Visible to the public Biblio

Filters: Keyword is text summarization  [Clear All Filters]
Heimerl, F., Lohmann, S., Lange, S., Ertl, T..  2014.  Word Cloud Explorer: Text Analytics Based on Word Clouds. System Sciences (HICSS), 2014 47th Hawaii International Conference on. :1833-1842.

Word clouds have emerged as a straightforward and visually appealing visualization method for text. They are used in various contexts as a means to provide an overview by distilling text down to those words that appear with highest frequency. Typically, this is done in a static way as pure text summarization. We think, however, that there is a larger potential to this simple yet powerful visualization paradigm in text analytics. In this work, we explore the usefulness of word clouds for general text analysis tasks. We developed a prototypical system called the Word Cloud Explorer that relies entirely on word clouds as a visualization method. It equips them with advanced natural language processing, sophisticated interaction techniques, and context information. We show how this approach can be effectively used to solve text analysis tasks and evaluate it in a qualitative user study.

Gupta, Dhruv.  2016.  Event Search and Analytics: Detecting Events in Semantically Annotated Corpora for Search & Analytics. Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. :705–705.

In this article, I present the questions that I seek to answer in my PhD research. I posit to analyze natural language text with the help of semantic annotations and mine important events for navigating large text corpora. Semantic annotations such as named entities, geographic locations, and temporal expressions can help us mine events from the given corpora. These events thus provide us with useful means to discover the locked knowledge in them. I pose three problems that can help unlock this knowledge vault in semantically annotated text corpora: i. identifying important events; ii. semantic search; iii. and event analytics.

Tesfay, Welderufael B., Hofmann, Peter, Nakamura, Toru, Kiyomoto, Shinsaku, Serna, Jetzabel.  2018.  PrivacyGuide: Towards an Implementation of the EU GDPR on Internet Privacy Policy Evaluation. Proceedings of the Fourth ACM International Workshop on Security and Privacy Analytics. :15-21.

Nowadays Internet services have dramatically changed the way people interact with each other and many of our daily activities are supported by those services. Statistical indicators show that more than half of the world's population uses the Internet generating about 2.5 quintillion bytes of data on daily basis. While such a huge amount of data is useful in a number of fields, such as in medical and transportation systems, it also poses unprecedented threats for user's privacy. This is aggravated by the excessive data collection and user profiling activities of service providers. Yet, regulation require service providers to inform users about their data collection and processing practices. The de facto way of informing users about these practices is through the use of privacy policies. Unfortunately, privacy policies suffer from bad readability and other complexities which make them unusable for the intended purpose. To address this issue, we introduce PrivacyGuide, a privacy policy summarization tool inspired by the European Union (EU) General Data Protection Regulation (GDPR) and based on machine learning and natural language processing techniques. Our results show that PrivacyGuide is able to classify privacy policy content into eleven privacy aspects with a weighted average accuracy of 74% and further shed light on the associated risk level with an accuracy of 90%. This article is summarized in: the morning paper an interesting/influential/important paper from the world of CS every weekday morning, as selected by Adrian Colyer

Gupta, Hritvik, Patel, Mayank.  2020.  Study of Extractive Text Summarizer Using The Elmo Embedding. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :829–834.
In recent times, data excessiveness has become a major problem in the field of education, news, blogs, social media, etc. Due to an increase in such a vast amount of text data, it became challenging for a human to extract only the valuable amount of data in a concise form. In other words, summarizing the text, enables human to retrieves the relevant and useful texts, Text summarizing is extracting the data from the document and generating the short or concise text of the document. One of the major approaches that are used widely is Automatic Text summarizer. Automatic text summarizer analyzes the large textual data and summarizes it into the short summaries containing valuable information of the data. Automatic text summarizer further divided into two types 1) Extractive text summarizer, 2) Abstractive Text summarizer. In this article, the extractive text summarizer approach is being looked for. Extractive text summarization is the approach in which model generates the concise summary of the text by picking up the most relevant sentences from the text document. This paper focuses on retrieving the valuable amount of data using the Elmo embedding in Extractive text summarization. Elmo embedding is a contextual embedding that had been used previously by many researchers in abstractive text summarization techniques, but this paper focus on using it in extractive text summarizer.