Visible to the public Biblio

Filters: Keyword is AC state estimation  [Clear All Filters]
Liang, J., Sankar, L., Kosut, O..  2017.  Vulnerability analysis and consequences of false data injection attack on power system state estimation. 2017 IEEE Power Energy Society General Meeting. :1–1.
An unobservable false data injection (FDI) attack on AC state estimation (SE) is introduced and its consequences on the physical system are studied. With a focus on understanding the physical consequences of FDI attacks, a bi-level optimization problem is introduced whose objective is to maximize the physical line flows subsequent to an FDI attack on DC SE. The maximization is subject to constraints on both attacker resources (size of attack) and attack detection (limiting load shifts) as well as those required by DC optimal power flow (OPF) following SE. The resulting attacks are tested on a more realistic non-linear system model using AC state estimation and ACOPF, and it is shown that, with an appropriately chosen sub-network, the attacker can overload transmission lines with moderate shifts of load.
Lan, T., Wang, W., Huang, G. M..  2017.  False data injection attack in smart grid topology control: Vulnerability and countermeasure. 2017 IEEE Power Energy Society General Meeting. :1–5.
Cyber security is a crucial factor for modern power system as many applications are heavily relied on the result of state estimation. Therefore, it is necessary to assess and enhance cyber security for new applications in power system. As an emerging technology, smart grid topology control has been investigated in stability and reliability perspectives while the associated cyber security issue is not studied before. In successful false data injection attack (FDIA) against AC state estimation, attacker could alter online stability check result by decreasing real power flow measurement on the switching target line to undermine physical system stability in topology control. The physical impact of FDIA on system control operation and stability are illustrated. The vulnerability is discussed on perfect FDIA and imperfect FDIA against residue based bad data detection and corresponding countermeasure is proposed to secure critical substations in the system. The vulnerability and countermeasure are demonstrated on IEEE 24 bus reliability test system (RTS).
Kuntz, K., Smith, M., Wedeward, K., Collins, M..  2014.  Detecting, locating, amp; quantifying false data injections utilizing grid topology through optimized D-FACTS device placement. North American Power Symposium (NAPS), 2014. :1-6.

Power grids are monitored by gathering data through remote sensors and estimating the state of the grid. Bad data detection schemes detect and remove poor data. False data is a special type of data injection designed to evade typical bad data detection schemes and compromise state estimates, possibly leading to improper control of the grid. Topology perturbation is a situational awareness method that implements the use of distributed flexible AC transmission system devices to alter impedance on optimally chosen lines, updating the grid topology and exposing the presence of false data. The success of the topology perturbation for improving grid control and exposing false data in AC state estimation is demonstrated. A technique is developed for identifying the false data injection attack vector and quantifying the compromised measurements. The proposed method provides successful false data detection and identification in IEEE 14, 24, and 39-bus test systems using AC state estimation.