Visible to the public Biblio

Filters: Keyword is electronic engineering computing  [Clear All Filters]
Lin, T., Shi, Y., Shu, N., Cheng, D., Hong, X., Song, J., Gwee, B. H..  2020.  Deep Learning-Based Image Analysis Framework for Hardware Assurance of Digital Integrated Circuits. 2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). :1—6.
We propose an Artificial Intelligence (AI)/Deep Learning (DL)-based image analysis framework for hardware assurance of digital integrated circuits (ICs). Our aim is to examine and verify various hardware information from analyzing the Scanning Electron Microscope (SEM) images of an IC. In our proposed framework, we apply DL-based methods at all essential steps of the analysis. To the best of our knowledge, this is the first such framework that makes heavy use of DL-based methods at all essential analysis steps. Further, to reduce time and effort required in model re-training, we propose and demonstrate various automated or semi-automated training data preparation methods and demonstrate the effectiveness of using synthetic data to train a model. By applying our proposed framework to analyzing a set of SEM images of a large digital IC, we prove its efficacy. Our DL-based methods are fast, accurate, robust against noise, and can automate tasks that were previously performed mainly manually. Overall, we show that DL-based methods can largely increase the level of automation in hardware assurance of digital ICs and improve its accuracy.
Martin, S., Parra, G., Cubillo, J., Quintana, B., Gil, R., Perez, C., Castro, M..  2020.  Design of an Augmented Reality System for Immersive Learning of Digital Electronic. 2020 XIV Technologies Applied to Electronics Teaching Conference (TAEE). :1—6.

This article describes the development of two mobile applications for learning Digital Electronics. The first application is an interactive app for iOS where you can study the different digital circuits, and which will serve as the basis for the second: a game of questions in augmented reality.

Benhani, E. M., Bossuet, L..  2018.  DVFS as a Security Failure of TrustZone-enabled Heterogeneous SoC. 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS). :489—492.
Today, most embedded systems use Dynamic Voltage and Frequency Scaling (DVFS) to minimize energy consumption and maximize performance. The DVFS technique works by regulating the important parameters that govern the amount of energy consumed in a system, voltage and frequency. For the implementation of this technique, the operating system (OS) includes software applications that dynamically control a voltage regulator or a frequency regulator or both. In this paper, we demonstrate for the first time a malicious use of the frequency regulator against a TrustZone-enabled System-on-Chip (SoC). We demonstrate a use of frequency scaling to create covert channel in a TrustZone-enabled heterogeneous SoC. We present four proofs of concept to transfer sensitive data from a secure entity in the SoC to a non-secure one. The first proof of concept is from a secure ARM core to outside of SoC. The second is from a secure ARM core to a non-secure one. The third is from a non-trusted third party IP embedded in the programmable logic part of the SoC to a non-secure ARM core. And the last proof of concept is from a secure third party IP to a non-secure ARM core.
Bose, S., Raikwar, M., Mukhopadhyay, D., Chattopadhyay, A., Lam, K..  2018.  BLIC: A Blockchain Protocol for Manufacturing and Supply Chain Management of ICS. 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :1326–1335.
Blockchain technology has brought a huge paradigm shift in multiple industries, by integrating distributed ledger, smart contracts and consensus protocol under the same roof. Notable applications of blockchain include cryptocurrencies and large-scale multi-party transaction management systems. The latter fits very well into the domain of manufacturing and supply chain management for Integrated Circuits (IC), which, despite several advanced technologies, is vulnerable to malicious practices, such as overproduction, IP piracy and deleterious design modification to gain unfair advantages. To combat these threats, researchers have proposed several ideas like hardware metering, design obfuscation, split manufacturing and watermarking. In this paper, we show, how these issues can be complementarily dealt with using blockchain technology coupled with identity-based encryption and physical unclonable functions, for improved resilience against certain adversarial motives. As part of our proposed blockchain protocol, titled `BLIC', we propose an authentication mechanism to secure both active and passive IC transactions, and a composite consensus protocol designed for IC supply chains. We also present studies on the security, scalability, privacy and anonymity of the BLIC protocol.
Thangarajan, Ashok Samraj, Ammar, Mahmoud, Crispo, Bruno, Hughes, Danny.  2019.  Towards Bridging the Gap between Modern and Legacy Automotive ECUs: A Software-Based Security Framework for Legacy ECUs. 2019 IEEE 2nd Connected and Automated Vehicles Symposium (CAVS). :1–5.
Modern automotive architectures are complex and often comprise of hundreds of electronic control units (ECUs). These ECUs provide diverse services including infotainment, telematics, diagnostics, advanced driving assistance, and many others. The availability of such services is mainly attained by the increasing connectivity with the external world, thus expanding the attack surface. In recent years, automotive original equipment manufacturers (OEMs) and ECU suppliers have become cautious of cyber attacks and have begun fortifying the most vulnerable systems, with hardware-based security modules that enable sandboxing, secure boot, secure software updates and end-to-end message authentication. Nevertheless, insecure legacy ECUs are still in-use in modern vehicles due to price and design complexity issues. Legacy ECUs depend on simple microcontrollers, that lack any kind of hardware-based security. This makes it essential to bridge the gap between modern and legacy ECUs through software-based security by which cyber attacks can be mitigated, thus enhancing the security of vehicles. This paper provides one more step towards highly secure vehicles by introducing a lightweight software- based security framework which provides legacy ECUs with software-based virtualization and protection features along with custom security services. We discuss the motivation for pure software-based approaches, explore the various requirements and advantages obtained, and give an initial insight of the design rationale. Furthermore, we provide a proof of concept implementation and evaluation with a demonstrative use case illustrating the importance of such framework in delivering new diagnostics security services to legacy ECUs.
Guo, Xiaolong, Dutta, Raj Gautam, He, Jiaji, Tehranipoor, Mark M., Jin, Yier.  2019.  QIF-Verilog: Quantitative Information-Flow based Hardware Description Languages for Pre-Silicon Security Assessment. 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :91—100.
Hardware vulnerabilities are often due to design mistakes because the designer does not sufficiently consider potential security vulnerabilities at the design stage. As a result, various security solutions have been developed to protect ICs, among which the language-based hardware security verification serves as a promising solution. The verification process will be performed while compiling the HDL of the design. However, similar to other formal verification methods, the language-based approach also suffers from scalability issue. Furthermore, existing solutions either lead to hardware overhead or are not designed for vulnerable or malicious logic detection. To alleviate these challenges, we propose a new language based framework, QIF-Verilog, to evaluate the trustworthiness of a hardware system at register transfer level (RTL). This framework introduces a quantified information flow (QIF) model and extends Verilog type systems to provide more expressiveness in presenting security rules; QIF is capable of checking the security rules given by the hardware designer. Secrets are labeled by the new type and then parsed to data flow, to which a QIF model will be applied. To demonstrate our approach, we design a compiler for QIF-Verilog and perform vulnerability analysis on benchmarks from Trust-Hub and OpenCore. We show that Trojans or design faults that leak information from circuit outputs can be detected automatically, and that our method evaluates the security of the design correctly.
Elkanishy, Abdelrahman, Badawy, Abdel-Hameed A., Furth, Paul M., Boucheron, Laura E., Michael, Christopher P..  2019.  Machine Learning Bluetooth Profile Operation Verification via Monitoring the Transmission Pattern. 2019 53rd Asilomar Conference on Signals, Systems, and Computers. :2144—2148.
Manufacturers often buy and/or license communication ICs from third-party suppliers. These communication ICs are then integrated into a complex computational system, resulting in a wide range of potential hardware-software security issues. This work proposes a compact supervisory circuit to classify the Bluetooth profile operation of a Bluetooth System-on-Chip (SoC) at low frequencies by monitoring the radio frequency (RF) output power of the Bluetooth SoC. The idea is to inexpensively manufacture an RF envelope detector to monitor the RF output power and a profile classification algorithm on a custom low-frequency integrated circuit in a low-cost legacy technology. When the supervisory circuit observes unexpected behavior, it can shut off power to the Bluetooth SoC. In this preliminary work, we proto-type the supervisory circuit using off-the-shelf components to collect a sufficient data set to train 11 different Machine Learning models. We extract smart descriptive time-domain features from the envelope of the RF output signal. Then, we train the machine learning models to classify three different Bluetooth operation profiles: sensor, hands-free, and headset. Our results demonstrate 100% classification accuracy with low computational complexity.
He, Chengkang, Cui, Aijiao, Chang, Chip-Hong.  2019.  Identification of State Registers of FSM Through Full Scan by Data Analytics. 2019 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1—6.

Finite-state machine (FSM) is widely used as control unit in most digital designs. Many intellectual property protection and obfuscation techniques leverage on the exponential number of possible states and state transitions of large FSM to secure a physical design with the reason that it is challenging to retrieve the FSM design from its downstream design or physical implementation without knowledge of the design. In this paper, we postulate that this assumption may not be sustainable with big data analytics. We demonstrate by applying a data mining technique to analyze sufficiently large amount of data collected from a full scan design to identify its FSM state registers. An impact metric is introduced to discriminate FSM state registers from other registers. A decision tree algorithm is constructed from the scan data for the regression analysis of the dependency of other registers on a chosen register to deduce its impact. The registers with the greater impact are more likely to be the FSM state registers. The proposed scheme is applied on several complex designs from OpenCores. The experiment results show the feasibility of our scheme in correctly identifying most FSM state registers with a high hit rate for a large majority of the designs.

Bertram, Jon, Tanwear, Asfand, Rodriguez, Aurelio, Paterson, Gary, McVitie, Stephen, Heidari, Hadi.  2019.  Spin-Hall Nano-Oscillator Simulations. 2019 IEEE SENSORS. :1—4.

A spin-Hall nano-oscillator (SHNO) is a type of spintronic oscillator that shows promising performance as a nanoscale microwave source and for neuromorphic computing applications. Within such nanodevices, a non-ferromagnetic layer in the presence of an external magnetic field and a DC bias current generates an oscillating microwave voltage. For developing optimal nano-oscillators, accurate simulations of the device's complex behaviour are required before fabrication. This work simulates the key behaviour of a nanoconstriction SHNO as the applied DC bias current is varied. The current density and Oersted field of the device have been presented, the magnetisation oscillations have been clearly visualised in three dimensions and the spatial distribution of the active mode determined. These simulations allow designers a greater understanding and characterisation of the device's behaviour while also providing a means of comparison when experimental resultsO are generated.

Salmani, Hassan, Hoque, Tamzidul, Bhunia, Swarup, Yasin, Muhammad, Rajendran, Jeyavijayan JV, Karimi, Naghmeh.  2019.  Special Session: Countering IP Security Threats in Supply Chain. 2019 IEEE 37th VLSI Test Symposium (VTS). :1–9.

The continuing decrease in feature size of integrated circuits, and the increase of the complexity and cost of design and fabrication has led to outsourcing the design and fabrication of integrated circuits to third parties across the globe, and in turn has introduced several security vulnerabilities. The adversaries in the supply chain can pirate integrated circuits, overproduce these circuits, perform reverse engineering, and/or insert hardware Trojans in these circuits. Developing countermeasures against such security threats is highly crucial. Accordingly, this paper first develops a learning-based trust verification framework to detect hardware Trojans. To tackle Trojan insertion, IP piracy and overproduction, logic locking schemes and in particular stripped functionality logic locking is discussed and its resiliency against the state-of-the-art attacks is investigated.

Han, Tao, Wang, Yuze, Liu, Peng.  2019.  Hardware Trojans Detection at Register Transfer Level Based on Machine Learning. 2019 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.

To accurately detect Hardware Trojans in integrated circuits design process, a machine-learning-based detection method at the register transfer level (RTL) is proposed. In this method, circuit features are extracted from the RTL source codes and a training database is built using circuits in a Hardware Trojans library. The training database is used to train an efficient detection model based on the gradient boosting algorithm. In order to expand the Hardware Trojans library for detecting new types of Hardware Trojans and update the detection model in time, a server-client mechanism is used. The proposed method can achieve 100% true positive rate and 89% true negative rate, on average, based on the benchmark from Trust-Hub.

Inoue, T., Hasegawa, K., Kobayashi, Y., Yanagisawa, M., Togawa, N..  2018.  Designing Subspecies of Hardware Trojans and Their Detection Using Neural Network Approach. 2018 IEEE 8th International Conference on Consumer Electronics - Berlin (ICCE-Berlin). :1-4.

Due to the recent technological development, home appliances and electric devices are equipped with high-performance hardware device. Since demand of hardware devices is increased, production base become internationalized to mass-produce hardware devices with low cost and hardware vendors outsource their products to third-party vendors. Accordingly, malicious third-party vendors can easily insert malfunctions (also known as "hardware Trojans'') into their products. In this paper, we design six kinds of hardware Trojans at a gate-level netlist, and apply a neural-network (NN) based hardware-Trojan detection method to them. The designed hardware Trojans are different in trigger circuits. In addition, we insert them to normal circuits, and detect hardware Trojans using a machine-learning-based hardware-Trojan detection method with neural networks. In our experiment, we learned Trojan-infected benchmarks using NN, and performed cross validation to evaluate the learned NN. The experimental results demonstrate that the average TPR (True Positive Rate) becomes 72.9%, the average TNR (True Negative Rate) becomes 90.0%.

Ye, J., Yang, Y., Gong, Y., Hu, Y., Li, X..  2018.  Grey Zone in Pre-Silicon Hardware Trojan Detection. 2018 IEEE International Test Conference in Asia (ITC-Asia). :79-84.

Pre-Silicon hardware Trojan detection has been studied for years. The most popular benchmark circuits are from the Trust-Hub. Their common feature is that the probability of activating hardware Trojans is very low. This leads to a series of machine learning based hardware Trojan detection methods which try to find the nets with low signal probability of 0 or 1. On the other hand, it is considered that, if the probability of activating hardware Trojans is high, these hardware Trojans can be easily found through behaviour simulations or during functional test. This paper explores the "grey zone" between these two opposite scenarios: if the activation probability of a hardware Trojan is not low enough for machine learning to detect it and is not high enough for behaviour simulation or functional test to find it, it can escape from detection. Experiments show the existence of such hardware Trojans, and this paper suggests a new set of hardware Trojan benchmark circuits for future study.

Yang, L., Murmann, B..  2017.  SRAM voltage scaling for energy-efficient convolutional neural networks. 2017 18th International Symposium on Quality Electronic Design (ISQED). :7–12.

State-of-the-art convolutional neural networks (ConvNets) are now able to achieve near human performance on a wide range of classification tasks. Unfortunately, current hardware implementations of ConvNets are memory power intensive, prohibiting deployment in low-power embedded systems and IoE platforms. One method of reducing memory power is to exploit the error resilience of ConvNets and accept bit errors under reduced supply voltages. In this paper, we extensively study the effectiveness of this idea and show that further savings are possible by injecting bit errors during ConvNet training. Measurements on an 8KB SRAM in 28nm UTBB FD-SOI CMOS demonstrate supply voltage reduction of 310mV, which results in up to 5.4× leakage power reduction and up to 2.9× memory access power reduction at 99% of floating-point classification accuracy, with no additional hardware cost. To our knowledge, this is the first silicon-validated study on the effect of bit errors in ConvNets.

Rathmair, M., Schupfer, F., Krieg, C..  2014.  Applied formal methods for hardware Trojan detection. Circuits and Systems (ISCAS), 2014 IEEE International Symposium on. :169-172.

This paper addresses the potential danger using integrated circuits which contain malicious hardware modifications hidden in the silicon structure. A so called hardware Trojan may be added at several stages of the chip development process. This work concentrates on formal hardware Trojan detection during the design phase and highlights applied verification techniques. Selected methods are discussed and their combination used to increase an introduced “Trojan Assurance Level”.

Chongxi Bao, Forte, D., Srivastava, A..  2014.  On application of one-class SVM to reverse engineering-based hardware Trojan detection. Quality Electronic Design (ISQED), 2014 15th International Symposium on. :47-54.

Due to design and fabrication outsourcing to foundries, the problem of malicious modifications to integrated circuits known as hardware Trojans has attracted attention in academia as well as industry. To reduce the risks associated with Trojans, researchers have proposed different approaches to detect them. Among these approaches, test-time detection approaches have drawn the greatest attention and most approaches assume the existence of a “golden model”. Prior works suggest using reverse-engineering to identify such Trojan-free ICs for the golden model but they did not state how to do this efficiently. In this paper, we propose an innovative and robust reverseengineering approach to identify the Trojan-free ICs. We adapt a well-studied machine learning method, one-class support vector machine, to solve our problem. Simulation results using state-of-the-art tools on several publicly available circuits show that our approach can detect hardware Trojans with high accuracy rate across different modeling and algorithm parameters.

Yoshimizu, N..  2014.  Hardware trojan detection by symmetry breaking in path delays. Hardware-Oriented Security and Trust (HOST), 2014 IEEE International Symposium on. :107-111.

This paper discusses the detection of hardware Trojans (HTs) by their breaking of symmetries within integrated circuits (ICs), as measured by path delays. Typically, path delay or side channel methods rely on comparisons to a golden, or trusted, sample. However, golden standards are affected by inter-and intra-die variations which limit the confidence in such comparisons. Symmetry is a way to detect modifications to an IC with increased confidence by confirming subcircuit consistencies within as it was originally designed. The difference in delays from a given path to a set of symmetric paths will be the same unless an inserted HT breaks symmetry. Symmetry can naturally exist in ICs or be artificially added. We describe methods to find and measure path delays against symmetric paths, as well as the advantages and disadvantages of this method. We discuss results of examples from benchmark circuits demonstrating the detection of hardware Trojans.