Visible to the public Biblio

Filters: Keyword is Industries  [Clear All Filters]
2021-06-24
King, Andrew, Kaleem, Faisal, Rabieh, Khaled.  2020.  A Survey on Privacy Issues of Augmented Reality Applications. 2020 IEEE Conference on Application, Information and Network Security (AINS). :32—40.
Privacy is one of the biggest concerns of the coming decade, ranking third among concerns of consumers. Data breaches and leaks are constantly in the news with companies like Facebook and Amazon being outed for their excessive data collection. With companies and governmental agencies tracking and monitoring individuals to a great degree, there are concerns that contemporary technologies that feed into these systems can be misused or misappropriated further. Frameworks currently in place fail to address many of these consumer's concerns and even the legal framework could use further elaboration to better control the way data is handled. In this paper, We address the current industrial standards, frameworks, and concerns of one of the biggest technology trends right now, the Augmented Reality. The expected prevalence of augmented reality applications necessitates a deeper study not only of their security but the expected challenges of users using such applications as well.
Angermeir, Florian, Voggenreiter, Markus, Moyón, Fabiola, Mendez, Daniel.  2021.  Enterprise-Driven Open Source Software: A Case Study on Security Automation. 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). :278—287.
Agile and DevOps are widely adopted by the industry. Hence, integrating security activities with industrial practices, such as continuous integration (CI) pipelines, is necessary to detect security flaws and adhere to regulators’ demands early. In this paper, we analyze automated security activities in CI pipelines of enterprise-driven open source software (OSS). This shall allow us, in the long-run, to better understand the extent to which security activities are (or should be) part of automated pipelines. In particular, we mine publicly available OSS repositories and survey a sample of project maintainers to better understand the role that security activities and their related tools play in their CI pipelines. To increase transparency and allow other researchers to replicate our study (and to take different perspectives), we further disclose our research artefacts.Our results indicate that security activities in enterprise-driven OSS projects are scarce and protection coverage is rather low. Only 6.83% of the analyzed 8,243 projects apply security automation in their CI pipelines, even though maintainers consider security to be rather important. This alerts industry to keep the focus on vulnerabilities of 3rd Party software and it opens space for other improvements of practice which we outline in this manuscript.
2021-05-13
Wenhui, Sun, Kejin, Wang, Aichun, Zhu.  2020.  The Development of Artificial Intelligence Technology And Its Application in Communication Security. 2020 International Conference on Computer Engineering and Application (ICCEA). :752—756.
Artificial intelligence has been widely used in industries such as smart manufacturing, medical care and home furnishings. Among them, the value of the application in communication security is very important. This paper makes a further exploration of the artificial intelligence technology and its application, and gives a detailed analysis of its development, standardization and the application.
2021-05-05
Coulter, Rory, Zhang, Jun, Pan, Lei, Xiang, Yang.  2020.  Unmasking Windows Advanced Persistent Threat Execution. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :268—276.

The advanced persistent threat (APT) landscape has been studied without quantifiable data, for which indicators of compromise (IoC) may be uniformly analyzed, replicated, or used to support security mechanisms. This work culminates extensive academic and industry APT analysis, not as an incremental step in existing approaches to APT detection, but as a new benchmark of APT related opportunity. We collect 15,259 APT IoC hashes, retrieving subsequent sandbox execution logs across 41 different file types. This work forms an initial focus on Windows-based threat detection. We present a novel Windows APT executable (APT-EXE) dataset, made available to the research community. Manual and statistical analysis of the APT-EXE dataset is conducted, along with supporting feature analysis. We draw upon repeat and common APT paths access, file types, and operations within the APT-EXE dataset to generalize APT execution footprints. A baseline case analysis successfully identifies a majority of 117 of 152 live APT samples from campaigns across 2018 and 2019.

Singh, Sukhpreet, Jagdev, Gagandeep.  2020.  Execution of Big Data Analytics in Automotive Industry using Hortonworks Sandbox. 2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN). :158—163.

The market landscape has undergone dramatic change because of globalization, shifting marketing conditions, cost pressure, increased competition, and volatility. Transforming the operation of businesses has been possible because of the astonishing speed at which technology has witnessed the change. The automotive industry is on the edge of a revolution. The increased customer expectations, changing ownership, self-driving vehicles and much more have led to the transformation of automobiles, applications, and services from artificial intelligence, sensors, RFID to big data analysis. Large automobiles industries have been emphasizing the collection of data to gain insight into customer's expectations, preferences, and budgets alongside competitor's policies. Statistical methods can be applied to historical data, which has been gathered from various authentic sources and can be used to identify the impact of fixed and variable marketing investments and support automakers to come up with a more effective, precise, and efficient approach to target customers. Proper analysis of supply chain data can disclose the weak links in the chain enabling to adopt timely countermeasures to minimize the adverse effects. In order to fully gain benefit from analytics, the collaboration of a detailed set of capabilities responsible for intersecting and integrating with multiple functions and teams across the business is required. The effective role played by big data analysis in the automobile industry has also been expanded in the research paper. The research paper discusses the scope and challenges of big data. The paper also elaborates on the working technology behind the concept of big data. The paper illustrates the working of MapReduce technology that executes in the back end and is responsible for performing data mining.

Rathod, Jash, Joshi, Chaitali, Khochare, Janavi, Kazi, Faruk.  2020.  Interpreting a Black-Box Model used for SCADA Attack detection in Gas Pipelines Control System. 2020 IEEE 17th India Council International Conference (INDICON). :1—7.
Various Machine Learning techniques are considered to be "black-boxes" because of their limited interpretability and explainability. This cannot be afforded, especially in the domain of Cyber-Physical Systems, where there can be huge losses of infrastructure of industries and Governments. Supervisory Control And Data Acquisition (SCADA) systems need to detect and be protected from cyber-attacks. Thus, we need to adopt approaches that make the system secure, can explain predictions made by model, and interpret the model in a human-understandable format. Recently, Autoencoders have shown great success in attack detection in SCADA systems. Numerous interpretable machine learning techniques are developed to help us explain and interpret models. The work presented here is a novel approach to use techniques like Local Interpretable Model-Agnostic Explanations (LIME) and Layer-wise Relevance Propagation (LRP) for interpretation of Autoencoder networks trained on a Gas Pipelines Control System to detect attacks in the system.
2021-05-03
Le, Son N., Srinivasan, Sudarshan K., Smith, Scott C..  2020.  Exploiting Dual-Rail Register Invariants for Equivalence Verification of NCL Circuits. 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS). :21–24.
Equivalence checking is one of the most scalable and useful verification techniques in industry. NULL Convention Logic (NCL) circuits utilize dual-rail signals (i.e., two wires to represent one bit of DATA), where the wires are inverses of each other during a DATA wavefront. In this paper, a technique that exploits this invariant at NCL register boundaries is proposed to improve the efficiency of equivalence verification of NCL circuits.
2021-04-28
Shere, A. R. K., Nurse, J. R. C., Flechais, I..  2020.  "Security should be there by default": Investigating how journalists perceive and respond to risks from the Internet of Things. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :240—249.
Journalists have long been the targets of both physical and cyber-attacks from well-resourced adversaries. Internet of Things (IoT) devices are arguably a new avenue of threat towards journalists through both targeted and generalised cyber-physical exploitation. This study comprises three parts: First, we interviewed 11 journalists and surveyed 5 further journalists, to determine the extent to which journalists perceive threats through the IoT, particularly via consumer IoT devices. Second, we surveyed 34 cyber security experts to establish if and how lay-people can combat IoT threats. Third, we compared these findings to assess journalists' knowledge of threats, and whether their protective mechanisms would be effective against experts' depictions and predictions of IoT threats. Our results indicate that journalists generally are unaware of IoT-related risks and are not adequately protecting themselves; this considers cases where they possess IoT devices, or where they enter IoT-enabled environments (e.g., at work or home). Expert recommendations spanned both immediate and longterm mitigation methods, including practical actions that are technical and socio-political in nature. However, all proposed individual mitigation methods are likely to be short-term solutions, with 26 of 34 (76.5%) of cyber security experts responding that within the next five years it will not be possible for the public to opt-out of interaction with the IoT.
2021-04-27
Javid, T., Faris, M., Beenish, H., Fahad, M..  2020.  Cybersecurity and Data Privacy in the Cloudlet for Preliminary Healthcare Big Data Analytics. 2020 International Conference on Computing and Information Technology (ICCIT-1441). :1—4.

In cyber physical systems, cybersecurity and data privacy are among most critical considerations when dealing with communications, processing, and storage of data. Geospatial data and medical data are examples of big data that require seamless integration with computational algorithms as outlined in Industry 4.0 towards adoption of fourth industrial revolution. Healthcare Industry 4.0 is an application of the design principles of Industry 4.0 to the medical domain. Mobile applications are now widely used to accomplish important business functions in almost all industries. These mobile devices, however, are resource poor and proved insufficient for many important medical applications. Resource rich cloud services are used to augment poor mobile device resources for data and compute intensive applications in the mobile cloud computing paradigm. However, the performance of cloud services is undesirable for data-intensive, latency-sensitive mobile applications due increased hop count between the mobile device and the cloud server. Cloudlets are virtual machines hosted in server placed nearby the mobile device and offer an attractive alternative to the mobile cloud computing in the form of mobile edge computing. This paper outlines cybersecurity and data privacy aspects for communications of measured patient data from wearable wireless biosensors to nearby cloudlet host server in order to facilitate the cloudlet based preliminary and essential complex analytics for the medical big data.

2021-03-30
Pyatnisky, I. A., Sokolov, A. N..  2020.  Assessment of the Applicability of Autoencoders in the Problem of Detecting Anomalies in the Work of Industrial Control Systems.. 2020 Global Smart Industry Conference (GloSIC). :234—239.

Deep learning methods are increasingly becoming solutions to complex problems, including the search for anomalies. While fully-connected and convolutional neural networks have already found their application in classification problems, their applicability to the problem of detecting anomalies is limited. In this regard, it is proposed to use autoencoders, previously used only in problems of reducing the dimension and removing noise, as a method for detecting anomalies in the industrial control system. A new method based on autoencoders is proposed for detecting anomalies in the operation of industrial control systems (ICS). Several neural networks based on auto-encoders with different architectures were trained, and the effectiveness of each of them in the problem of detecting anomalies in the work of process control systems was evaluated. Auto-encoders can detect the most complex and non-linear dependencies in the data, and as a result, can show the best quality for detecting anomalies. In some cases, auto-encoders require fewer machine resources.

2021-03-29
DiMase, D., Collier, Z. A., Chandy, J., Cohen, B. S., D'Anna, G., Dunlap, H., Hallman, J., Mandelbaum, J., Ritchie, J., Vessels, L..  2020.  A Holistic Approach to Cyber Physical Systems Security and Resilience. 2020 IEEE Systems Security Symposium (SSS). :1—8.

A critical need exists for collaboration and action by government, industry, and academia to address cyber weaknesses or vulnerabilities inherent to embedded or cyber physical systems (CPS). These vulnerabilities are introduced as we leverage technologies, methods, products, and services from the global supply chain throughout a system's lifecycle. As adversaries are exploiting these weaknesses as access points for malicious purposes, solutions for system security and resilience become a priority call for action. The SAE G-32 Cyber Physical Systems Security Committee has been convened to address this complex challenge. The SAE G-32 will take a holistic systems engineering approach to integrate system security considerations to develop a Cyber Physical System Security Framework. This framework is intended to bring together multiple industries and develop a method and common language which will enable us to more effectively, efficiently, and consistently communicate a risk, cost, and performance trade space. The standard will allow System Integrators to make decisions utilizing a common framework and language to develop affordable, trustworthy, resilient, and secure systems.

2021-03-22
Kellogg, M., Schäf, M., Tasiran, S., Ernst, M. D..  2020.  Continuous Compliance. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :511–523.
Vendors who wish to provide software or services to large corporations and governments must often obtain numerous certificates of compliance. Each certificate asserts that the software satisfies a compliance regime, like SOC or the PCI DSS, to protect the privacy and security of sensitive data. The industry standard for obtaining a compliance certificate is an auditor manually auditing source code. This approach is expensive, error-prone, partial, and prone to regressions. We propose continuous compliance to guarantee that the codebase stays compliant on each code change using lightweight verification tools. Continuous compliance increases assurance and reduces costs. Continuous compliance is applicable to any source-code compliance requirement. To illustrate our approach, we built verification tools for five common audit controls related to data security: cryptographically unsafe algorithms must not be used, keys must be at least 256 bits long, credentials must not be hard-coded into program text, HTTPS must always be used instead of HTTP, and cloud data stores must not be world-readable. We evaluated our approach in three ways. (1) We applied our tools to over 5 million lines of open-source software. (2) We compared our tools to other publicly-available tools for detecting misuses of encryption on a previously-published benchmark, finding that only ours are suitable for continuous compliance. (3) We deployed a continuous compliance process at AWS, a large cloud-services company: we integrated verification tools into the compliance process (including auditors accepting their output as evidence) and ran them on over 68 million lines of code. Our tools and the data for the former two evaluations are publicly available.
2021-03-17
Lee, Y., Woo, S., Song, Y., Lee, J., Lee, D. H..  2020.  Practical Vulnerability-Information-Sharing Architecture for Automotive Security-Risk Analysis. IEEE Access. 8:120009—120018.
Emerging trends that are shaping the future of the automotive industry include electrification, autonomous driving, sharing, and connectivity, and these trends keep changing annually. Thus, the automotive industry is shifting from mechanical devices to electronic control devices, and is not moving to Internet of Things devices connected to 5G networks. Owing to the convergence of automobile-information and communication technology (ICT), the safety and convenience features of automobiles have improved significantly. However, cyberattacks that occur in the existing ICT environment and can occur in the upcoming 5G network are being replicated in the automobile environment. In a hyper-connected society where 5G networks are commercially available, automotive security is extremely important, as vehicles become the center of vehicle to everything (V2X) communication connected to everything around them. Designing, developing, and deploying information security techniques for vehicles require a systematic security-risk-assessment and management process throughout the vehicle's lifecycle. To do this, a security risk analysis (SRA) must be performed, which requires an analysis of cyber threats on automotive vehicles. In this study, we introduce a cyber kill chain-based cyberattack analysis method to create a formal vulnerability-analysis system. We can also analyze car-hacking studies that were conducted on real cars to identify the characteristics of the attack stages of existing car-hacking techniques and propose the minimum but essential measures for defense. Finally, we propose an automotive common-vulnerabilities-and-exposure system to manage and share evolving vehicle-related cyberattacks, threats, and vulnerabilities.
2021-03-04
Kalin, J., Ciolino, M., Noever, D., Dozier, G..  2020.  Black Box to White Box: Discover Model Characteristics Based on Strategic Probing. 2020 Third International Conference on Artificial Intelligence for Industries (AI4I). :60—63.

In Machine Learning, White Box Adversarial Attacks rely on knowing underlying knowledge about the model attributes. This works focuses on discovering to distrinct pieces of model information: the underlying architecture and primary training dataset. With the process in this paper, a structured set of input probes and the output of the model become the training data for a deep classifier. Two subdomains in Machine Learning are explored - image based classifiers and text transformers with GPT-2. With image classification, the focus is on exploring commonly deployed architectures and datasets available in popular public libraries. Using a single transformer architecture with multiple levels of parameters, text generation is explored by fine tuning off different datasets. Each dataset explored in image and text are distinguishable from one another. Diversity in text transformer outputs implies further research is needed to successfully classify architecture attribution in text domain.

2021-03-01
Kerim, A., Genc, B..  2020.  Mobile Games Success and Failure: Mining the Hidden Factors. 2020 7th International Conference on Soft Computing Machine Intelligence (ISCMI). :167–171.
Predicting the success of a mobile game is a prime issue in game industry. Thousands of games are being released each day. However, a few of them succeed while the majority fail. Towards the goal of investigating the potential correlation between the success of a mobile game and its specific attributes, this work was conducted. More than 17 thousands games were considered for that reason. We show that specific game attributes, such as number of IAPs (In-App Purchases), belonging to the puzzle genre, supporting different languages and being produced by a mature developer highly and positively affect the success of the game in the future. Moreover, we show that releasing the game in July and not including any IAPs seems to be highly associated with the game’s failure. Our second main contribution, is the proposal of a novel success score metric that reflects multiple objectives, in contrast to evaluating only revenue, average rating or rating count. We also employ different machine learning models, namely, SVM (Support Vector Machine), RF (Random Forest) and Deep Learning (DL) to predict this success score metric of a mobile game given its attributes. The trained models were able to predict this score, as well as the rating average and rating count of a mobile game with more than 70% accuracy. This prediction can help developers before releasing their game to the market to avoid any potential disappointments.
2021-02-03
Rehan, S., Singh, R..  2020.  Industrial and Home Automation, Control, Safety and Security System using Bolt IoT Platform. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :787—793.
This paper describes a system that comprises of control, safety and security subsystem for industries and homes. The entire system is based on the Bolt IoT platform. Using this system, the user can control the devices such as LEDs, speed of the fan or DC motor, monitor the temperature of the premises with an alert sub-system for critical temperatures through SMS and call, monitor the presence of anyone inside the premises with an alert sub-system about any intrusion through SMS and call. If the system is used specifically in any industry then instead of monitoring the temperature any other physical quantity, which is critical for that industry, can be monitored using suitable sensors. In addition, the cloud connectivity is provided to the system using the Bolt IoT module and temperature data is sent to the cloud where using machine-learning algorithm the future temperature is predicted to avoid any accidents in the future.
2021-02-01
Ng, M., Coopamootoo, K. P. L., Toreini, E., Aitken, M., Elliot, K., Moorsel, A. van.  2020.  Simulating the Effects of Social Presence on Trust, Privacy Concerns Usage Intentions in Automated Bots for Finance. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :190–199.
FinBots are chatbots built on automated decision technology, aimed to facilitate accessible banking and to support customers in making financial decisions. Chatbots are increasing in prevalence, sometimes even equipped to mimic human social rules, expectations and norms, decreasing the necessity for human-to-human interaction. As banks and financial advisory platforms move towards creating bots that enhance the current state of consumer trust and adoption rates, we investigated the effects of chatbot vignettes with and without socio-emotional features on intention to use the chatbot for financial support purposes. We conducted a between-subject online experiment with N = 410 participants. Participants in the control group were provided with a vignette describing a secure and reliable chatbot called XRO23, whereas participants in the experimental group were presented with a vignette describing a secure and reliable chatbot that is more human-like and named Emma. We found that Vignette Emma did not increase participants' trust levels nor lowered their privacy concerns even though it increased perception of social presence. However, we found that intention to use the presented chatbot for financial support was positively influenced by perceived humanness and trust in the bot. Participants were also more willing to share financially-sensitive information such as account number, sort code and payments information to XRO23 compared to Emma - revealing a preference for a technical and mechanical FinBot in information sharing. Overall, this research contributes to our understanding of the intention to use chatbots with different features as financial technology, in particular that socio-emotional support may not be favoured when designed independently of financial function.
2021-01-11
Rajapkar, A., Binnar, P., Kazi, F..  2020.  Design of Intrusion Prevention System for OT Networks Using Deep Neural Networks. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.

The Automation industries that uses Supervisory Control and Data Acquisition (SCADA) systems are highly vulnerable for Network threats. Systems that are air-gapped and isolated from the internet are highly affected due to insider attacks like Spoofing, DOS and Malware threats that affects confidentiality, integrity and availability of Operational Technology (OT) system elements and degrade its performance even though security measures are taken. In this paper, a behavior-based intrusion prevention system (IPS) is designed for OT networks. The proposed system is implemented on SCADA test bed with two systems replicates automation scenarios in industry. This paper describes 4 main classes of cyber-attacks with their subclasses against SCADA systems and methodology with design of components of IPS system, database creation, Baselines and deployment of system in environment. IPS system identifies not only IT protocols but also Industry Control System (ICS) protocols Modbus and DNP3 with their inside communication fields using deep packet inspection (DPI). The analytical results show 99.89% accuracy on binary classification and 97.95% accuracy on multiclass classification of different attack vectors performed on network with low false positive rate. These results are also validated by actual deployment of IPS in SCADA systems with the prevention of DOS attack.

2020-12-28
Lee, H., Cho, S., Seong, J., Lee, S., Lee, W..  2020.  De-identification and Privacy Issues on Bigdata Transformation. 2020 IEEE International Conference on Big Data and Smart Computing (BigComp). :514—519.

As the number of data in various industries and government sectors is growing exponentially, the `7V' concept of big data aims to create a new value by indiscriminately collecting and analyzing information from various fields. At the same time as the ecosystem of the ICT industry arrives, big data utilization is treatened by the privacy attacks such as infringement due to the large amount of data. To manage and sustain the controllable privacy level, there need some recommended de-identification techniques. This paper exploits those de-identification processes and three types of commonly used privacy models. Furthermore, this paper presents use cases which can be adopted those kinds of technologies and future development directions.

2020-12-17
Basheer, M. M., Varol, A..  2019.  An Overview of Robot Operating System Forensics. 2019 1st International Informatics and Software Engineering Conference (UBMYK). :1—4.
Autonomous technologies have been rapidly replacing the traditional manual intervention nearly in every aspect of our life. These technologies essentially require robots to carry out their automated processes. Nowadays, with the emergence of industry 4.0, robots are increasingly being remote-controlled via client-server connection, which creates uncommon vulnerabilities that allow attackers to target those robots. The development of an open source operational environment for robots, known as Robot Operating System (ROS) has come as a response to these demands. Security and privacy are crucial for the use of ROS as the chance of a compromise may lead to devastating ramifications. In this paper, an overview of ROS and the attacks targeting it are detailed and discussed. Followed by a review of the ROS security and digital investigation studies.
2020-12-11
Huang, S., Chuang, T., Huang, S., Ban, T..  2019.  Malicious URL Linkage Analysis and Common Pattern Discovery. 2019 IEEE International Conference on Big Data (Big Data). :3172—3179.

Malicious domain names are consistently changing. It is challenging to keep blacklists of malicious domain names up-to-date because of the time lag between its creation and detection. Even if a website is clean itself, it does not necessarily mean that it won't be used as a pivot point to redirect users to malicious destinations. To address this issue, this paper demonstrates how to use linkage analysis and open-source threat intelligence to visualize the relationship of malicious domain names whilst verifying their categories, i.e., drive-by download, unwanted software etc. Featured by a graph-based model that could present the inter-connectivity of malicious domain names in a dynamic fashion, the proposed approach proved to be helpful for revealing the group patterns of different kinds of malicious domain names. When applied to analyze a blacklisted set of URLs in a real enterprise network, it showed better effectiveness than traditional methods and yielded a clearer view of the common patterns in the data.

2020-11-04
Bell, S., Oudshoorn, M..  2018.  Meeting the Demand: Building a Cybersecurity Degree Program With Limited Resources. 2018 IEEE Frontiers in Education Conference (FIE). :1—7.

This innovative practice paper considers the heightening awareness of the need for cybersecurity programs in light of several well publicized cyber-attacks in recent years. An examination of the academic job market reveals that a significant number of institutions are looking to hire new faculty in the area of cybersecurity. Additionally, a growing number of universities are starting to offer courses, certifications and degrees in cybersecurity. Other recent activity includes the development of a model cybersecurity curriculum and the creation of a program accreditation criteria for cybersecurity through ABET. This sudden and significant growth in demand for cybersecurity expertise has some similarities to the significant demand for networking faculty that Computer Science programs experienced in the late 1980s as a result of the rise of the Internet. This paper examines the resources necessary to respond to the demand for cybersecurity courses and programs and draws some parallels and distinctions to the demand for networking faculty over 25 years ago. Faculty and administration are faced with a plethora of questions to answer as they approach this problem: What degree and courses to offer, what certifications to consider, which curriculum to incorporate and how to deliver the material (online, faceto-face, or something in-between)? However, the most pressing question in today's fiscal climate in higher education is: what resources will it take to deliver a cybersecurity program?

2020-11-02
Fedosova, Tatyana V., Masych, Marina A., Afanasyev, Anton A., Borovskaya, Marina A., Liabakh, Nikolay N..  2018.  Development of Quantitative Methods for Evaluating Intellectual Resources in the Digital Economy. 2018 IEEE International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT QM IS). :629—634.

The paper outlines the concept of the Digital economy, defines the role and types of intellectual resources in the context of digitalization of the economy, reviews existing approaches and methods to intellectual property valuation and analyzes drawbacks of quantitative evaluation of intellectual resources (based intellectual property valuation) related to: uncertainty, noisy data, heterogeneity of resources, nonformalizability, lack of reliable tools for measuring the parameters of intellectual resources and non-stationary development of intellectual resources. The results of the study offer the ways of further development of methods for quantitative evaluation of intellectual resources (inter alia aimed at their capitalization).

Saksupapchon, Punyapat, Willoughby, Kelvin W..  2019.  Contextual Factors Affecting Decisions About Intellectual Property Licensing Provisions in Collaboration Agreements for Open Innovation Projects of Complex Technological Organizations. 2019 IEEE International Symposium on Innovation and Entrepreneurship (TEMS-ISIE). :1—2.

Firms collaborate with partners in research and development (R&D) of new technologies for many reasons such as to access complementary knowledge, know-how or skills, to seek new opportunities outside their traditional technology domain, to sustain their continuous flows of innovation, to reduce time to market, or to share risks and costs [1]. The adoption of collaborative research agreements (CRAs) or collaboration agreements (CAs) is rising rapidly as firms attempt to access innovation from various types of organizations to enhance their traditional in-house innovation [2], [3]. To achieve the objectives of their collaborations, firms need to share knowledge and jointly develop new knowledge. As more firms adopt open collaborative innovation strategies, intellectual property (IP) management has inevitably become important because clear and fair contractual IP terms and conditions such as IP ownership allocation, licensing arrangements and compensation for IP access are required for each collaborative project [4], [5]. Moreover, the firms need to adjust their IP management strategies to fit the unique characteristics and circumstances of each particular project [5].

Bloom, Gedare, Alsulami, Bassma, Nwafor, Ebelechukwu, Bertolotti, Ivan Cibrario.  2018.  Design patterns for the industrial Internet of Things. 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS). :1—10.
The Internet of Things (IoT) is a vast collection of interconnected sensors, devices, and services that share data and information over the Internet with the objective of leveraging multiple information sources to optimize related systems. The technologies associated with the IoT have significantly improved the quality of many existing applications by reducing costs, improving functionality, increasing access to resources, and enhancing automation. The adoption of IoT by industries has led to the next industrial revolution: Industry 4.0. The rise of the Industrial IoT (IIoT) promises to enhance factory management, process optimization, worker safety, and more. However, the rollout of the IIoT is not without significant issues, and many of these act as major barriers that prevent fully achieving the vision of Industry 4.0. One major area of concern is the security and privacy of the massive datasets that are captured and stored, which may leak information about intellectual property, trade secrets, and other competitive knowledge. As a way forward toward solving security and privacy concerns, we aim in this paper to identify common input-output (I/O) design patterns that exist in applications of the IIoT. These design patterns enable constructing an abstract model representation of data flow semantics used by such applications, and therefore better understand how to secure the information related to IIoT operations. In this paper, we describe communication protocols and identify common I/O design patterns for IIoT applications with an emphasis on data flow in edge devices, which, in the industrial control system (ICS) setting, are most often involved in process control or monitoring.