a variety of different CRs being part of a federated environment.
Mennecozzi, Gian Marco, Hageman, Kaspar, Panum, Thomas Kobber, Türkmen, Ahmet, Mahmoud, Rasmi-Vlad, Pedersen, Jens Myrup.  2021.  Bridging the Gap: Adapting a Security Education Platform to a New Audience. 2021 IEEE Global Engineering Education Conference (EDUCON). :153—159.
The current supply of a highly specialized cyber security professionals cannot meet the demands for societies seeking digitization. To close the skill gap, there is a need for introducing students in higher education to cyber security, and to combine theoretical knowledge with practical skills. This paper presents how the cyber security training platform Haaukins, initially developed to increase interest and knowledge of cyber security among high school students, was further developed to support the need for training in higher education. Based on the differences between the existing and new target audiences, a set of design principles were derived which shaped the technical adjustments required to provide a suitable platform - mainly related to dynamic tooling, centralized access to exercises, and scalability of the platform to support courses running over longer periods of time. The implementation of these adjustments has led to a series of teaching sessions in various institutions of higher education, demonstrating the viability for Haaukins for the new target audience.
Swann, Matthew, Rose, Joseph, Bendiab, Gueltoum, Shiaeles, Stavros, Li, Fudong.  2021.  Open Source and Commercial Capture The Flag Cyber Security Learning Platforms - A Case Study. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :198—205.
The use of gamified learning platforms as a method of introducing cyber security education, training and awareness has risen greatly. With this rise, the availability of platforms to create, host or otherwise provide the challenges that make up the foundation of this education has also increased. In order to identify the best of these platforms, we need a method to compare their feature sets. In this paper, we compare related work on identifying the best platforms for a gamified cyber security learning platform as well as contemporary literature that describes the most needed feature sets for an ideal platform. We then use this to develop a metric for comparing these platforms, before then applying this metric to popular current platforms.
Farrukh, Yasir Ali, Ahmad, Zeeshan, Khan, Irfan, Elavarasan, Rajvikram Madurai.  2021.  A Sequential Supervised Machine Learning Approach for Cyber Attack Detection in a Smart Grid System. 2021 North American Power Symposium (NAPS). :1—6.
Modern smart grid systems are heavily dependent on Information and Communication Technology, and this dependency makes them prone to cyber-attacks. The occurrence of a cyber-attack has increased in recent years resulting in substantial damage to power systems. For a reliable and stable operation, cyber protection, control, and detection techniques are becoming essential. Automated detection of cyberattacks with high accuracy is a challenge. To address this, we propose a two-layer hierarchical machine learning model having an accuracy of 95.44 % to improve the detection of cyberattacks. The first layer of the model is used to distinguish between the two modes of operation - normal state or cyberattack. The second layer is used to classify the state into different types of cyberattacks. The layered approach provides an opportunity for the model to focus its training on the targeted task of the layer, resulting in improvement in model accuracy. To validate the effectiveness of the proposed model, we compared its performance against other recent cyber attack detection models proposed in the literature.
Oikonomou, Nikos, Mengidis, Notis, Spanopoulos-Karalexidis, Minas, Voulgaridis, Antonis, Merialdo, Matteo, Raisr, Ivo, Hanson, Kaarel, de La Vallee, Paloma, Tsikrika, Theodora, Vrochidis, Stefanos et al..  2021.  ECHO Federated Cyber Range: Towards Next-Generation Scalable Cyber Ranges. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :403—408.
Cyber ranges are valuable assets but have limitations in simulating complex realities and multi-sector dependencies; to address this, federated cyber ranges are emerging. This work presents the ECHO Federated Cyber Range, a marketplace for cyber range services, that establishes a mechanism by which independent cyber range capabilities can be interconnected and accessed via a convenient portal. This allows for more complex and complete emulations, spanning potentially multiple sectors and complex exercises. Moreover, it supports a semi-automated approach for processing and deploying service requests to assist customers and providers interfacing with the marketplace. Its features and architecture are described in detail, along with the design, validation and deployment of a training scenario.
Özdemir, Durmuş, Çelik, Dilek.  2021.  Analysis of Encrypted Image Data with Deep Learning Models. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :121—126.
While various encryption algorithms ensure data security, it is essential to determine the accuracy and loss values and performance status in the analyzes made to determine encrypted data by deep learning. In this research, the analysis steps made by applying deep learning methods to encrypted cifar10 picture data are presented practically. The data was tried to be estimated by training with VGG16, VGG19, ResNet50 deep learning models. During this period, the network’s performance was tried to be measured, and the accuracy and loss values in these calculations were shown graphically.
Duan, Xiaowei, Han, Yiliang, Wang, Chao, Ni, Huanhuan.  2021.  Optimization of Encrypted Communication Length Based on Generative Adversarial Network. 2021 IEEE 4th International Conference on Big Data and Artificial Intelligence (BDAI). :165—170.
With the development of artificial intelligence and cryptography, intelligent cryptography will be the trend of encrypted communications in the future. Abadi designed an encrypted communication model based on a generative adversarial network, which can communicate securely when the adversary knows the ciphertext. The communication party and the adversary fight against each other to continuously improve their own capabilities to achieve a state of secure communication. However, this model can only have a better communication effect under the 16 bits communication length, and cannot adapt to the length of modern encrypted communication. Combine the neural network structure in DCGAN to optimize the neural network of the original model, and at the same time increase the batch normalization process, and optimize the loss function in the original model. Experiments show that under the condition of the maximum 2048-bit communication length, the decryption success rate of communication reaches about 0.97, while ensuring that the adversary’s guess error rate is about 0.95, and the training speed is greatly increased to keep it below 5000 steps, ensuring safety and efficiency Communication.
Vekaria, Komal Bhupendra, Calyam, Prasad, Wang, Songjie, Payyavula, Ramya, Rockey, Matthew, Ahmed, Nafis.  2021.  Cyber Range for Research-Inspired Learning of “Attack Defense by Pretense” Principle and Practice. IEEE Transactions on Learning Technologies. 14:322—337.
There is an increasing trend in cloud adoption of enterprise applications in, for example, manufacturing, healthcare, and finance. Such applications are routinely subject to targeted cyberattacks, which result in significant loss of sensitive data (e.g., due to data exfiltration in advanced persistent threats) or valuable utilities (e.g., due to resource the exfiltration of power in cryptojacking). There is a critical need to train highly skilled cybersecurity professionals, who are capable of defending against such targeted attacks. In this article, we present the design, development, and evaluation of the Mizzou Cyber Range, an online platform to learn basic/advanced cyber defense concepts and perform training exercises to engender the next-generation cybersecurity workforce. Mizzou Cyber Range features flexibility, scalability, portability, and extendability in delivering cyberattack/defense learning modules to students. We detail our “research-inspired learning” and “learn-apply-create” three-phase pedagogy methodologies in the development of four learning modules that include laboratory exercises and self-study activities using realistic cloud-based application testbeds. The learning modules allow students to gain skills in using latest technologies (e.g., elastic capacity provisioning, software-defined everything infrastructure) to implement sophisticated “attack defense by pretense” techniques. Students can also use the learning modules to understand the attacker-defender game in order to create disincentives (i.e., pretense initiation) that make the attacker's tasks more difficult, costly, time consuming, and uncertain. Lastly, we show the benefits of our Mizzou Cyber Range through the evaluation of student learning using auto-grading, rank assessments with peer standing, and monitoring of students' performance via feedback from prelab evaluation surveys and postlab technical assessments.
Schoneveld, Liam, Othmani, Alice.  2021.  Towards a General Deep Feature Extractor for Facial Expression Recognition. 2021 IEEE International Conference on Image Processing (ICIP). :2339—2342.
The human face conveys a significant amount of information. Through facial expressions, the face is able to communicate numerous sentiments without the need for verbalisation. Visual emotion recognition has been extensively studied. Recently several end-to-end trained deep neural networks have been proposed for this task. However, such models often lack generalisation ability across datasets. In this paper, we propose the Deep Facial Expression Vector ExtractoR (DeepFEVER), a new deep learning-based approach that learns a visual feature extractor general enough to be applied to any other facial emotion recognition task or dataset. DeepFEVER outperforms state-of-the-art results on the AffectNet and Google Facial Expression Comparison datasets. DeepFEVER’s extracted features also generalise extremely well to other datasets – even those unseen during training – namely, the Real-World Affective Faces (RAF) dataset.
Arabian, H., Wagner-Hartl, V., Geoffrey Chase, J., Möller, K..  2021.  Facial Emotion Recognition Focused on Descriptive Region Segmentation. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). :3415—3418.
Facial emotion recognition (FER) is useful in many different applications and could offer significant benefit as part of feedback systems to train children with Autism Spectrum Disorder (ASD) who struggle to recognize facial expressions and emotions. This project explores the potential of real time FER based on the use of local regions of interest combined with a machine learning approach. Histogram of Oriented Gradients (HOG) was implemented for feature extraction, along with 3 different classifiers, 2 based on k-Nearest Neighbor and 1 using Support Vector Machine (SVM) classification. Model performance was compared using accuracy of randomly selected validation sets after training on random training sets of the Oulu-CASIA database. Image classes were distributed evenly, and accuracies of up to 98.44% were observed with small variation depending on data distributions. The region selection methodology provided a compromise between accuracy and number of extracted features, and validated the hypothesis a focus on smaller informative regions performs just as well as the entire image.
Siyaka, Hassan Opotu, Owolabi, Olumide, Bisallah, I. Hashim.  2021.  A New Facial Image Deviation Estimation and Image Selection Algorithm (Fide-Isa) for Facial Image Recognition Systems: The Mathematical Models. 2021 1st International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS). :1—7.
Deep learning models have been successful and shown to perform better in terms of accuracy and efficiency for facial recognition applications. However, they require huge amount of data samples that were well annotated to be successful. Their data requirements have led to some complications which include increased processing demands of the systems where such systems were to be deployed. Reducing the training sample sizes of deep learning models is still an open problem. This paper proposes the reduction of the number of samples required by the convolutional neutral network used in training a facial recognition system using a new Facial Image Deviation Estimation and Image Selection Algorithm (FIDE-ISA). The algorithm was used to select appropriate facial image training samples incrementally based on their facial deviation. This will reduce the need for huge dataset in training deep learning models. Preliminary results indicated a 100% accuracy for models trained with 54 images (at least 3 images per individual) and above.
Mukherjee, Debottam, Chakraborty, Samrat, Banerjee, Ramashis, Bhunia, Joydeep.  2021.  A Novel Real-Time False Data Detection Strategy for Smart Grid. 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC). :1—6.
State estimation algorithm ensures an effective realtime monitoring of the modern smart grid leading to an accurate determination of the current operating states. Recently, a new genre of data integrity attacks namely false data injection attack (FDIA) has shown its deleterious effects by bypassing the traditional bad data detection technique. Modern grid operators must detect the presence of such attacks in the raw field measurements to guarantee a safe and reliable operation of the grid. State forecasting based FDIA identification schemes have recently shown its efficacy by determining the deviation of the estimated states due to an attack. This work emphasizes on a scalable deep learning state forecasting model which can accurately determine the presence of FDIA in real-time. An optimal set of hyper-parameters of the proposed architecture leads to an effective forecasting of the operating states with minimal error. A diligent comparison between other state of the art forecasting strategies have promoted the effectiveness of the proposed neural network. A comprehensive analysis on the IEEE 14 bus test bench effectively promotes the proposed real-time attack identification strategy.