Visible to the public Biblio

Filters: Keyword is Medical Devices  [Clear All Filters]
2019-10-30
Ghose, Nirnimesh, Lazos, Loukas, Li, Ming.  2018.  Secure Device Bootstrapping Without Secrets Resistant to Signal Manipulation Attacks. 2018 IEEE Symposium on Security and Privacy (SP). :819-835.
In this paper, we address the fundamental problem of securely bootstrapping a group of wireless devices to a hub, when none of the devices share prior associations (secrets) with the hub or between them. This scenario aligns with the secure deployment of body area networks, IoT, medical devices, industrial automation sensors, autonomous vehicles, and others. We develop VERSE, a physical-layer group message integrity verification primitive that effectively detects advanced wireless signal manipulations that can be used to launch man-in-the-middle (MitM) attacks over wireless. Without using shared secrets to establish authenticated channels, such attacks are notoriously difficult to thwart and can undermine the authentication and key establishment processes. VERSE exploits the existence of multiple devices to verify the integrity of the messages exchanged within the group. We then use VERSE to build a bootstrapping protocol, which securely introduces new devices to the network. Compared to the state-of-the-art, VERSE achieves in-band message integrity verification during secure pairing using only the RF modality without relying on out-of-band channels or extensive human involvement. It guarantees security even when the adversary is capable of fully controlling the wireless channel by annihilating and injecting wireless signals. We study the limits of such advanced wireless attacks and prove that the introduction of multiple legitimate devices can be leveraged to increase the security of the pairing process. We validate our claims via theoretical analysis and extensive experimentations on the USRP platform. We further discuss various implementation aspects such as the effect of time synchronization between devices and the effects of multipath and interference. Note that the elimination of shared secrets, default passwords, and public key infrastructures effectively addresses the related key management challenges when these are considered at scale.
2018-11-14
Alagar, V., Alsaig, A., Ormandjiva, O., Wan, K..  2018.  Context-Based Security and Privacy for Healthcare IoT. 2018 IEEE International Conference on Smart Internet of Things (SmartIoT). :122–128.
Healthcare Internet of Things (HIoT) is transforming healthcare industry by providing large scale connectivity for medical devices, patients, physicians, clinical and nursing staff who use them and facilitate real-time monitoring based on the information gathered from the connected things. Heterogeneity and vastness of this network provide both opportunity and challenges for information collection and sharing. Patient-centric information such as health status and medical devices used by them must be protected to respect their safety and privacy, while healthcare knowledge should be shared in confidence by experts for healthcare innovation and timely treatment of patients. In this paper an overview of HIoT is given, emphasizing its characteristics to those of Big Data, and a security and privacy architecture is proposed for it. Context-sensitive role-based access control scheme is discussed to ensure that HIoT is reliable, provides data privacy, and achieves regulatory compliance.
2018-10-26
Chaudhry, J., Saleem, K., Islam, R., Selamat, A., Ahmad, M., Valli, C..  2017.  AZSPM: Autonomic Zero-Knowledge Security Provisioning Model for Medical Control Systems in Fog Computing Environments. 2017 IEEE 42nd Conference on Local Computer Networks Workshops (LCN Workshops). :121–127.

The panic among medical control, information, and device administrators is due to surmounting number of high-profile attacks on healthcare facilities. This hostile situation is going to lead the health informatics industry to cloud-hoarding of medical data, control flows, and site governance. While different healthcare enterprises opt for cloud-based solutions, it is a matter of time when fog computing environment are formed. Because of major gaps in reported techniques for fog security administration for health data i.e. absence of an overarching certification authority (CA), the security provisioning is one of the the issue that we address in this paper. We propose a security provisioning model (AZSPM) for medical devices in fog environments. We propose that the AZSPM can be build by using atomic security components that are dynamically composed. The verification of authenticity of the atomic components, for trust sake, is performed by calculating the processor clock cycles from service execution at the resident hardware platform. This verification is performed in the fully sand boxed environment. The results of the execution cycles are matched with the service specifications from the manufacturer before forwarding the mobile services to the healthcare cloud-lets. The proposed model is completely novel in the fog computing environments. We aim at building the prototype based on this model in a healthcare information system environment.

2016-12-14
2016-11-18
2016-11-15
Hui Lin, University of Illinois at Urbana-Champaign, Homa Alemzadeh, IBM TJ Watson, Daniel Chen, University of Illinois at Urbana-Champagin, Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, Ravishankar K. Iyer, University of Illinois at Urbana-Champaign.  2016.  Safety-critical Cyber-physical Attacks: Analysis, Detection, and Mitigation. Symposium and Bootcamp for the Science of Security (HotSoS 2016).

Today's cyber-physical systems (CPSs) can have very different characteristics in terms of control algorithms, configurations, underlying infrastructure, communication protocols, and real-time requirements. Despite these variations, they all face the threat of malicious attacks that exploit the vulnerabilities in the cyber domain as footholds to introduce safety violations in the physical processes. In this paper, we focus on a class of attacks that impact the physical processes without introducing anomalies in the cyber domain. We present the common challenges in detecting this type of attacks in the contexts of two very different CPSs (i.e., power grids and surgical robots). In addition, we present a general principle for detecting such cyber-physical attacks, which combine the knowledge of both cyber and physical domains to estimate the adverse consequences of malicious activities in a timely manner.

2015-11-17
Zhenqi Huang, University of Illinois at Urbana-Champaign, Chuchu Fan, University of Illinois at Urbana-Champaign, Alexandru Mereacre, University of Oxford, Sayan Mitra, University of Illinois at Urbana-Champaign, Marta Kwiatkowska, University of Oxford.  2015.  Simulation-based Verification of Cardiac Pacemakers with Guaranteed Coverage. Special Issue of IEEE Design and Test. 32(5)

Design and testing of pacemaker is challenging because of the need to capture the interaction between the physical processes (e.g. voltage signal in cardiac tissue) and the embedded software (e.g. a pacemaker). At the same time, there is a growing need for design and certification methodologies that can provide quality assurance for the embedded software. We describe recent progress in simulation-based techniques that are capable of ensuring guaranteed coverage. Our methods employ discrep- ancy functions, which impose bounds on system dynamics, and proceed through iteratively constructing over-approximations of the reachable set of states. We are able to prove time bounded safety or produce counterexamples. We illustrate the techniques by analyzing a family of pacemaker designs against time duration requirements and synthesize safe parameter ranges. We conclude by outlining the potential uses of this technology to improve the safety of medical device designs.

2015-05-06
Ochian, A., Suciu, G., Fratu, O., Voicu, C., Suciu, V..  2014.  An overview of cloud middleware services for interconnection of healthcare platforms. Communications (COMM), 2014 10th International Conference on. :1-4.

Using heterogeneous clouds has been considered to improve performance of big-data analytics for healthcare platforms. However, the problem of the delay when transferring big-data over the network needs to be addressed. The purpose of this paper is to analyze and compare existing cloud computing environments (PaaS, IaaS) in order to implement middleware services. Understanding the differences and similarities between cloud technologies will help in the interconnection of healthcare platforms. The paper provides a general overview of the techniques and interfaces for cloud computing middleware services, and proposes a cloud architecture for healthcare. Cloud middleware enables heterogeneous devices to act as data sources and to integrate data from other healthcare platforms, but specific APIs need to be developed. Furthermore, security and management problems need to be addressed, given the heterogeneous nature of the communication and computing environment. The present paper fills a gap in the electronic healthcare register literature by providing an overview of cloud computing middleware services and standardized interfaces for the integration with medical devices.

2014-09-17
Ray, Arnab, Cleaveland, Rance.  2014.  An Analysis Method for Medical Device Security. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :16:1–16:2.

This paper is a proposal for a poster. In it we describe a medical device security approach that researchers at Fraunhofer used to analyze different kinds of medical devices for security vulnerabilities. These medical devices were provided to Fraunhofer by a medical device manufacturer whose name we cannot disclose due to non-disclosure agreements.

King, Jason, Williams, Laurie.  2014.  Log Your CRUD: Design Principles for Software Logging Mechanisms. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :5:1–5:10.

According to a 2011 survey in healthcare, the most commonly reported breaches of protected health information involved employees snooping into medical records of friends and relatives. Logging mechanisms can provide a means for forensic analysis of user activity in software systems by proving that a user performed certain actions in the system. However, logging mechanisms often inconsistently capture user interactions with sensitive data, creating gaps in traces of user activity. Explicit design principles and systematic testing of logging mechanisms within the software development lifecycle may help strengthen the overall security of software. The objective of this research is to observe the current state of logging mechanisms by performing an exploratory case study in which we systematically evaluate logging mechanisms by supplementing the expected results of existing functional black-box test cases to include log output. We perform an exploratory case study of four open-source electronic health record (EHR) logging mechanisms: OpenEMR, OSCAR, Tolven eCHR, and WorldVistA. We supplement the expected results of 30 United States government-sanctioned test cases to include log output to track access of sensitive data. We then execute the test cases on each EHR system. Six of the 30 (20%) test cases failed on all four EHR systems because user interactions with sensitive data are not logged. We find that viewing protected data is often not logged by default, allowing unauthorized views of data to go undetected. Based on our results, we propose a set of principles that developers should consider when developing logging mechanisms to ensure the ability to capture adequate traces of user activity.