Visible to the public Biblio

Found 965 results

Filters: Keyword is Encryption  [Clear All Filters]
2022-05-20
Kodwani, Gaurav, Arora, Shashank, Atrey, Pradeep K..  2021.  On Security of Key Derivation Functions in Password-based Cryptography. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :109–114.
Most common user authentication methods use some form of password or a combination of passwords. However, encryption schemes are generally not directly compatible with user passwords and thus, Password-Based Key Derivation Functions (PBKDFs) are used to convert user passwords into cryptographic keys. In this paper, we analyze the theoretical security of PBKDF2 and present two vulnerabilities, γ-collision and δ-collision. Using AES-128 as our exemplar, we show that due to γ-collision, text encrypted with one user password can be decrypted with γ 1 different passwords. We also provide a proof that finding− a collision in the derived key for AES-128 requires δ lesser calls to PBKDF2 than the known Birthday attack. Due to this, it is possible to break password-based AES-128 in O(264) calls, which is equivalent to brute-forcing DES.
Gularte, Kevin H. M., Gómez, Juan C. G., Vargas, José A. R., Dos Santos, Rogério R..  2021.  Chaos-based Cryptography Using an Underactuated Synchronizer. 2021 14th IEEE International Conference on Industry Applications (INDUSCON). :1303–1308.
This paper proposes a scheme for secure telecommunication based on synchronizing a chaotic Liu system with a nontrivial Lyapunov candidate, which allows for the control signal to act only on one state of the slave system. The proposal has the advantages of being robust against disturbances (internal and external) and simple, which is essential because it leads to significant cost reductions when implemented using analog electronics. A simulation study, which considers the presence of disturbances, is used to validate the theoretical results and show the easy implementation of the proposed approach.
2022-05-19
Kösemen, Cem, Dalkiliç, Gökhan.  2021.  Tamper Resistance Functions on Internet of Things Devices. 2021 Innovations in Intelligent Systems and Applications Conference (ASYU). :1–5.
As the number of Internet of things devices increases, there is a growing importance of securely managing and storing the secret and private keys in these devices. Public-key cryptosystems or symmetric encryption algorithms both use special keys that need to be kept secret from other peers in the network. Additionally, ensuring the integrity of the installed application firmware of these devices is another security problem. In this study, private key storage methods are explained in general. Also, ESP32-S2 device is used for experimental case study for its robust built-in trusted platform module. Secure boot and flash encryption functionalities of ESP32-S2 device, which offers a solution to these security problems, are explained and tested in detail.
Ali, Nora A., Shokry, Beatrice, Rumman, Mahmoud H., ElSayed, Hany M., Amer, Hassanein H., Elsoudani, Magdy S..  2021.  Low-overhead Solutions For Preventing Information Leakage Due To Hardware Trojan Horses. 2021 16th International Conference on Computer Engineering and Systems (ICCES). :1–5.
The utilization of Third-party modules is very common nowadays. Hence, combating Hardware Trojans affecting the applications' functionality and data security becomes inevitably essential. This paper focuses on the detection/masking of Hardware Trojans' undesirable effects concerned with spying and information leakage due to the growing care about applications' data confidentiality. It is assumed here that the Trojan-infected system consists mainly of a Microprocessor module (MP) followed by an encryption module and then a Medium Access Control (MAC) module. Also, the system can be application-specific integrated circuit (ASIC) based or Field Programmable Gate Arrays (FPGA) based. A general solution, including encryption, CRC encoder/decoder, and zero padding modules, is presented to handle such Trojans. Special cases are then discussed carefully to prove that Trojans will be detected/masked with a corresponding overhead that depends on the Trojan's location, and the system's need for encryption. An implementation of the CRC encoder along with the zero padding module is carried out on an Altera Cyclone IV E FPGA to illustrate the extra resource utilization required by such a system, given that it is already using encryption.
2022-05-10
Hammad, Mohamed, Elmedany, Wael, Ismail, Yasser.  2021.  Design and Simulation of AES S-Box Towards Data Security in Video Surveillance Using IP Core Generator. 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :469–476.
Broadcasting applications such as video surveillance systems are using High Definition (HD) videos. The use of high-resolution videos increases significantly the data volume of video coding standards such as High-Efficiency Video Coding (HEVC) and Advanced Video Coding (AVC), which increases the challenge for storing, processing, encrypting, and transmitting these data over different communication channels. Video compression standards use state-of-the-art techniques to compress raw video sequences more efficiently, such techniques require high computational complexity and memory utilization. With the emergent of using HEVC and video surveillance systems, many security risks arise such as man-in-the-middle attacks, and unauthorized disclosure. Such risks can be mitigated by encrypting the traffic of HEVC. The most widely used encryption algorithm is the Advanced Encryption Standard (AES). Most of the computational complexity in AES hardware-implemented is due to S-box or sub-byte operation and that because it needs many resources and it is a non-linear structure. The proposed AES S-box ROM design considers the latest HEVC used for homeland security video surveillance systems. This paper presents different designs for VHDL efficient ROM implementation of AES S-box using IP core generator, ROM components, and using Functions, which are all supported by Xilinx. IP core generator has Block Memory Generator (BMG) component in its library. S-box IP core ROM is implemented using Single port block memory. The S-box lookup table has been used to fill the ROM using the .coe file format provided during the initialization of the IP core ROM. The width is set to 8-bit to address the 256 values while the depth is set to 8-bit which represents the data filed in the ROM. The whole design is synthesized using Xilinx ISE Design Suite 14.7 software, while Modelism (version10.4a) is used for the simulation process. The proposed IP core ROM design has shown better memory utilization compared to non-IP core ROM design, which is more suitable for memory-intensive applications. The proposed design is suitable for implementation using the FPGA ROM design. Hardware complexity, frequency, memory utilization, and delay are presented in this paper.
Kumar, Chandan, Singh, Shailendra.  2021.  Asymmetric Encryption of Surveillance Videos for Adaptive Threshold based Moving Object Detection. 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). :1–6.
The use of video surveillance (VS) has grown significantly using the internet as a platform. Thus security issues on such videos must be addressed. Video frames can have multiple objects and various features over video length. Moving object detection (MOD) and real-time tracking requires security strategies designed to protect videos. This paper is proposed to design an asymmetric encryption method (RSA). The paper has contributed in two stages. In the first phase the fast video segmentation method based on a global variable threshold is designed to facilitate MOD. Later in second pass the RSA-based encryption is used to maintain the efficiency of the object detection. The secure key generation method is demonstrated. The performances of two global thresholds are demonstrated and compared under the encrypted video data. It is found that that method is very effective in finding objects under the context of video surveillance in real time.
Riurean, Simona, Leba, Monica, Crivoi, Lilia.  2021.  Enhanced Security Level for Sensitive Medical Data Transmitted through Visible Light. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
The recent events regarding worldwide human health sped up research efforts and resulted in the tremendous development of new technologies and applications. The last decade proved that new technologies find a proper place in worldwide human health and wellbeing, therefore the security of data during wireless transmission in medical facilities and for medical devices has become a research area of considerable importance. To provide enhanced security using conventional visible light wireless communication, we propose in this paper a novel communication protocol based on asymmetric encryption with a private key. We base the wireless communication protocol described in this work on a data encryption method using block chipers, and we propose it for medical facilities and devices with visible light transmission technology embedded. The asymmetric encryption with a private key algorithm, as part of a transmission protocol, aim to assure the security of sensitive medical data during wireless communication.
Shakil Sejan, Mohammad Abrar, Chung, Wan-Young.  2021.  Security Aware Indoor Visible Light Communication. 2021 IEEE Photonics Conference (IPC). :1–2.
This paper represents the experimental implementation of an encryption-based visible light communication system for indoor communication over 14m, two single LED transmitters as the data source, and four receivers considered as data receivers for performance evaluation.
Chen, Liming, Suo, Siliang, Kuang, Xiaoyun, Cao, Yang, Tao, Wenwei.  2021.  Secure Ubiquitous Wireless Communication Solution for Power Distribution Internet of Things in Smart Grid. 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE). :780–784.
With rapid advancement of Smart Grid as well as Internet of Things (IoT), current power distribution communication network faces the challenges of satisfying the emerging data transmission requirements of ubiquitous secure coverage for distributed power services. This paper focuses on secure ubiquitous wireless communication solution for power distribution Internet of Things (PDİoT) in Smart Grid. Detailed secure ubiquitous wireless communication networking topology is presented, and integrated encryption and communication device is developed. The proposed solution supports several State Secret cryptographic algorithm including SM1/SM2/SM3/SM4 as well as forward and reverse isolation functions, thus achieving secure wireless communication for PDİoT services.
2022-05-09
Aman, Mohd, Verma, Prashant, Rajeswari, D.  2021.  Secure Cloud Data Deduplication with Efficient Re-Encryption. 2021 International Conference on Intelligent Technologies (CONIT). :1–4.
After the emergence of the cloud architecture, many companies migrate their data from conventional storage i.e., on bare metal to the cloud storage. Since then huge amount of data was stored on cloud servers, which later resulted in redundancy of huge amount of data. Hence in this cloud world, many data de-duplication techniques has been widely used. Not only the redundancy but also made data more secure and privacy of the existing data were also increased. Some techniques got limitations and some have their own advantages based on the requirements. Some of the attributes like data privacy, tag regularity and interruption to brute-force attacks. To make data deduplication technique more efficient based on the requirements. This paper will discuss schemes that brace user-defined access control, by allowing the service provider to get information of the information owners. Thus our scheme eliminates redundancy of the data without breaching the privacy and security of clients that depends on service providers. Our lastest deduplication scheme after performing various algorithms resulted in conclusion and producing more efficient data confidentiality and tag consistency. This paper has discussion on various techniques and their drawbacks for the effectiveness of the deduplication.
Mittal, Sonam, Jindal, Priya, Ramkumar, K. R..  2021.  Data Privacy and System Security for Banking on Clouds using Homomorphic Encryption. 2021 2nd International Conference for Emerging Technology (INCET). :1–6.
In recent times, the use of cloud computing has gained popularity all over the world in the context of performing smart computations on big data. The privacy of sensitive data of the client is of utmost important issues. Data leakage or hijackers may theft significant information about the client that ultimately may affect the reputation and prestige of its owner (bank) and client (customers). In general, to save the privacy of our banking data it is preferred to store, process, and transmit the data in the form of encrypted text. But now the main concern leads to secure computation over encrypted text or another possible way to perform computation over clouds makes data more vulnerable to hacking and attacks. Existing classical encryption techniques such as RSA, AES, and others provide secure transaction procedures for data over clouds but these are not fit for secure computation over data in the clouds. In 2009, Gentry comes with a solution for such issues and presents his idea as Homomorphic encryption (HE) that can perform computation over encrypted text without decrypting the data itself. Now a day's privacy-enhancing techniques (PET) are there to explore more potential benefits in security issues and useful in historical cases of privacy failure. Differential privacy, Federated analysis, homomorphic encryption, zero-knowledge proof, and secure multiparty computation are a privacy-enhancing technique that may useful in financial services as these techniques provide a fully-fledged mechanism for financial institutes. With the collaboration of industries, these techniques are may enable new data-sharing agreements for a more secure solution over data. In this paper, the primary concern is to investigate the different standards and properties of homomorphic encryption in digital banking and financial institutions.
Manyura, Momanyi Biffon, Gizaw, Sintayehu Mandefro.  2021.  Enhancing Cloud Data Privacy Using Pre-Internet Data Encryption. 2021 18th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :446–449.
Cloud computing is one of the greatest and authoritative paradigms in computing as it provides access and use of various third-party services at a lower cost. However, there exist various security challenges facing cloud computing especially in the aspect of data privacy and this is more critical when dealing with sensitive personal or organization's data. Cloud service providers encrypt data during transfer from the local hard drive to the cloud server and at the server-side, the only problem is that the encryption key is stored by the service provider meaning they can decrypt your data. This paper discusses how cloud security can be enhanced by using client-side data encryption (pre-internet encryption), this will allow the clients to encrypt data before uploading to the cloud and store the key themselves. This means that data will be rendered to the cloud in an unreadable and secure format that cannot be accessed by unauthorized persons.
2022-05-06
Yu, Xiujun, Chen, Huifang, Xie, Lei.  2021.  A Secure Communication Protocol between Sensor Nodes and Sink Node in Underwater Acoustic Sensor Networks. 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :279—283.
Underwater acoustic sensor networks (UASNs) have been receiving more and more attention due to their wide applications and the marine data collection is one of the important applications of UASNs. However, the openness and unreliability of underwater acoustic communication links and the easy capture of underwater wireless devices make UASNs vulnerable to various attacks. On the other hand, due to the limited resources of underwater acoustic network nodes, the high bit error rates, large and variable propagation delays, and low bandwidth of acoustic channels, many mature security mechanisms in terrestrial wireless sensor networks cannot be applied in the underwater environment [1]. In this paper, a secure communication protocol for marine data collection was proposed to ensure the confidentiality and data integrity of communication between under sensor nodes and the sink node in UASNs.
Zeng, Feng.  2021.  Secure ADS-B protection scheme supporting query. 2021 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI). :513–518.
Automatic dependent surveillance-broadcast (ADS- B) records provide an important basis and evidence for future route planning and accountability. However, due to the lack of effective support for the integrity and confidentiality of ADS-B, the air traffic control (ATC) system based on ADS-B faces serious security threats. Once the data is tampered with, it will cause immeasurable losses to society. The ADS-B data is arranged in chronological order, and the order-preserving encryption method allows users to directly search for ciphertexts by time. However, encryption alone does not guarantee the integrity of the data. The attacker can still destroy the integrity of the data by modifying the ciphertext. This paper proposes a secure ADS- B protection scheme that supports queries. We construct a dynamic order-preserving encryption (DOPE) scheme to achieve data confidentiality and sequential search of target data in the ciphertext. In addition, the scheme achieves fast integrity checking by calculating the unique verification label of the entire ciphertext, and supports blockless verification, which means that all data does not need to be transmitted during the audit phase. In the meanwhile, the auditor can verify the integrity of multiple ADS-B documents at once, which improves the computational efficiency of the audit. We analyze the integrity and security of the scheme and proved that DOPE is indistinguishable under an ordered chosen-plaintext attack (IND-OCPA). Furthermore, we conclude through performance analysis that the communication overhead is constant and computation overhead is logarithmic level. The proposed scheme is applicable to all data arranged in order, such as hospital records arranged by date and so on. At the same time, ADS-B can be used for urban vehicle monitoring and is a basic means to realize smart transportation.
Behl, Ritin, Pandey, Sachi, Sinha, Amit.  2021.  An Hybrid Approach to Insure Data Integrity on Outsourced Data using Symmetric Key Cryptography. 2021 International Conference on Technological Advancements and Innovations (ICTAI). :44–48.
Cloud technology is advancing rapidly because of it’s capability to replace the traditional computing techniques. Cloud offers various kinds of services for the user that are being used. In this research paper, storage as a service provided by cloud is examined as the data of the owner is being shared to the cloud so we have to ensure that data integrity is being maintained. In order to have a robust mechanism that offers a secure pathway for sharing data different encryption algorithms have been utilized. We investigate all the suitable algorithms with various combinations because any single algorithm is prone to some kind of attack. Testing of these algorithms is done by analyzing the parameters such as time required for execution, use of computational resources, key management, etc. Finally the best one that stands and fulfill all the criteria in a reasonable manner is selected for the purpose of storage.
Lokhande, Trupti, Sonekar, Shrikant, Wani, Aachal.  2021.  Development of an Algorithmic Approach for Hiding Sensitive Data and Recovery of Data based on Fingerprint Identification for Secure Cloud Storage. 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN). :800–805.
Information Security is a unified piece of information technology that has emerged as vibrant technology in the last two decades. To manage security, authentication assumes a significant part. Biometric is the physical unique identification as well as authentication for the third party. We have proposed the security model for preventing many attacks so we are used the innermost layer as a 3DES (Triple Encryption standard) cryptography algorithm that is providing 3- key protection as 64-bit and the outermost layer used the MD5 (Message Digest) algorithm. i. e. providing 128-bit protection as well as we is using fingerprint identification as physical security that is used in third-party remote integrity auditing. Remote data integrity auditing is proposed to ensure the uprightness of the information put away in the cloud. Data Storage of cloud services has expanded paces of acknowledgment because of their adaptability and the worry of the security and privacy levels. The large number of integrity and security issues that arise depends on the difference between the customer and the service provider in the sense of an external auditor. The remote data integrity auditing is at this point prepared to be viably executed. In the meantime, the proposed scheme is depending on identity-based cryptography, which works on the convoluted testament of the executives. The safety investigation and the exhibition assessment show that the planned property is safe and productive.
Wani, Aachal, Sonekar, Shrikant, Lokhande, Trupti.  2021.  Design and Development of Collaborative Approach for Integrity Auditing and Data Recovery based on Fingerprint Identification for Secure Cloud Storage. 2021 2nd Global Conference for Advancement in Technology (GCAT). :1–6.
In a Leading field of Information Technology moreover make information Security a unified piece of it. To manage security, Authentication assumes a significant part. Biometric is the physical unique identification as well as Authentication for third party. We are proposed the Security model for preventing many attacks so we are used Inner most layer as a 3DES (Triple Encryption standard) Cryptography algorithm that is providing 3-key protection as 64-bit And the outer most layer used the MD5 (Message Digest) Algorithm. i. e. Providing 128 – bit protection. As well as we are using Fingerprint Identification as a physical Security that used in third party remote integrity auditing, and remote data integrity auditing is proposed to ensure the uprightness of the information put away in the cloud. Data Storage of cloud services has expanded paces of acknowledgment because of their adaptability and the worry of the security and privacy levels. The large number of integrity and security issues that arise depends on the difference between the customer and the service provider in the sense of an external auditor. The remote data integrity auditing is at this point prepared to be viably executed. In the meantime, the proposed scheme is depends on identity-based cryptography, which works on the convoluted testament the executives. The safety investigation and the exhibition assessment show that the planned property is safe and productive.
Goswami, Partha Sarathi, Chakraborty, Tamal, Chattopadhyay, Abir.  2021.  A Secured Quantum Key Exchange Algorithm using Fermat Numbers and DNA Encoding. 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1—8.
To address the concerns posed by certain security attacks on communication protocol, this paper proposes a Quantum Key Exchange algorithm coupled with an encoding scheme based on Fermat Numbers and DNA sequences. The concept of Watson-Crick’s transformation of DNA sequences and random property of the Fermat Numbers is applied for protection of the communication system by means of dual encryption. The key generation procedure is governed by a quantum bit rotation mechanism. The total process is illustrated with an example. Also, security analysis of the encryption and decryption process is also discussed.
S, Sudersan, B, Sowmiya, V.S, Abhijith, M, Thangavel, P, Varalakshmi.  2021.  Enhanced DNA Cryptosystem for Secure Cloud Data Storage. 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC). :337—342.
Cloud computing has revolutionized the way how users store, process, and use data. It has evolved over the years to put forward various sophisticated models that offer enhanced performance. The growth of electronic data stored in the Cloud has made it crucial to access data without data loss and leakage. Security threats still prevent significant corporations that use sensitive data to employ cloud computing to handle their data. Traditional cryptographic techniques like DES, AES, etc... provide data confidentiality but are computationally complex. To overcome such complexities, a unique field of cryptography known as DNA Cryptography came into existence. DNA cryptography is a new field of cryptography that utilizes the chemical properties of DNA for secure data encoding. DNA cryptographic algorithms are much faster than traditional cryptographic methods and can bring about greater security with lesser computational costs. In this paper, we have proposed an enhanced DNA cryptosystem involving operations such as encryption, encoding table generation, and decryption based on the chemical properties of DNA. The performance analysis has proven that the proposed DNA cryptosystem is secure and efficient in Cloud data storage.
Akumalla, Harichandana, Hegde, Ganapathi.  2021.  Deoxyribonucleic Acid Based Nonce-Misuse-Resistant Authenticated Encryption Algorithm. 2021 5th International Conference on Electronics, Materials Engineering Nano-Technology (IEMENTech). :1—5.
This paper aims to present a performance comparison of new authenticated encryption (AE) algorithm with the objective of high network security and better efficiency as compared to the defacto standard. This algorithm is based on a critical property of nonce-misuse-resistance incorporating DNA computation for securing the key, here the processing unit of DNA block converts the input key into its equivalent DNA base formats based on the ASCII code table. The need for secure exchange of keys through a public channel has become inevitable and thus, the proposed architecture will enhance the secrecy by using DNA cryptography. These implementations consider Advanced Encryption Standard in Galois Counter mode (AES-GCM) as a standard for comparison.
Zhang, Mengmeng, Wu, Wangchun.  2021.  Research on Image Encryption Technology Based on Hyperchaotic System and DNA Encoding. 2021 IEEE International Conference on Artificial Intelligence and Industrial Design (AIID). :140—144.
This paper proposes an image encryption technology based on six-dimensional hyperchaotic system and DNA encoding, in order to solve the problem of low security in existing image encryption algorithms. First of all, the pixel values of the R, G, and B channels are divided into blocks and zero-filled. Secondly, the chaotic sequence generated by the six-dimensional hyperchaotic system and logistic mapping is used for DNA coding and DNA operations. Third, the decoded three-channel pixel values are scrambled through diagonal traversal. Finally, merge the channels to generate a ciphertext image. According to simulation experiments and related performance analysis, the algorithm has high security performance, good encryption and decryption effects, and can effectively resist various common attack methods.
Kumar, Anuj.  2021.  Data Security and Privacy using DNA Cryptography and AES Method in Cloud Computing. 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :1529—1535.
Cloud computing has changed how humans use their technological expertise. It indicates a transition in the use of computers as utilitarian instruments with radical applications in general. However, as technology advances, the number of hazards increases and crucial data protection has become increasingly challenging due to extensive internet use. Every day, new encryption methods are developed, and much research is carried out in the search for a reliable cryptographic algorithm. The AES algorithm employs an overly simplistic algebraic structure. Each block employs the same encryption scheme, and AES is subject to brute force and MITM attacks. AES have not provide d sufficient levels of security; the re is still a need to put further le vels of protection over them. In this regard, DNA cryptography allows you to encrypt a large quantity of data using only a few amount of DNA. This paper combines two methodologies, a DNA-based algorithm and the AES Algorithm, to provide a consi derably more secure data security platform. The DNA cryptography technology and the AES approach are utilized for data encryption and decryption. To improve cloud security, DNA cryptography and AES provide a technologically ideal option.
Bansal, Malti, Gupta, Shubham, Mathur, Siddhant.  2021.  Comparison of ECC and RSA Algorithm with DNA Encoding for IoT Security. 2021 6th International Conference on Inventive Computation Technologies (ICICT). :1340—1343.
IoT is still an emerging technology without a lot of standards around it, which makes it difficult to integrate it into existing businesses, what's more, with restricted assets and expanding gadgets that essentially work with touchy information. Thus, information safety has become urgent for coders and clients. Thus, painstakingly chosen and essentially tested encryption calculations should be utilized to grow the gadgets productively, to decrease the danger of leaking the delicate information. This investigation looks at the ECC calculation (Elliptic Curve Cryptography) and Rivest-Shamir-Adleman (RSA) calculation. Furthermore, adding the study of DNA encoding operation in DNA computing with ECC to avoid attackers from getting access to the valuable data.
2022-05-05
Zhang, Qiao-Jia, Ye, Qing, Li, Liang, Liu, Si-jie, Chen, Kai-qiang.  2021.  An efficient selective encryption scheme for HEVC based on hyperchaotic Lorenz system. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:683—690.
With the wide application of video information, the protection of video information from illegal access has been widely investigated recently. An efficient selective encryption scheme for high efficiency video coding (HEVC) based on hyperchaotic Lorenz system is proposed. Firstly, the hyperchaotic Lorenz system is discretized and the generated chaotic state values are converted into chaotic pseudorandom sequences for encryption. The important syntax elements in HEVC are then selectively encrypted with the generated stream cipher. The experimental results show that the encrypted video is highly disturbed and the video information cannot be recognized. Through the analysis of objective index results, it is shown that the scheme is both efficient and security.
Raheja, Nisha, Manocha, Amit Kumar.  2021.  An Efficient Encryption-Authentication Scheme for Electrocardiogram Data using the 3DES and Water Cycle Optimization Algorithm. 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC). :10—14.

To share the recorded ECG data with the cardiologist in Golden Hours in an efficient and secured manner via tele-cardiology may save the lives of the population residing in rural areas of a country. This paper proposes an encryption-authentication scheme for secure the ECG data. The main contribution of this work is to generate a one-time padding key and deploying an encryption algorithm in authentication mode to achieve encryption and authentication. This is achieved by a water cycle optimization algorithm that generates a completely random one-time padding key and Triple Data Encryption Standard (3DES) algorithm for encrypting the ECG data. To validate the accuracy of the proposed encryption authentication scheme, experimental results were performed on standard ECG data and various performance parameters were calculated for it. The results show that the proposed algorithm improves security and passes the statistical key generation test.