Visible to the public Biblio

Found 206 results

Filters: Keyword is computer security  [Clear All Filters]
2020-05-11
Takahashi, Daisuke, Xiao, Yang, Li, Tieshan.  2018.  Database Structures for Accountable Flow-Net Logging. 2018 10th International Conference on Communication Software and Networks (ICCSN). :254–258.
Computer and network accountability is to make every action in computers and networks accountable. In order to achieve accountability, we need to answer the following questions: what did it happen? When did it happen? Who did it? In order to achieve accountability, the first step is to record what exactly happened. Therefore, an accountable logging is needed and implemented in computers and networks. Our previous work proposed a novel accountable logging methodology called Flow-Net. However, how to storage the huge amount of Flow-net logs into databases is not clear. In this paper, we try to answer this question.
OUIAZZANE, Said, ADDOU, Malika, BARRAMOU, Fatimazahra.  2019.  A Multi-Agent Model for Network Intrusion Detection. 2019 1st International Conference on Smart Systems and Data Science (ICSSD). :1–5.
The objective of this paper is to propose a distributed intrusion detection model based on a multi agent system. Mutli Agent Systems (MAS) are very suitable for intrusion detection systems as they meet the characteristics required by the networks and Big Data issues. The MAS agents cooperate and communicate with each other to ensure the effective detection of network intrusions without the intervention of an expert as used to be in the classical intrusion detection systems relying on signature matching to detect known attacks. The proposed model helped to detect known and unknown attacks within big computer infrastructure by responding to the network requirements in terms of distribution, autonomy, responsiveness and communication. The proposed model is capable of achieving a good and a real time intrusion detection using multi-agents paradigm and Hadoop Distributed File System (HDFS).
2020-05-08
Vigneswaran, Rahul K., Vinayakumar, R., Soman, K.P., Poornachandran, Prabaharan.  2018.  Evaluating Shallow and Deep Neural Networks for Network Intrusion Detection Systems in Cyber Security. 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—6.
Intrusion detection system (IDS) has become an essential layer in all the latest ICT system due to an urge towards cyber safety in the day-to-day world. Reasons including uncertainty in finding the types of attacks and increased the complexity of advanced cyber attacks, IDS calls for the need of integration of Deep Neural Networks (DNNs). In this paper, DNNs have been utilized to predict the attacks on Network Intrusion Detection System (N-IDS). A DNN with 0.1 rate of learning is applied and is run for 1000 number of epochs and KDDCup-`99' dataset has been used for training and benchmarking the network. For comparison purposes, the training is done on the same dataset with several other classical machine learning algorithms and DNN of layers ranging from 1 to 5. The results were compared and concluded that a DNN of 3 layers has superior performance over all the other classical machine learning algorithms.
Dionísio, Nuno, Alves, Fernando, Ferreira, Pedro M., Bessani, Alysson.  2019.  Cyberthreat Detection from Twitter using Deep Neural Networks. 2019 International Joint Conference on Neural Networks (IJCNN). :1—8.
To be prepared against cyberattacks, most organizations resort to security information and event management systems to monitor their infrastructures. These systems depend on the timeliness and relevance of the latest updates, patches and threats provided by cyberthreat intelligence feeds. Open source intelligence platforms, namely social media networks such as Twitter, are capable of aggregating a vast amount of cybersecurity-related sources. To process such information streams, we require scalable and efficient tools capable of identifying and summarizing relevant information for specified assets. This paper presents the processing pipeline of a novel tool that uses deep neural networks to process cybersecurity information received from Twitter. A convolutional neural network identifies tweets containing security-related information relevant to assets in an IT infrastructure. Then, a bidirectional long short-term memory network extracts named entities from these tweets to form a security alert or to fill an indicator of compromise. The proposed pipeline achieves an average 94% true positive rate and 91% true negative rate for the classification task and an average F1-score of 92% for the named entity recognition task, across three case study infrastructures.
2020-05-04
Zalozhnev, Alexey Yu., Andros, Denis A., Ginz, Vasiliy N., Loktionov, Anatoly Eu..  2019.  Information Systems and Network Technologies for Personal Data Cyber Security in Public Health. 2019 International Multidisciplinary Information Technology and Engineering Conference (IMITEC). :1–5.
The article focuses on Personal Data Cyber Security Systems. These systems are the critical components for Health Information Management Systems of Public Health enterprises. The purpose of this article is to inform and provide the reader with Personal Data Cyber Security Legislation and Regulation in Public Health Sector and enlighten him with the Information Systems that were designed and implemented for Personal Data Cyber Security in Public Health.
Wang, Fang, Qi, Weimin, Qian, Tonghui.  2019.  A Dynamic Cybersecurity Protection Method based on Software-defined Networking for Industrial Control Systems. 2019 Chinese Automation Congress (CAC). :1831–1834.
In this paper, a dynamic cybersecurity protection method based on software-defined networking (SDN) is proposed, according to the protection requirement analysis for industrial control systems (ICSs). This method can execute security response measures by SDN, such as isolation, redirection etc., based on the real-time intrusion detection results, forming a detecting-responding closed-loop security control. In addition, moving target defense (MTD) concept is introduced to the protection for ICSs, where topology transformation and IP/port hopping are realized by SDN, which can confuse and deceive the attackers and prevent attacks at the beginning, protection ICSs in an active manner. The simulation results verify the feasibility of the proposed method.
2020-04-20
Takbiri, Nazanin, Shao, Xiaozhe, Gao, Lixin, Pishro-Nik, Hossein.  2019.  Improving Privacy in Graphs Through Node Addition. 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton). :487–494.
The rapid growth of computer systems which generate graph data necessitates employing privacy-preserving mechanisms to protect users' identity. Since structure-based de-anonymization attacks can reveal users' identity's even when the graph is simply anonymized by employing naïve ID removal, recently, k- anonymity is proposed to secure users' privacy against the structure-based attack. Most of the work ensured graph privacy using fake edges, however, in some applications, edge addition or deletion might cause a significant change to the key property of the graph. Motivated by this fact, in this paper, we introduce a novel method which ensures privacy by adding fake nodes to the graph. First, we present a novel model which provides k- anonymity against one of the strongest attacks: seed-based attack. In this attack, the adversary knows the partial mapping between the main graph and the graph which is generated using the privacy-preserving mechanisms. We show that even if the adversary knows the mapping of all of the nodes except one, the last node can still have k- anonymity privacy. Then, we turn our attention to the privacy of the graphs generated by inter-domain routing against degree attacks in which the degree sequence of the graph is known to the adversary. To ensure the privacy of networks against this attack, we propose a novel method which tries to add fake nodes in a way that the degree of all nodes have the same expected value.
Yuan, Jing, Ou, Yuyi, Gu, Guosheng.  2019.  An Improved Privacy Protection Method Based on k-degree Anonymity in Social Network. 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :416–420.
To preserve the privacy of social networks, most existing methods are applied to satisfy different anonymity models, but there are some serious problems such as huge large information losses and great structural modifications of original social network. Therefore, an improved privacy protection method called k-subgraph is proposed, which is based on k-degree anonymous graph derived from k-anonymity to keep the network structure stable. The method firstly divides network nodes into several clusters by label propagation algorithm, and then reconstructs the sub-graph by means of moving edges to achieve k-degree anonymity. Experimental results show that our k-subgraph method can not only effectively improve the defense capability against malicious attacks based on node degrees, but also maintain stability of network structure. In addition, the cost of information losses due to anonymity is minimized ideally.
2020-04-13
Verma, Dinesh, Bertino, Elisa, de Mel, Geeth, Melrose, John.  2019.  On the Impact of Generative Policies on Security Metrics. 2019 IEEE International Conference on Smart Computing (SMARTCOMP). :104–109.
Policy based Security Management in an accepted practice in the industry, and required to simplify the administrative overhead associated with security management in complex systems. However, the growing dynamicity, complexity and scale of modern systems makes it difficult to write the security policies manually. Using AI, we can generate policies automatically. Security policies generated automatically can reduce the manual burden introduced in defining policies, but their impact on the overall security of a system is unclear. In this paper, we discuss the security metrics that can be associated with a system using generative policies, and provide a simple model to determine the conditions under which generating security policies will be beneficial to improve the security of the system. We also show that for some types of security metrics, a system using generative policies can be considered as equivalent to a system using manually defined policies, and the security metrics of the generative policy based system can be mapped to the security metrics of the manual system and vice-versa.
2020-04-03
Künnemann, Robert, Esiyok, Ilkan, Backes, Michael.  2019.  Automated Verification of Accountability in Security Protocols. 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). :397—39716.
Accountability is a recent paradigm in security protocol design which aims to eliminate traditional trust assumptions on parties and hold them accountable for their misbehavior. It is meant to establish trust in the first place and to recognize and react if this trust is violated. In this work, we discuss a protocol-agnostic definition of accountability: a protocol provides accountability (w.r.t. some security property) if it can identify all misbehaving parties, where misbehavior is defined as a deviation from the protocol that causes a security violation. We provide a mechanized method for the verification of accountability and demonstrate its use for verification and attack finding on various examples from the accountability and causality literature, including Certificate Transparency and Krollˆ\textbackslashtextbackslashprimes Accountable Algorithms protocol. We reach a high degree of automation by expressing accountability in terms of a set of trace properties and show their soundness and completeness.
Sadique, Farhan, Bakhshaliyev, Khalid, Springer, Jeff, Sengupta, Shamik.  2019.  A System Architecture of Cybersecurity Information Exchange with Privacy (CYBEX-P). 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0493—0498.
Rapid evolution of cyber threats and recent trends in the increasing number of cyber-attacks call for adopting robust and agile cybersecurity techniques. Cybersecurity information sharing is expected to play an effective role in detecting and defending against new attacks. However, reservations and or-ganizational policies centering the privacy of shared data have become major setbacks in large-scale collaboration in cyber defense. The situation is worsened by the fact that the benefits of cyber-information exchange are not realized unless many actors participate. In this paper, we argue that privacy preservation of shared threat data will motivate entities to share threat data. Accordingly, we propose a framework called CYBersecurity information EXchange with Privacy (CYBEX-P) to achieve this. CYBEX-P is a structured information sharing platform with integrating privacy-preserving mechanisms. We propose a complete system architecture for CYBEX-P that guarantees maximum security and privacy of data. CYBEX-P outlines the details of a cybersecurity information sharing platform. The adoption of blind processing, privacy preservation, and trusted computing paradigms make CYBEX-P a versatile and secure information exchange platform.
2020-03-27
Tamura, Keiichi, Omagari, Akitada, Hashida, Shuichi.  2019.  Novel Defense Method against Audio Adversarial Example for Speech-to-Text Transcription Neural Networks. 2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA). :115–120.
With the developments in deep learning, the security of neural networks against vulnerabilities has become one of the most urgent research topics in deep learning. There are many types of security countermeasures. Adversarial examples and their defense methods, in particular, have been well-studied in recent years. An adversarial example is designed to make neural networks misclassify or produce inaccurate output. Audio adversarial examples are a type of adversarial example where the main target of attack is a speech-to-text transcription neural network. In this study, we propose a new defense method against audio adversarial examples for the speech-to-text transcription neural networks. It is difficult to determine whether an input waveform data representing the sound of voice is an audio adversarial example. Therefore, the main framework of the proposed defense method is based on a sandbox approach. To evaluate the proposed defense method, we used actual audio adversarial examples that were created on Deep Speech, which is a speech-to-text transcription neural network. We confirmed that our defense method can identify audio adversarial examples to protect speech-to-text systems.
Liu, Yingying, Wang, Yiwei.  2019.  A Robust Malware Detection System Using Deep Learning on API Calls. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1456–1460.
With the development of technology, the massive malware become the major challenge to current computer security. In our work, we implemented a malware detection system using deep learning on API calls. By means of cuckoo sandbox, we extracted the API calls sequence of malicious programs. Through filtering and ordering the redundant API calls, we extracted the valid API sequences. Compared with GRU, BGRU, LSTM and SimpleRNN, we evaluated the BLSTM on the massive datasets including 21,378 samples. The experimental results demonstrate that BLSTM has the best performance for malware detection, reaching the accuracy of 97.85%.
Abedin, Zain Ul, Guan, Zhitao, Arif, Asad Ullah, Anwar, Usman.  2019.  An Advance Cryptographic Solutions in Cloud Computing Security. 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). :1–6.
Cryptographically cloud computing may be an innovative safe cloud computing design. Cloud computing may be a huge size dispersed computing model that ambitious by the economy of the level. It integrates a group of inattentive virtualized animatedly scalable and managed possessions like computing control storage space platform and services. External end users will approach to resources over the net victimization fatal particularly mobile terminals, Cloud's architecture structures are advances in on-demand new trends. That are the belongings are animatedly assigned to a user per his request and hand over when the task is finished. So, this paper projected biometric coding to boost the confidentiality in Cloud computing for biometric knowledge. Also, this paper mentioned virtualization for Cloud computing also as statistics coding. Indeed, this paper overviewed the safety weaknesses of Cloud computing and the way biometric coding will improve the confidentiality in Cloud computing atmosphere. Excluding this confidentiality is increased in Cloud computing by victimization biometric coding for biometric knowledge. The novel approach of biometric coding is to reinforce the biometric knowledge confidentiality in Cloud computing. Implementation of identification mechanism can take the security of information and access management in the cloud to a higher level. This section discusses, however, a projected statistics system with relation to alternative recognition systems to date is a lot of advantageous and result oriented as a result of it does not work on presumptions: it's distinctive and provides quick and contact less authentication. Thus, this paper reviews the new discipline techniques accustomed to defend methodology encrypted info in passing remote cloud storage.
2020-03-23
Hu, Rui, Guo, Yuanxiong, Pan, Miao, Gong, Yanmin.  2019.  Targeted Poisoning Attacks on Social Recommender Systems. 2019 IEEE Global Communications Conference (GLOBECOM). :1–6.
With the popularity of online social networks, social recommendations that rely on one’s social connections to make personalized recommendations have become possible. This introduces vulnerabilities for an adversarial party to compromise the recommendations for users by utilizing their social connections. In this paper, we propose the targeted poisoning attack on the factorization-based social recommender system in which the attacker aims to promote an item to a group of target users by injecting fake ratings and social connections. We formulate the optimal poisoning attack as a bi-level program and develop an efficient algorithm to find the optimal attacking strategy. We then evaluate the proposed attacking strategy on real-world dataset and demonstrate that the social recommender system is sensitive to the targeted poisoning attack. We find that users in the social recommender system can be attacked even if they do not have direct social connections with the attacker.
2020-03-18
Pouliot, David, Griffy, Scott, Wright, Charles V..  2019.  The Strength of Weak Randomization: Easily Deployable, Efficiently Searchable Encryption with Minimal Leakage. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :517–529.

Efficiently searchable and easily deployable encryption schemes enable an untrusted, legacy service such as a relational database engine to perform searches over encrypted data. The ease with which such schemes can be deployed on top of existing services makes them especially appealing in operational environments where encryption is needed but it is not feasible to replace large infrastructure components like databases or document management systems. Unfortunately all previously known approaches for efficiently searchable and easily deployable encryption are vulnerable to inference attacks where an adversary can use knowledge of the distribution of the data to recover the plaintext with high probability. We present a new efficiently searchable, easily deployable database encryption scheme that is provably secure against inference attacks even when used with real, low-entropy data. We implemented our constructions in Haskell and tested databases up to 10 million records showing our construction properly balances security, deployability and performance.

Van, Hao, Nguyen, Huyen N., Hewett, Rattikorn, Dang, Tommy.  2019.  HackerNets: Visualizing Media Conversations on Internet of Things, Big Data, and Cybersecurity. 2019 IEEE International Conference on Big Data (Big Data). :3293–3302.
The giant network of Internet of Things establishes connections between smart devices and people, with protocols to collect and share data. While the data is expanding at a fast pace in this era of Big Data, there are growing concerns about security and privacy policies. In the current Internet of Things ecosystems, at the intersection of the Internet of Things, Big Data, and Cybersecurity lies the subject that attracts the most attention. In aiding users in getting an adequate understanding, this paper introduces HackerNets, an interactive visualization for emerging topics in the crossing of IoT, Big Data, and Cybersecurity over time. To demonstrate the effectiveness and usefulness of HackerNets, we apply and evaluate the technique on the dataset from the social media platform.
Yang, Yunxue, Ji, Guohua, Yang, Zhenqi, Xue, Shengjun.  2019.  Incentive Contract for Cybersecurity Information Sharing Considering Monitoring Signals. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :507–512.
Cyber insurance is a viable method for cyber risk transfer. However, the cyber insurance faces critical challenges, the most important of which is lack of statistical data. In this paper, we proposed an incentive model considering monitoring signals for cybersecurity information haring based on the principal-agent theory. We studied the effect of monitoring signals on increasing the rationality of the incentive contract and reducing moral hazard in the process of cybersecurity information sharing, and analyzed factors influencing the effectiveness of the incentive contract. We show that by introducing monitoring signals, the insurer can collect more information about the effort level of the insured, and encourage the insured to share cybersecurity information based on the information sharing output and monitoring signals of the effort level, which can not only reduce the blindness of incentive to the insured in the process of cybersecurity information sharing, but also reduce moral hazard.
Li, Tao, Guo, Yuanbo, Ju, Ankang.  2019.  A Self-Attention-Based Approach for Named Entity Recognition in Cybersecurity. 2019 15th International Conference on Computational Intelligence and Security (CIS). :147–150.
With cybersecurity situation more and more complex, data-driven security has become indispensable. Numerous cybersecurity data exists in textual sources and data analysis is difficult for both security analyst and the machine. To convert the textual information into structured data for further automatic analysis, we extract cybersecurity-related entities and propose a self-attention-based neural network model for the named entity recognition in cybersecurity. Considering the single word feature not enough for identifying the entity, we introduce CNN to extract character feature which is then concatenated into the word feature. Then we add the self-attention mechanism based on the existing BiLSTM-CRF model. Finally, we evaluate the proposed model on the labelled dataset and obtain a better performance than the previous entity extraction model.
Offenberger, Spencer, Herman, Geoffrey L., Peterson, Peter, Sherman, Alan T, Golaszewski, Enis, Scheponik, Travis, Oliva, Linda.  2019.  Initial Validation of the Cybersecurity Concept Inventory: Pilot Testing and Expert Review. 2019 IEEE Frontiers in Education Conference (FIE). :1–9.
We analyze expert review and student performance data to evaluate the validity of the Cybersecurity Concept Inventory (CCI) for assessing student knowledge of core cybersecurity concepts after a first course on the topic. A panel of 12 experts in cybersecurity reviewed the CCI, and 142 students from six different institutions took the CCI as a pilot test. The panel reviewed each item of the CCI and the overwhelming majority rated every item as measuring appropriate cybersecurity knowledge. We administered the CCI to students taking a first cybersecurity course either online or proctored by the course instructor. We applied classical test theory to evaluate the quality of the CCI. This evaluation showed that the CCI is sufficiently reliable for measuring student knowledge of cybersecurity and that the CCI may be too difficult as a whole. We describe the results of the expert review and the pilot test and provide recommendations for the continued improvement of the CCI.
Wang, Johnson J. H..  2019.  Solving Cybersecurity Problem by Symmetric Dual-Space Formulation—Physical and Cybernetic. 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. :601–602.
To address cybersecurity, this author proposed recently the approach of formulating it in symmetric dual-space and dual-system. This paper further explains this concept, beginning with symmetric Maxwell Equation (ME) and Fourier Transform (FT). The approach appears to be a powerful solution, with wide applications ranging from Electronic Warfare (EW) to 5G Mobile, etc.
Kalashnikov, A.O., Anikina, E.V..  2019.  Complex Network Cybersecurity Monitoring Method. 2019 Twelfth International Conference "Management of large-scale system development" (MLSD). :1–3.
This paper considers one of the methods of efficient allocation of limited resources in special-purpose devices (sensors) to monitor complex network unit cybersecurity.
Zhang, Ruipeng, Xu, Chen, Xie, Mengjun.  2019.  Powering Hands-on Cybersecurity Practices with Cloud Computing. 2019 IEEE 27th International Conference on Network Protocols (ICNP). :1–2.
Cybersecurity education and training have gained increasing attention in all sectors due to the prevalence and quick evolution of cyberattacks. A variety of platforms and systems have been proposed and developed to accommodate the growing needs of hands-on cybersecurity practice. However, those systems are either lacking sufficient flexibility (e.g., tied to a specific virtual computing service provider, little customization support) or difficult to scale. In this work, we present a cloud-based platform named EZSetup for hands-on cybersecurity practice at scale and our experience of using it in class. EZSetup is customizable and cloud-agnostic. Users can create labs through an intuitive Web interface and deploy them onto one or multiple clouds. We have used NSF funded Chameleon cloud and our private OpenStack cloud to develop, test and deploy EZSetup. We have developed 14 network and security labs using the tool and included six labs in an undergraduate network security course in spring 2019. Our survey results show that students have very positive feedback on using EZSetup and computing clouds for hands-on cybersecurity practice.
Promyslov, Vitaly, Jharko, Elena, Semenkov, Kirill.  2019.  Principles of Physical and Information Model Integration for Cybersecurity Provision to a Nuclear Power Plant. 2019 Twelfth International Conference "Management of large-scale system development" (MLSD). :1–3.
For complex technical objects the research of cybersecurity problems should take into account both physical and information properties of the object. The paper considers a hybrid model that unifies information and physical models and may be used as a tool for countering cyber threats and for cybersecurity risk assessment at the design and operational stage of an object's lifecycle.
2020-03-09
Farquharson, J., Wang, A., Howard, J..  2012.  Smart Grid Cyber Security and Substation Network Security. 2012 IEEE PES Innovative Smart Grid Technologies (ISGT). :1–5.

A successful Smart Grid system requires purpose-built security architecture which is explicitly designed to protect customer data confidentiality. In addition to the investment on electric power infrastructure for protecting the privacy of Smart Grid-related data, entities need to actively participate in the NIST interoperability framework process; establish policies and oversight structure for the enforcement of cyber security controls of the data through adoption of security best practices, personnel training, cyber vulnerability assessments, and consumer privacy audits.