Visible to the public Biblio

Filters: Keyword is Inverters  [Clear All Filters]
Xue, Nan, Wu, Xiaofan, Gumussoy, Suat, Muenz, Ulrich, Mesanovic, Amer, Dong, Zerui, Bharati, Guna, Chakraborty, Sudipta, Electric, Hawaiian.  2021.  Dynamic Security Optimization for N-1 Secure Operation of Power Systems with 100% Non-Synchronous Generation: First experiences from Hawai'i Island. 2021 IEEE Power Energy Society General Meeting (PESGM). :1—5.

This paper presents some of our first experiences and findings in the ARPA-E project ReNew100, which is to develop an operator support system to enable stable operation of power system with 100% non-synchronous (NS) generation. The key to 100% NS system, as found in many recent studies, is to establish the grid frequency reference using grid-forming (GFM) inverters. In this paper, we demonstrate in Electro-Magnetic-Transient (EMT) simulations, based on Hawai'i big island system with 100% NS capacity, that a system can be operated stably with the help of GFM inverters and appropriate controller parameters for the inverters. The dynamic security optimization (DSO) is introduced for optimizing the inverter control parameters to improve stability of the system towards N-1 contingencies. DSO is verified for five critical N-1 contingencies of big island system identified by Hawaiian Electric. The simulation results show significant stability improvement from DSO. The results in this paper share some insight, and provide a promising solution for operating grid in general with high penetration or 100% of NS generation.

Ahmed-Zaid, Said, Loo, Sin Ming, Valdepena-Delgado, Andres, Beam, Theron.  2021.  Cyber-Physical Security Assessment and Resilience of a Microgrid Testbed. 2021 Resilience Week (RWS). :1–3.
In order to identify potential weakness in communication and data in transit, a microgrid testbed is being developed at Boise State University. This testbed will be used to verify microgrid models and communication methods in an effort to increase the resiliency of these systems to cyber-attacks. If vulnerabilities are found in these communication methods, then risk mitigation techniques will be developed to address them.
Pilehvar, Mohsen S., Mirafzal, Behrooz.  2020.  Energy-Storage Fed Smart Inverters for Mitigation of Voltage Fluctuations in Islanded Microgrids. 2020 IEEE Electric Power and Energy Conference (EPEC). :1–6.
The continuous integration of intermittent low-carbon energy resources makes islanded microgrids vulnerable to voltage fluctuations. Besides, different dynamic response of synchronous-based and inverter-based distributed generation (DG) units can result in an instantaneous power imbalance between supply and demand during transients. As a result, the ac-bus voltage of microgrid starts oscillating which might have severe consequences such as blackouts. This paper modifies the conventional control scheme of battery energy storage systems (BESSs) to participate in improving the dynamic behavior of islanded microgrids by mitigating the voltage fluctuations. A piecewise linear-elliptic (PLE) droop is proposed and employed in BESS to achieve an enhanced voltage profile by injecting/absorbing reactive power during transients. In this way, the conventional inverter implemented in BESS turns into a smart inverter to cope with fast transients. Using the proposed approach in this paper, any linear droop curve with a specified coefficient can be replaced by a PLE droop curve. Compared with linear droop, an enhanced dynamic response is achieved by utilizing the proposed PLE droop. Case study results are presented using PSCAD/EMTDC to demonstrate the superiority of the proposed approach in improving the dynamic behavior of islanded microgrids.
ISSN: 2381-2842
Yao, Chunxing, Sun, Zhenyao, Xu, Shuai, Zhang, Han, Ren, Guanzhou, Ma, Guangtong.  2021.  Optimal Parameters Design for Model Predictive Control using an Artificial Neural Network Optimized by Genetic Algorithm. 2021 13th International Symposium on Linear Drives for Industry Applications (LDIA). :1–6.
Model predictive control (MPC) has become one of the most attractive control techniques due to its outstanding dynamic performance for motor drives. Besides, MPC with constant switching frequency (CSF-MPC) maintains the advantages of MPC as well as constant frequency but the selection of weighting factors in the cost function is difficult for CSF-MPC. Fortunately, the application of artificial neural networks (ANN) can accelerate the selection without any additional computation burden. Therefore, this paper designs a specific artificial neural network optimized by genetic algorithm (GA-ANN) to select the optimal weighting factors of CSF-MPC for permanent magnet synchronous motor (PMSM) drives fed by three-level T-type inverter. The key performance metrics like THD and switching frequencies error (ferr) are extracted from simulation and this data are utilized to train and evaluate GA-ANN. The trained GA-ANN model can automatically and precisely select the optimal weighting factors for minimizing THD and ferr under different working conditions of PMSM. Furthermore, the experimental results demonstrate the validation of GA-ANN and robustness of optimal weighting factors under different torque loads. Accordingly, any arbitrary user-defined working conditions which combine THD and ferr can be defined and the optimum weighting factors can be fast and explicitly determined via the trained GA-ANN model.
Roberts, Ciaran, Ngo, Sy-Toan, Milesi, Alexandre, Scaglione, Anna, Peisert, Sean, Arnold, Daniel.  2021.  Deep Reinforcement Learning for Mitigating Cyber-Physical DER Voltage Unbalance Attacks. 2021 American Control Conference (ACC). :2861–2867.
The deployment of DER with smart-inverter functionality is increasing the controllable assets on power distribution networks and, consequently, the cyber-physical attack surface. Within this work, we consider the use of reinforcement learning as an online controller that adjusts DER Volt/Var and Volt/Watt control logic to mitigate network voltage unbalance. We specifically focus on the case where a network-aware cyber-physical attack has compromised a subset of single-phase DER, causing a large voltage unbalance. We show how deep reinforcement learning successfully learns a policy minimizing the unbalance, both during normal operation and during a cyber-physical attack. In mitigating the attack, the learned stochastic policy operates alongside legacy equipment on the network, i.e. tap-changing transformers, adjusting optimally predefined DER control-logic.
Ahn, Bohyun, Bere, Gomanth, Ahmad, Seerin, Choi, JinChun, Kim, Taesic, Park, Sung-won.  2021.  Blockchain-Enabled Security Module for Transforming Conventional Inverters toward Firmware Security-Enhanced Smart Inverters. 2021 IEEE Energy Conversion Congress and Exposition (ECCE). :1307–1312.
As the traditional inverters are transforming toward more intelligent inverters with advanced information and communication technologies, the cyber-attack surface has been remarkably expanded. Specifically, securing firmware of smart inverters from cyber-attacks is crucial. This paper provides expanded firmware attack surface targeting smart inverters. Moreover, this paper proposes a security module for transforming a conventional inverter to a firmware security built-in smart inverter by preventing potential malware and unauthorized firmware update attacks as well as fast automated inverter recovery from zero-day attacks. Furthermore, the proposed security module as a client of blockchain is connected to blockchain severs to fully utilize blockchain technologies such as membership service, ledgers, and smart contracts to detect and mitigate the firmware attacks. The proposed security module framework is implemented in an Internet-of-Thing (IoT) device and validated by experiments.
Ackley, Darryl, Yang, Hengzhao.  2020.  Exploration of Smart Grid Device Cybersecurity Vulnerability Using Shodan. 2020 IEEE Power Energy Society General Meeting (PESGM). :1–5.
The generation, transmission, distribution, and storage of electric power is becoming increasingly decentralized. Advances in Distributed Energy Resources (DERs) are rapidly changing the nature of the power grid. Moreover, the accommodation of these new technologies by the legacy grid requires that an increasing number of devices be Internet connected so as to allow for sensor and actuator information to be collected, transmitted, and processed. With the wide adoption of the Internet of Things (IoT), the cybersecurity vulnerabilities of smart grid devices that can potentially affect the stability, reliability, and resilience of the power grid need to be carefully examined and addressed. This is especially true in situations in which smart grid devices are deployed with default configurations or without reasonable protections against malicious activities. While much work has been done to characterize the vulnerabilities associated with Supervisory Control and Data Acquisition (SCADA) and Industrial Control System (ICS) devices, this paper demonstrates that similar vulnerabilities associated with the newer class of IoT smart grid devices are becoming a concern. Specifically, this paper first performs an evaluation of such devices using the Shodan platform and text processing techniques to analyze a potential vulnerability involving the lack of password protection. This work further explores several Shodan search terms that can be used to identify additional smart grid components that can be evaluated in terms of cybersecurity vulnerabilities. Finally, this paper presents recommendations for the more secure deployment of such smart grid devices.
Wu, Qiang, Zhang, Jiliang.  2020.  CT PUF: Configurable Tristate PUF against Machine Learning Attacks. 2020 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
Strong physical unclonable function (PUF) is a promising lightweight hardware security primitive for device authentication. However, it is vulnerable to machine learning attacks. This paper demonstrates that even a recently proposed dual-mode PUF is still can be broken. In order to improve the security, this paper proposes a highly flexible machine learning resistant configurable tristate (CT) PUF which utilizes the response generated in the working state of Arbiter PUF to XOR the challenge input and response output of other two working states (ring oscillator (RO) PUF and bitable ring (BR) PUF). The proposed CT PUF is implemented on Xilinx Artix-7 FPGAs and the experiment results show that the modeling accuracy of logistic regression and artificial neural network is reduced to the mid-50%.
Latha Ch., Mary, Bazil Raj, A.A., Abhikshit, L..  2020.  Design and Implementation of a Secure Physical Unclonable Function In FPGA. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :1083–1089.
A Field Programmable Gate Array (FPGA) is a digital Integrated Circuit made up of interconnected functional blocks, which can be programmed by the end-user to perform required logic functions. As FPGAs are re-programmable, partially re-configurable and have lowertime to market, FPGA has become a vital component in the field of electronics. FPGAs are undergoing many security issues as the adversaries are trying to make profits by replicating the original design, without any investment. The major security issues are cloning, counterfeiting, reverse engineering, Physical tampering, and insertion of malicious components, etc. So, there is a need for security of FPGAs. A Secret key must be embedded in an IC, to provide identification and authentication to it. Physical Unclonable Functions (PUFs) can provide these secret keys, by using the physical properties of the chip. These physical properties are not reproducible even by the manufacturer. Hence the responses produced by the PUF are unique for every individual chip. The method of generating unique binary signatures helps in cryptographic key generation, digital rights management, Intellectual Property (IP) protection, IC counterfeit prevention, and device authentication. The PUFs are very promising in signature generation in the field of hardware security. In this paper, the secret binary responses is generated with the help of a delay based Ring Oscillator PUF, which does not use a clock circuit in its architecture.
Ulrich, Jacob, McJunkin, Timothy, Rieger, Craig, Runyon, Michael.  2020.  Scalable, Physical Effects Measurable Microgrid for Cyber Resilience Analysis (SPEMMCRA). 2020 Resilience Week (RWS). :194—201.

The ability to advance the state of the art in automated cybersecurity protections for industrial control systems (ICS) has as a prerequisite of understanding the trade-off space. That is, to enable a cyber feedback loop in a control system environment you must first consider both the security mitigation available, the benefits and the impacts to the control system functionality when the mitigation is used. More damaging impacts could be precipitated that the mitigation was intended to rectify. This paper details networked ICS that controls a simulation of the frequency response represented with the swing equation. The microgrid loads and base generation can be balanced through the control of an emulated battery and power inverter. The simulated plant, which is implemented in Raspberry Pi computers, provides an inexpensive platform to realize the physical effects of cyber attacks to show the trade-offs of available mitigating actions. This network design can include a commercial ICS controller and simple plant or emulated plant to introduce real world implementation of feedback controls, and provides a scalable, physical effects measurable microgrid for cyber resilience analysis (SPEMMCRA).

Liu, S., Kosuru, R., Mugombozi, C. F..  2020.  A Moving Target Approach for Securing Secondary Frequency Control in Microgrids. 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). :1–6.
Microgrids' dependency on communication links exposes the control systems to cyber attack threats. In this work, instead of designing reactive defense approaches, a proacitve moving target defense mechanism is proposed for securing microgrid secondary frequency control from denial of service (DoS) attack. The sensor data is transmitted by following a Markov process, not in a deterministic way. This uncertainty will increase the difficulty for attacker's decision making and thus significantly reduce the attack space. As the system parameters are constantly changing, a gain scheduling based secondary frequency controller is designed to sustain the system performance. Case studies of a microgrid with four inverter-based DGs show the proposed moving target mechanism can enhance the resiliency of the microgrid control systems against DoS attacks.
Zhang, Jiliang, Qu, Gang.  2020.  Physical Unclonable Function-Based Key Sharing via Machine Learning for IoT Security. IEEE Transactions on Industrial Electronics. 67:7025—7033.

In many industry Internet of Things applications, resources like CPU, memory, and battery power are limited and cannot afford the classic cryptographic security solutions. Silicon physical unclonable function (PUF) is a lightweight security primitive that exploits manufacturing variations during the chip fabrication process for key generation and/or device authentication. However, traditional weak PUFs such as ring oscillator (RO) PUF generate chip-unique key for each device, which restricts their application in security protocols where the same key is required to be shared in resource-constrained devices. In this article, in order to address this issue, we propose a PUF-based key sharing method for the first time. The basic idea is to implement one-to-one input-output mapping with lookup table (LUT)-based interstage crossing structures in each level of inverters of RO PUF. Individual customization on configuration bits of interstage crossing structure and different RO selections with challenges bring high flexibility. Therefore, with the flexible configuration of interstage crossing structures and challenges, crossover RO PUF can generate the same shared key for resource-constrained devices, which enables a new application for lightweight key sharing protocols.

Shey, James, Karimi, Naghmeh, Robucci, Ryan, Patel, Chintan.  2018.  Design-Based Fingerprinting Using Side-Channel Power Analysis for Protection Against IC Piracy. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :614—619.

Intellectual property (IP) and integrated circuit (IC) piracy are of increasing concern to IP/IC providers because of the globalization of IC design flow and supply chains. Such globalization is driven by the cost associated with the design, fabrication, and testing of integrated circuits and allows avenues for piracy. To protect the designs against IC piracy, we propose a fingerprinting scheme based on side-channel power analysis and machine learning methods. The proposed method distinguishes the ICs which realize a modified netlist, yet same functionality. Our method doesn't imply any hardware overhead. We specifically focus on the ability to detect minimal design variations, as quantified by the number of logic gates changed. Accuracy of the proposed scheme is greater than 96 percent, and typically 99 percent in detecting one or more gate-level netlist changes. Additionally, the effect of temperature has been investigated as part of this work. Results depict 95.4 percent accuracy in detecting the exact number of gate changes when data and classifier use the same temperature, while training with different temperatures results in 33.6 percent accuracy. This shows the effectiveness of building temperature-dependent classifiers from simulations at known operating temperatures.

Makhoul, Rawad, Maynard, Xavier, Perichon, Pierre, Frey, David, Jeannin, Pierre-Olivier, Lembeye, Yves.  2018.  A Novel Self Oscillating Class Phi2 Inverter Topology. 2018 2nd European Conference on Electrical Engineering and Computer Science (EECS). :7—10.

The class φ2 is a single transistor, fast transient inverter topology often associated with power conversion at very high frequency (VHF: 30MHz-300MHz). At VHF, gate drivers available on the market fail to provide the adequate transistor switching signal. Hence, there is a need for new power topologies that do no make use of gate drivers but are still suitable for power conversion at VHF. In This paper, we introduce a new class φ;2 topology that incorporates an oscillator, which takes the drain signal through a feedback circuit in order to force the transistor switching. A design methodology is provided and a 1MHz 20V input prototype is built in order to validate the topology behaviour.

Zhong, Q., Blaabjerg, F., Cecati, C..  2017.  Power-Electronics-Enabled Autonomous Power Systems. IEEE Transactions on Industrial Electronics. 64:5904–5906.

The eleven papers in this special section focus on power electronics-enabled autonomous systems. Power systems are going through a paradigm change from centralized generation to distributed generation and further onto smart grid. Millions of relatively small distributed energy resources (DER), including wind turbines, solar panels, electric vehicles and energy storage systems, and flexible loads are being integrated into power systems through power electronic converters. This imposes great challenges to the stability, scalability, reliability, security, and resiliency of future power systems. This section joins the forces of the communities of control/systems theory, power electronics, and power systems to address various emerging issues of power-electronics-enabled autonomous power systems, paving the way for large-scale deployment of DERs and flexible loads.

Rajagopalan, S., Rethinam, S., Deepika, A. N., Priyadarshini, A., Jyothirmai, M., Rengarajan, A..  2017.  Design of Boolean Chaotic Oscillator Using CMOS Technology for True Random Number Generation. 2017 International Conference on Microelectronic Devices, Circuits and Systems (ICMDCS). :1–6.

True random numbers have a fair role in modern digital transactions. In order to achieve secured authentication, true random numbers are generated as security keys which are highly unpredictable and non-repetitive. True random number generators are used mainly in the field of cryptography to generate random cryptographic keys for secure data transmission. The proposed work aims at the generation of true random numbers based on CMOS Boolean Chaotic Oscillator. As a part of this work, ASIC approach of CMOS Boolean Chaotic Oscillator is modelled and simulated using Cadence Virtuoso tool based on 45nm CMOS technology. Besides, prototype model has been implemented with circuit components and analysed using NI ELVIS platform. The strength of the generated random numbers was ensured by NIST (National Institute of Standards and Technology) Test Suite and ASIC approach was validated through various parameters by performing various analyses such as frequency, delay and power.

Yang, Y., Wu, L., Zhang, X., He, J..  2017.  A Novel Hardware Trojan Detection with Chip ID Based on Relative Time Delays. 2017 11th IEEE International Conference on Anti-Counterfeiting, Security, and Identification (ASID). :163–167.

This paper introduces a hardware Trojan detection method using Chip ID which is generated by Relative Time-Delays (RTD) of sensor chains and the effectiveness of RTD is verified by post-layout simulations. The rank of time-delays of the sensor chains would be changed in Trojan-inserted chip. RTD is an accurate approach targeting to all kinds of Trojans, since it is based on the RELATIVE relationship between the time-delays rather than the absolute values, which are hard to be measured and will change with the fabricate process. RTD needs no golden chip, because the RELATIVE values would not change in most situations. Thus the genuine ID can be generated by simulator. The sensor chains can be inserted into a layout utilizing unused spaces, so RTD is a low-cost solution. A Trojan with 4x minimum NMOS is placed in different places of the chip. The behavior of the chip is obtained by using transient based post-layout simulation. All the Trojans are detected AND located, thus the effectiveness of RTD is verified.

Li, T., Wu, L., Zhang, X., Wu, X., Zhou, J., Wang, X..  2017.  A novel transition effect ring oscillator based true random number generator for a security SoC. 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC). :1–2.

The transition effect ring oscillator (TERO) based true random number generator (TRNG) was proposed by Varchola and Drutarovsky in 2010. There were several stochastic models for this advanced TRNG based on ring oscillator. This paper proposed an improved TERO based TRNG and implements both on Altera Cyclone series FPGA platform and on a 0.13um CMOS ASIC process. FPGA experimental results show that this balanced TERO TRNG is in good performance as the experimental data results past the national institute of standards and technology (NIST) test in 1M bit/s. The TRNG is feasible for a security SoC.

Nikolic, G., Nikolic, T., Petrovic, B..  2014.  Using adaptive filtering in single-phase grid-connected system. Microelectronics Proceedings - MIEL 2014, 2014 29th International Conference on. :417-420.

Recently, there has been a pronounced increase of interest in the field of renewable energy. In this area power inverters are crucial building blocks in a segment of energy converters, since they change direct current (DC) to alternating current (AC). Grid connected power inverters should operate in synchronism with the grid voltage. In this paper, the structure of a power system based on adaptive filtering is described. The main purpose of the adaptive filter is to adapt the output signal of the inverter to the corresponding load and/or grid signal. By involving adaptive filtering the response time decreases and quality of power delivery to the load or grid increases. A comparative analysis which relates to power system operation without and with adaptive filtering is given. In addition, the impact of variable impedance of load on quality of delivered power is considered. Results which relates to total harmonic distortion (THD) factor are obtained by Matlab/Simulink software.