Visible to the public Biblio

Filters: Keyword is Botnet detection  [Clear All Filters]
2019-05-20
Prokofiev, A. O., Smirnova, Y. S., Surov, V. A..  2018.  A method to detect Internet of Things botnets. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :105–108.

The main security problems, typical for the Internet of Things (IoT), as well as the purpose of gaining unauthorized access to the IoT, are considered in this paper. Common characteristics of the most widespread botnets are provided. A method to detect compromised IoT devices included into a botnet is proposed. The method is based on a model of logistic regression. The article describes a developed model of logistic regression which allows to estimate the probability that a device initiating a connection is running a bot. A list of network protocols, used to gain unauthorized access to a device and to receive instructions from common and control (C&C) server, is provided too.

2019-04-05
Ardi, Calvin, Heidemann, John.  2018.  Leveraging Controlled Information Sharing for Botnet Activity Detection. Proceedings of the 2018 Workshop on Traffic Measurements for Cybersecurity. :14-20.
Today's malware often relies on DNS to enable communication with command-and-control (C&C). As defenses that block C&C traffic improve, malware use sophisticated techniques to hide this traffic, including "fast flux" names and Domain-Generation Algorithms (DGAs). Detecting this kind of activity requires analysis of DNS queries in network traffic, yet these signals are sparse. As bot countermeasures grow in sophistication, detecting these signals increasingly requires the synthesis of information from multiple sites. Yet sharing security information across organizational boundaries to date has been infrequent and ad hoc because of unknown risks and uncertain benefits. In this paper, we take steps towards formalizing cross-site information sharing and quantifying the benefits of data sharing. We use a case study on DGA-based botnet detection to evaluate how sharing cybersecurity data can improve detection sensitivity and allow the discovery of malicious activity with greater precision.
Bapat, R., Mandya, A., Liu, X., Abraham, B., Brown, D. E., Kang, H., Veeraraghavan, M..  2018.  Identifying Malicious Botnet Traffic Using Logistic Regression. 2018 Systems and Information Engineering Design Symposium (SIEDS). :266-271.

An important source of cyber-attacks is malware, which proliferates in different forms such as botnets. The botnet malware typically looks for vulnerable devices across the Internet, rather than targeting specific individuals, companies or industries. It attempts to infect as many connected devices as possible, using their resources for automated tasks that may cause significant economic and social harm while being hidden to the user and device. Thus, it becomes very difficult to detect such activity. A considerable amount of research has been conducted to detect and prevent botnet infestation. In this paper, we attempt to create a foundation for an anomaly-based intrusion detection system using a statistical learning method to improve network security and reduce human involvement in botnet detection. We focus on identifying the best features to detect botnet activity within network traffic using a lightweight logistic regression model. The network traffic is processed by Bro, a popular network monitoring framework which provides aggregate statistics about the packets exchanged between a source and destination over a certain time interval. These statistics serve as features to a logistic regression model responsible for classifying malicious and benign traffic. Our model is easy to implement and simple to interpret. We characterized and modeled 8 different botnet families separately and as a mixed dataset. Finally, we measured the performance of our model on multiple parameters using F1 score, accuracy and Area Under Curve (AUC).

Lysenko, S., Bobrovnikova, K., Savenko, O..  2018.  A Botnet Detection Approach Based on the Clonal Selection Algorithm. 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT). :424-428.
The paper presents a new technique for the botnets' detection in the corporate area networks. It is based on the usage of the algorithms of the artificial immune systems. Proposed approach is able to distinguish benign network traffic from malicious one using the clonal selection algorithm taking into account the features of the botnet's presence in the network. An approach present the main improvements of the BotGRABBER system. It is able to detect the IRC, HTTP, DNS and P2P botnets.
Dong, X., Hu, J., Cui, Y..  2018.  Overview of Botnet Detection Based on Machine Learning. 2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :476-479.

With the rapid development of the information industry, the applications of Internet of things, cloud computing and artificial intelligence have greatly affected people's life, and the network equipment has increased with a blowout type. At the same time, more complex network environment has also led to a more serious network security problem. The traditional security solution becomes inefficient in the new situation. Therefore, it is an important task for the security industry to seek technical progress and improve the protection detection and protection ability of the security industry. Botnets have been one of the most important issues in many network security problems, especially in the last one or two years, and China has become one of the most endangered countries by botnets, thus the huge impact of botnets in the world has caused its detection problems to reset people's attention. This paper, based on the topic of botnet detection, focuses on the latest research achievements of botnet detection based on machine learning technology. Firstly, it expounds the application process of machine learning technology in the research of network space security, introduces the structure characteristics of botnet, and then introduces the machine learning in botnet detection. The security features of these solutions and the commonly used machine learning algorithms are emphatically analyzed and summarized. Finally, it summarizes the existing problems in the existing solutions, and the future development direction and challenges of machine learning technology in the research of network space security.

Chen, S., Chen, Y., Tzeng, W..  2018.  Effective Botnet Detection Through Neural Networks on Convolutional Features. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :372-378.

Botnet is one of the major threats on the Internet for committing cybercrimes, such as DDoS attacks, stealing sensitive information, spreading spams, etc. It is a challenging issue to detect modern botnets that are continuously improving for evading detection. In this paper, we propose a machine learning based botnet detection system that is shown to be effective in identifying P2P botnets. Our approach extracts convolutional version of effective flow-based features, and trains a classification model by using a feed-forward artificial neural network. The experimental results show that the accuracy of detection using the convolutional features is better than the ones using the traditional features. It can achieve 94.7% of detection accuracy and 2.2% of false positive rate on the known P2P botnet datasets. Furthermore, our system provides an additional confidence testing for enhancing performance of botnet detection. It further classifies the network traffic of insufficient confidence in the neural network. The experiment shows that this stage can increase the detection accuracy up to 98.6% and decrease the false positive rate up to 0.5%.

2017-12-04
Alejandre, F. V., Cortés, N. C., Anaya, E. A..  2017.  Feature selection to detect botnets using machine learning algorithms. 2017 International Conference on Electronics, Communications and Computers (CONIELECOMP). :1–7.

In this paper, a novel method to do feature selection to detect botnets at their phase of Command and Control (C&C) is presented. A major problem is that researchers have proposed features based on their expertise, but there is no a method to evaluate these features since some of these features could get a lower detection rate than other. To this aim, we find the feature set based on connections of botnets at their phase of C&C, that maximizes the detection rate of these botnets. A Genetic Algorithm (GA) was used to select the set of features that gives the highest detection rate. We used the machine learning algorithm C4.5, this algorithm did the classification between connections belonging or not to a botnet. The datasets used in this paper were extracted from the repositories ISOT and ISCX. Some tests were done to get the best parameters in a GA and the algorithm C4.5. We also performed experiments in order to obtain the best set of features for each botnet analyzed (specific), and for each type of botnet (general) too. The results are shown at the end of the paper, in which a considerable reduction of features and a higher detection rate than the related work presented were obtained.

2015-05-06
Haddadi, F., Morgan, J., Filho, E.G., Zincir-Heywood, A.N..  2014.  Botnet Behaviour Analysis Using IP Flows: With HTTP Filters Using Classifiers. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :7-12.

Botnets are one of the most destructive threats against the cyber security. Recently, HTTP protocol is frequently utilized by botnets as the Command and Communication (C&C) protocol. In this work, we aim to detect HTTP based botnet activity based on botnet behaviour analysis via machine learning approach. To achieve this, we employ flow-based network traffic utilizing NetFlow (via Softflowd). The proposed botnet analysis system is implemented by employing two different machine learning algorithms, C4.5 and Naive Bayes. Our results show that C4.5 learning algorithm based classifier obtained very promising performance on detecting HTTP based botnet activity.

Stevanovic, M., Pedersen, J.M..  2014.  An efficient flow-based botnet detection using supervised machine learning. Computing, Networking and Communications (ICNC), 2014 International Conference on. :797-801.

Botnet detection represents one of the most crucial prerequisites of successful botnet neutralization. This paper explores how accurate and timely detection can be achieved by using supervised machine learning as the tool of inferring about malicious botnet traffic. In order to do so, the paper introduces a novel flow-based detection system that relies on supervised machine learning for identifying botnet network traffic. For use in the system we consider eight highly regarded machine learning algorithms, indicating the best performing one. Furthermore, the paper evaluates how much traffic needs to be observed per flow in order to capture the patterns of malicious traffic. The proposed system has been tested through the series of experiments using traffic traces originating from two well-known P2P botnets and diverse non-malicious applications. The results of experiments indicate that the system is able to accurately and timely detect botnet traffic using purely flow-based traffic analysis and supervised machine learning. Additionally, the results show that in order to achieve accurate detection traffic flows need to be monitored for only a limited time period and number of packets per flow. This indicates a strong potential of using the proposed approach within a future on-line detection framework.