Biblio
The impact of microarchitectural attacks in Personal Computers (PCs) can be further adapted to and observed in internetworked All Programmable System-on-Chip (AP SoC) platforms. This effort involves the access control or execution of Intellectual Property cores in the FPGA of an AP SoC Victim internetworked with an AP SoC Attacker via Internet Protocol (IP). Three conceptions of attacks were implemented: buffer overflow attack at the stack, return-oriented programming attack, and command-injection-based attack for dynamic reconfiguration in the FPGA. Indeed, a specific preventive countermeasure for each attack is proposed. The functionality of the countermeasures mainly comprises adapted words addition (stack protection) for the first and second attacks and multiple encryption for the third attack. In conclusion, the recommended countermeasures are realizable to counteract the implemented attacks.
The use of biometrics in security applications may be vulnerable to several challenges of hacking. Thus, the emergence of cancellable biometrics becomes a suitable solution to this problem. This paper presents a one-way cancellable biometric transform that depends on 3D chaotic maps for face and fingerprint encryption. It aims to avoid cloning of original biometrics and allow the templates used by each user in different applications to be variable. The permutations achieved with the chaotic maps guarantee high security of the biometric templates, especially with the 3D implementation of the encryption algorithm. In addition, the paper presents a hardware implementation for this framework. The proposed algorithm also achieves good performance in the presence of low and moderate levels of noise. An experimental version of the proposed cancellable biometric system has been applied on FPGA model. The obtained results achieve a powerful performance of the proposed cancellable biometric system.
In network communication domain, one of the most widely used protocol for encrypting data and securing communications is the IPSec protocol. The design of this protocol is based on two main phases which are: exchanging keys phase and transferring data phase. In this paper we focus on enhancing the exchanging keys phase which is included in the security association (SA), using a chaotic cryptosystem. Initially IPSec is based on the Internet Key Exchange (IKE) protocol for establishing the SA. Actually IKE protocol is in charge for negotiating the connection and for authenticating both nodes. However; using IKE gives rise to a major problem related to security attack such as the Man in the Middle Attack. In this paper, we propose a chaotic cryptosystem solution to generate SA file for the connected nodes of the network. By solving a 4-Dimension chaotic system, a SA file that includes 128-bit keys will be established. The proposed solution is implemented and tested using FPGA boards.
In this work, an asymmetric cryptography method for information security was developed, inspired by the fact that the human body generates chaotic signals, and these signals can be used to create sequences of random numbers. Encryption circuit was implemented in a Reconfigurable Hardware (FPGA). To encode and decode an image, the chaotic synchronization between two dynamic systems, such as Hopfield neural networks (HNNs), was used to simulate chaotic signals. The notion of Homotopy, an argument of topological nature, was used for the synchronization. The results show efficiency when compared to state of the art, in terms of image correlation, histogram analysis and hardware implementation.