Visible to the public Biblio

Found 534 results

Filters: Keyword is Encryption  [Clear All Filters]
2020-07-13
Lee, Yong Up, Kang, Kyeong-Yoon, Choi, Ginkyu.  2019.  Secure Visible Light Encryption Communication Technique for Smart Home Service. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0827–0831.
For the security enhancement of the conventional visible light (VL) communication which allows the easy intrusion by adjacent adversary due to visible signal characteristic, the VL communication technique based on the asymmetric Rivest-Shamir-Adleman (RSA) encryption method is proposed for smart indoor service in this paper, and the optimal key length of the RSA encryption process for secure VL communication technique is investigated, and also the error performance dependent on the various asymmetric encryption key is analyzed for the performance evaluation of the proposed technique. Then we could see that the VL communication technique based on the RSA encryption gives the similar RMSE performance independent of the length of the public or private key and provides the better error performance as the signal to noise ratio (SNR) increases.
ahmad, sahan, Zobaed, SM, Gottumukkala, Raju, Salehi, Mohsen Amini.  2019.  Edge Computing for User-Centric Secure Search on Cloud-Based Encrypted Big Data. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :662–669.
Cloud service providers offer a low-cost and convenient solution to host unstructured data. However, cloud services act as third-party solutions and do not provide control of the data to users. This has raised security and privacy concerns for many organizations (users) with sensitive data to utilize cloud-based solutions. User-side encryption can potentially address these concerns by establishing user-centric cloud services and granting data control to the user. Nonetheless, user-side encryption limits the ability to process (e.g., search) encrypted data on the cloud. Accordingly, in this research, we provide a framework that enables processing (in particular, searching) of encrypted multiorganizational (i.e., multi-source) big data without revealing the data to cloud provider. Our framework leverages locality feature of edge computing to offer a user-centric search ability in a realtime manner. In particular, the edge system intelligently predicts the user's search pattern and prunes the multi-source big data search space to reduce the search time. The pruning system is based on efficient sampling from the clustered big dataset on the cloud. For each cluster, the pruning system dynamically samples appropriate number of terms based on the user's search tendency, so that the cluster is optimally represented. We developed a prototype of a user-centric search system and evaluated it against multiple datasets. Experimental results demonstrate 27% improvement in the pruning quality and search accuracy.
Sharma, Yoshita, Gupta, Himanshu, Khatri, Sunil Kumar.  2019.  A Security Model for the Enhancement of Data Privacy in Cloud Computing. 2019 Amity International Conference on Artificial Intelligence (AICAI). :898–902.
As we all are aware that internet acts as a depository to store cyberspace data and provide as a service to its user. cloud computing is a technology by internet, where a large amount of data being pooled by different users is stored. The data being stored comes from various organizations, individuals, and communities etc. Thus, security and privacy of data is of utmost importance to all of its users regardless of the nature of the data being stored. In this research paper the use of multiple encryption technique outlines the importance of data security and privacy protection. Also, what nature of attacks and issues might arise that may corrupt the data; therefore, it is essential to apply effective encryption methods to increase data security.
Almtrf, Aljwhrh, Alagrash, Yasamin, Zohdy, Mohamed.  2019.  Framework modeling for User privacy in cloud computing. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0819–0826.
Many organizations around the world recognize the vitality of cloud computing. However, some concerns make organizations reluctant to adopting cloud computing. These include data security, privacy, and trust issues. It is very important that these issues are addressed to meet client concerns and to encourage the wider adoption of cloud computing. This paper develops a user privacy framework based upon on emerging security model that includes access control, encryption and protection monitor schemas in the cloud environment.
2020-07-10
Chen, Shuo-Han, Yang, Ming-Chang, Chang, Yuan-Hao, Wu, Chun-Feng.  2019.  Enabling File-Oriented Fast Secure Deletion on Shingled Magnetic Recording Drives. 2019 56th ACM/IEEE Design Automation Conference (DAC). :1—6.

Existing secure deletion approaches are inefficient in erasing data permanently because file systems have no knowledge of the data layout on the storage device, nor is the storage device aware of file information within the file systems. This inefficiency is exaggerated on the emerging shingled magnetic recording (SMR) drive due to its inherent sequential-write constraint. On SMR drives, secure deletion requests may lead to serious write amplification and performance degradation if the data layout is not properly configured. Such observation motivates us to propose a file-oriented fast secure deletion (FFSD) strategy to alleviate the negative impacts of SMR drives' sequential-write constraint and improve the efficiency of secure deletion operations on SMR drives. A series of experiments was conducted to demonstrate the capability of the proposed strategy on improving the efficiency of secure deletion on SMR drives.

2020-07-09
Liu, Chuanyi, Han, Peiyi, Dong, Yingfei, Pan, Hezhong, Duan, Shaoming, Fang, Binxing.  2019.  CloudDLP: Transparent and Automatic Data Sanitization for Browser-Based Cloud Storage. 2019 28th International Conference on Computer Communication and Networks (ICCCN). :1—8.

Because cloud storage services have been broadly used in enterprises for online sharing and collaboration, sensitive information in images or documents may be easily leaked outside the trust enterprise on-premises due to such cloud services. Existing solutions to this problem have not fully explored the tradeoffs among application performance, service scalability, and user data privacy. Therefore, we propose CloudDLP, a generic approach for enterprises to automatically sanitize sensitive data in images and documents in browser-based cloud storage. To the best of our knowledge, CloudDLP is the first system that automatically and transparently detects and sanitizes both sensitive images and textual documents without compromising user experience or application functionality on browser-based cloud storage. To prevent sensitive information escaping from on-premises, CloudDLP utilizes deep learning methods to detect sensitive information in both images and textual documents. We have evaluated the proposed method on a number of typical cloud applications. Our experimental results show that it can achieve transparent and automatic data sanitization on the cloud storage services with relatively low overheads, while preserving most application functionalities.

2020-07-06
Saffar, Zahra, Mohammadi, Siamak.  2019.  Fault tolerant non-linear techniques for scalar multiplication in ECC. 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC). :104–113.
Elliptic curve cryptography (ECC) has shorter key length than other asymmetric cryptography algorithms such as RSA with the same security level. Existing faults in cryptographic computations can cause faulty results. If a fault occurs during encryption, false information will be sent to the destination, in which case channel error detection codes are unable to detect the fault. In this paper, we consider the error detection in elliptic curve scalar multiplication point, which is the most important operation in ECC. Our technique is based on non-linear error detection codes. We consider an algorithm for scalar multiplication point proposed by Microsoft research group. The proposed technique in our methods has less overhead for additions (36.36%) and multiplications (34.84%) in total, compared to previous works. Also, the proposed method can detect almost 100% of injected faults.
2020-07-03
Bhandari, Chitra, Kumar, Sumit, Chauhan, Sudha, Rahman, M A, Sundaram, Gaurav, Jha, Rajib Kumar, Sundar, Shyam, Verma, A R, Singh, Yashvir.  2019.  Biomedical Image Encryption Based on Fractional Discrete Cosine Transform with Singular Value Decomposition and Chaotic System. 2019 International Conference on Computing, Power and Communication Technologies (GUCON). :520—523.
In this paper, new image encryption based on singular value decomposition (SVD), fractional discrete cosine transform (FrDCT) and the chaotic system is proposed for the security of medical image. Reliability, vitality, and efficacy of medical image encryption are strengthened by it. The proposed method discusses the benefits of FrDCT over fractional Fourier transform. The key sensitivity of the proposed algorithm for different medical images inspires us to make a platform for other researchers. Theoretical and statistical tests are carried out demonstrating the high-level security of the proposed algorithm.
Zhang, Yonghong, Zheng, Peijia, Luo, Weiqi.  2019.  Privacy-Preserving Outsourcing Computation of QR Decomposition in the Encrypted Domain. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :389—396.
Signal processing in encrypted domain has become an important mean to protect privacy in an untrusted network environment. Due to the limitations of the underlying encryption methods, many useful algorithms that are sophisticated are not well implemented. Considering that QR decomposition is widely used in many fields, in this paper, we propose to implement QR decomposition in homomorphic encrypted domain. We firstly realize some necessary primitive operations in homomorphic encrypted domain, including division and open square operation. Gram-Schmidt process is then studied in the encrypted domain. We propose the implementation of QR decomposition in the encrypted domain by using the secure implementation of Gram-Schmidt process. We conduct experiments to demonstrate the effectiveness and analyze the performance of the proposed outsourced QR decomposition.
Yang, Bowen, Liu, Dong.  2019.  Research on Network Traffic Identification based on Machine Learning and Deep Packet Inspection. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1887—1891.
Accurate network traffic identification is an important basis for network traffic monitoring and data analysis, and is the key to improve the quality of user service. In this paper, through the analysis of two network traffic identification methods based on machine learning and deep packet inspection, a network traffic identification method based on machine learning and deep packet inspection is proposed. This method uses deep packet inspection technology to identify most network traffic, reduces the workload that needs to be identified by machine learning method, and deep packet inspection can identify specific application traffic, and improves the accuracy of identification. Machine learning method is used to assist in identifying network traffic with encryption and unknown features, which makes up for the disadvantage of deep packet inspection that can not identify new applications and encrypted traffic. Experiments show that this method can improve the identification rate of network traffic.
2020-06-26
Samir, Nagham, Gamal, Yousef, El-Zeiny, Ahmed N., Mahmoud, Omar, Shawky, Ahmed, Saeed, AbdelRahman, Mostafa, Hassan.  2019.  Energy-Adaptive Lightweight Hardware Security Module using Partial Dynamic Reconfiguration for Energy Limited Internet of Things Applications. 2019 IEEE International Symposium on Circuits and Systems (ISCAS). :1—4.
Data security is the main challenge in Internet of Things (IoT) applications. Security strength and the immunity to security attacks depend mainly on the available power budget. The power-security level trade-off is the main challenge for low power IoT applications, especially, energy limited IoT applications. In this paper, multiple encryption modes that provide different power consumption and security level values are hardware implemented. In other words, some modes provide high security levels at the expense of high power consumption and other modes provide low power consumption with low security level. Dynamic Partial Reconfiguration (DPR) is utilized to adaptively configure the hardware security module based on the available power budget. For example, for a given power constraint, the DPR controller configures the security module with the security mode that meets the available power constraint. ZC702 evaluation board is utilized to implement the proposed encryption modes using DPR. A Lightweight Authenticated Cipher (ACORN) is the most suitable encryption mode for low power IoT applications as it consumes the minimum power and area among the selected candidates at the expense of low throughput. The whole DPR system is tested with a maximum dynamic power dissipation of 10.08 mW. The suggested DPR system saves about 59.9% of the utilized LUTs compared to the individual implementation of the selected encryption modes.
Padmashree, M G, Arunalatha, J S, Venugopal, K R.  2019.  HSSM: High Speed Split Multiplier for Elliptic Curve Cryptography in IoT. 2019 Fifteenth International Conference on Information Processing (ICINPRO). :1—5.

Security of data in the Internet of Things (IoT) deals with Encryption to provide a stable secure system. The IoT device possess a constrained Main Memory and Secondary Memory that mandates the use of Elliptic Curve Cryptographic (ECC) scheme. The Scalar Multiplication has a great impact on the ECC implementations in reducing the Computation and Space Complexity, thereby enhancing the performance of an IoT System providing high Security and Privacy. The proposed High Speed Split Multiplier (HSSM) for ECC in IoT is a lightweight Multiplication technique that uses Split Multiplication with Pseudo-Mersenne Prime Number and Montgomery Curve to withstand the Power Analysis Attack. The proposed algorithm reduces the Computation Time and the Space Complexity of the Cryptographic operations in terms of Clock cycles and RAM when compared with Liu et al.,’s multiplication algorithms [1].

Elhassani, M., Chillali, A., Mouhib, A..  2019.  Elliptic curve and Lattice cryptosystem. 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS). :1—4.

In this work, we will present a new hybrid cryptography method based on two hard problems: 1- The problem of the discrete logarithm on an elliptic curve defined on a finite local ring. 2- The closest vector problem in lattice and the conjugate problem on square matrices. At first, we will make the exchange of keys to the Diffie-Hellman. The encryption of a message is done with a bad basis of a lattice.

Savitri, Nadia, Johan, Ahmad Wali Satria Bahari, Al Islama A, Firnanda, Utaminingrum, Fitri.  2019.  Efficient Technique Image Encryption with Cipher Block Chaining and Gingerbreadman Map. 2019 International Conference on Sustainable Information Engineering and Technology (SIET). :116—119.

Digital image security is now a severe issue, especially when sending images to telecommunications networks. There are many ways where digital images can be encrypted and decrypted from secure communication. Digital images contain data that is important when captured or disseminated to preserve and preserve data. The technique of encryption is one way of providing data on digital images. A key cipher block chaining and Gingerbreadman Map are used in our search to encrypt images. This new system uses simplicity, high quality, enhanced by the vehicle's natural efficiency and the number of the chain. The proposed method is performed for experimental purposes and the experiments are performed in- depth, highly reliable analysis. The results confirm that by referring to several known attacks, the plan cannot be completed. Comparative studies with other algorithms show a slight rise in the security of passwords with the advantages of security of the chain. The results of this experiment are a comparison of button sensitivity and a comparison after encryption and decryption of the initial image using the amount of pixel change rate and unified average change intensity.

Abir, Md. Towsif, Rahman, Lamiya, Miftah, Samit Shahnawaz, Sarker, Sudipta, Al Imran, Md. Ibrahim, Shafiqul Islam, Md..  2019.  Image Encryption and Decryption using Enigma Algorithm. 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1—5.

The main objective of this paper is to present a more secured and computationally efficient procedure of encrypting and decrypting images using the enigma algorithm in comparison to the existing methods. Available literature on image encryptions and descriptions are not highly secured in every case.To achieve more secured image processing for highly advanced technologies, a proposed algorithm can be the process used in enigma machine for image encryption and decryption. Enigma machine is piece of spook hardware that was used frequently during the World War II by the Germans. This paper describes the detailed algorithm along with proper demonstration of several essential components present in an enigma machine that is required for image security. Each pixel in a colorful picture can be represented by RGB (Red, Green, Blue) value. The range of RGB values is 0 to 255 that states the red, green and blue intensity of a particular picture.These RGB values are accessed one by one and changed into another by various steps and hence it is not possible to track the original RGB value. In order to retrieve the original image, the receiver needs to know the setting of the enigma. To compare the decrypted image with the original one,these two images are subtracted and their results are also discussed in this paper.

Bouchaala, Mariem, Ghazel, Cherif, Saidane, Leila Azouz.  2019.  Revocable Sliced CipherText Policy Attribute Based Encryption Scheme in Cloud Computing. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :1860—1865.

Cloud Computing is the most promising paradigm in recent times. It offers a cost-efficient service to individual and industries. However, outsourcing sensitive data to entrusted Cloud servers presents a brake to Cloud migration. Consequently, improving the security of data access is the most critical task. As an efficient cryptographic technique, Ciphertext Policy Attribute Based Encryption(CP-ABE) develops and implements fine-grained, flexible and scalable access control model. However, existing CP-ABE based approaches suffer from some limitations namely revocation, data owner overhead and computational cost. In this paper, we propose a sliced revocable solution resolving the aforementioned issues abbreviated RS-CPABE. We applied splitting algorithm. We execute symmetric encryption with Advanced Encryption Standard (AES)in large data size and asymmetric encryption with CP-ABE in constant key length. We re-encrypt in case of revocation one single slice. To prove the proposed model, we expose security and performance evaluation.

Betha, Durga Janardhana Anudeep, Bhanuj, Tatineni Sai, Umamaheshwari, B, Iyer, R. Abirami, Devi, R. Santhiya, Amirtharajan, Rengarajan, Praveenkumar, Padmapriya.  2019.  Chaotic based Image Encryption - A Neutral Perspective. 2019 International Conference on Computer Communication and Informatics (ICCCI). :1—5.

Today, there are several applications which allow us to share images over the internet. All these images must be stored in a secure manner and should be accessible only to the intended recipients. Hence it is of utmost importance to develop efficient and fast algorithms for encryption of images. This paper uses chaotic generators to generate random sequences which can be used as keys for image encryption. These sequences are seemingly random and have statistical properties. This makes them resistant to analysis and correlation attacks. However, these sequences have fixed cycle lengths. This restricts the number of sequences that can be used as keys. This paper utilises neural networks as a source of perturbation in a chaotic generator and uses its output to encrypt an image. The robustness of the encryption algorithm can be verified using NPCR, UACI, correlation coefficient analysis and information entropy analysis.

Chandra, K. Ramesh, Prudhvi Raj, B., Prasannakumar, G..  2019.  An Efficient Image Encryption Using Chaos Theory. 2019 International Conference on Intelligent Computing and Control Systems (ICCS). :1506—1510.

This paper presents the encryption of advanced pictures dependent on turmoil hypothesis. Two principal forms are incorporated into this method those are pixel rearranging and pixel substitution. Disorder hypothesis is a part of science concentrating on the conduct of dynamical frameworks that are profoundly touchy to beginning conditions. A little change influences the framework to carry on totally unique, little changes in the beginning position of a disorganized framework have a major effect inevitably. A key of 128-piece length is created utilizing mayhem hypothesis, and decoding should be possible by utilizing a similar key. The bit-XOR activity is executed between the unique picture and disorder succession x is known as pixel substitution. Pixel rearranging contains push savvy rearranging and section astute rearranging gives extra security to pictures. The proposed strategy for encryption gives greater security to pictures.

M, Raviraja Holla, D, Suma.  2019.  Memory Efficient High-Performance Rotational Image Encryption. 2019 International Conference on Communication and Electronics Systems (ICCES). :60—64.

Image encryption is an essential part of a Visual Cryptography. Existing traditional sequential encryption techniques are infeasible to real-time applications. High-performance reformulations of such methods are increasingly growing over the last decade. These reformulations proved better performances over their sequential counterparts. A rotational encryption scheme encrypts the images in such a way that the decryption is possible with the rotated encrypted images. A parallel rotational encryption technique makes use of a high-performance device. But it less-leverages the optimizations offered by them. We propose a rotational image encryption technique which makes use of memory coalescing provided by the Compute Unified Device Architecture (CUDA). The proposed scheme achieves improved global memory utilization and increased efficiency.

Ahmad, Jawad, Tahir, Ahsen, Khan, Jan Sher, Khan, Muazzam A, Khan, Fadia Ali, Arshad, Habib, Zeeshan.  2019.  A Partial Ligt-weight Image Encryption Scheme. 2019 UK/ China Emerging Technologies (UCET). :1—3.

Due to greater network capacity and faster data speed, fifth generation (5G) technology is expected to provide a huge improvement in Internet of Things (IoTs) applications, Augmented & Virtual Reality (AR/VR) technologies, and Machine Type Communications (MTC). Consumer will be able to send/receive high quality multimedia data. For the protection of sensitive multimedia data, a large number of encryption algorithms are available, however, these encryption schemes does not provide light-weight encryption solution for real-time application requirements. This paper proposes a new multi-chaos computational efficient encryption for digital images. In the proposed scheme, plaintext image is transformed using Lifting Wavelet Transform (LWT) and only one-fourth part of the transformed image is encrypted using light-weight Chebyshev and Intertwining maps. Both chaotic maps were chaotically coupled for the confusion and diffusion processes which further enhances the image security. Encryption/decryption speed and other security measures such as correlation coefficient, entropy, Number of Pixels Change Rate (NPCR), contrast, energy, homogeneity confirm the superiority of the proposed light-weight encryption scheme.

2020-06-22
Ravichandran, Dhivya, Fathima, Sherin, Balasubramanian, Vidhyadharini, Banu, Aashiq, Anushiadevi, Amirtharajan, Rengarajan.  2019.  DNA and Chaos Based Confusion-Diffusion for Color Image Security. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–6.
Nowadays, secure transmission of multimedia files has become more significant concern with the evolution of technologies. Cryptography is the well-known technique to safeguard the files from various destructive hacks. In this work, a colour image encryption scheme is suggested using chaos and Deoxyribo Nucleic Acid (DNA) coding. The encryption scheme is carried out in two stages namely confusion and diffusion. As the first stage, chaos aided inter-planar row and column shuffling are performed to shuffle the image pixels completely. DNA coding and decoding operations then diffuse the resultant confused image with the help of eight DNA XOR rules. This confusion-diffusion process has achieved the entropy value equal to 7.9973 and correlation coefficient nearer to zero with key space of 10140. Various other analyses are also done to ensure the effectiveness of the developed algorithm. The results show that the proposed scheme can withstand different attacks and better than the recent state-of-art methods.
Das, Subhajit, Mondal, Satyendra Nath, Sanyal, Manas.  2019.  A Novel Approach of Image Encryption Using Chaos and Dynamic DNA Sequence. 2019 Amity International Conference on Artificial Intelligence (AICAI). :876–880.
In this paper, an image encryption scheme based on dynamic DNA sequence and two dimension logistic map is proposed. Firstly two different pseudo random sequences are generated using two dimension Sine-Henon alteration map. These sequences are used for altering the positions of each pixel of plain image row wise and column wise respectively. Secondly each pixels of distorted image and values of random sequences are converted into a DNA sequence dynamically using one dimension logistic map. Reversible DNA operations are applied between DNA converted pixel and random values. At last after decoding the results of DNA operations cipher image is obtained. Different theoretical analyses and experimental results proved the effectiveness of this algorithm. Large key space proved that it is possible to protect different types of attacks using our proposed encryption scheme.
Sreenivasan, Medha, Sidhardhan, Anargh, Priya, Varnitha Meera, V., Thanikaiselvan.  2019.  5D Combined Chaotic System for Image Encryption with DNA Encoding and Scrambling. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–6.
The objective of this paper was to propose a 5D combined chaotic system used for image encryption by scrambling and DNA encryption. The initial chaotic values were calculated with a set of equations. The chaotic sequences were used for pixel scrambling, bit scrambling, DNA encryption and DNA complementary function. The average of NPCR, UACI and entropy values of the 6 images used for testing were 99.61, 33.51 and 7.997 respectively. The correlation values obtained for the encrypted image were much lower than the corresponding original image. The histogram of the encrypted image was flat. Based on the theoretical results from the tests performed on the proposed system it can be concluded that the system is suited for practical applications, since it offers high security.
Roy, Mousomi, Chakraborty, Shouvik, Mali, Kalyani, Mitra, Sourav, Mondal, Ishita, Dawn, Rabidipto, Das, Dona, Chatterjee, Sankhadeep.  2019.  A Dual Layer Image Encryption using Polymerase Chain Reaction Amplification and DNA Encryption. 2019 International Conference on Opto-Electronics and Applied Optics (Optronix). :1–4.
Unauthorized access of the data is one of the major threat for the real world digital data communication. Digital images are one of the most vital subset of the digital data. Several important and sensitive information is conveyed through digital images. Hence, digital image security is one of the foremost interest of the researchers. Cryptographic algorithms Biological sequences are often used to encrypt data due to their inherent features. DNA encryption is one of the widely used method used for data security which is based on the properties of the biological sequences. To protect the images from unwanted accesses, a new two stage method is proposed in this work. DNA Encryption and Polymerase Chain Reaction (PCR) Amplification is used to enhance the security. The proposed method is evaluated using different standard parameters that shows the efficiency of the algorithm.
Singh, Shradhanjali, Sharma, Yash.  2019.  A Review on DNA based Cryptography for Data hiding. 2019 International Conference on Intelligent Sustainable Systems (ICISS). :282–285.
In today's world, securing data is becoming one of the main issues, the elaboration of the fusion of cryptography and steganography are contemplating as the sphere of on-going research. This can be gain by cryptography, steganography, and fusion of these two, where message firstly encoding using any cryptography techniques and then conceal into any cover medium using steganography techniques. Biological structure of DNA is used as the cover medium due to high storage capacity, simple encoding method, massive parallelism and randomness DNA cryptography can be used in identification card and tickets. Currently work in this field is still in the developmental stage and a lot of investigation is required to reach a fully-fledged stage. This paper provides a review of the existing method of DNA based cryptography