Biblio
Cloud security has become a serious challenge due to increasing number of attacks day-by-day. Intrusion Detection System (IDS) requires an efficient security model for improving security in the cloud. This paper proposes a game theory based model, named as Game Theory Cloud Security Deep Neural Network (GT-CSDNN) for security in cloud. The proposed model works with the Deep Neural Network (DNN) for classification of attack and normal data. The performance of the proposed model is evaluated with CICIDS-2018 dataset. The dataset is normalized and optimal points about normal and attack data are evaluated based on the Improved Whale Algorithm (IWA). The simulation results show that the proposed model exhibits improved performance as compared with existing techniques in terms of accuracy, precision, F-score, area under the curve, False Positive Rate (FPR) and detection rate.
Deep learning is a highly effective machine learning technique for large-scale problems. The optimization of nonconvex functions in deep learning literature is typically restricted to the class of first-order algorithms. These methods rely on gradient information because of the computational complexity associated with the second derivative Hessian matrix inversion and the memory storage required in large scale data problems. The reward for using second derivative information is that the methods can result in improved convergence properties for problems typically found in a non-convex setting such as saddle points and local minima. In this paper we introduce TRMinATR - an algorithm based on the limited memory BFGS quasi-Newton method using trust region - as an alternative to gradient descent methods. TRMinATR bridges the disparity between first order methods and second order methods by continuing to use gradient information to calculate Hessian approximations. We provide empirical results on the classification task of the MNIST dataset and show robust convergence with preferred generalization characteristics.
Matrix factorization (MF) has been proved to be an effective approach to build a successful recommender system. However, most current MF-based recommenders cannot obtain high prediction accuracy due to the sparseness of user-item matrix. Moreover, these methods suffer from the scalability issues when applying on large-scale real-world tasks. To tackle these issues, in this paper a social regularization method called TrustRSNMF is proposed that incorporates the social trust information of users in nonnegative matrix factorization framework. The proposed method integrates trust statements along with user-item ratings as an additional information source into the recommendation model to deal with the data sparsity and cold-start issues. In order to evaluate the effectiveness of the proposed method, a number of experiments are performed on two real-world datasets. The obtained results demonstrate significant improvements of the proposed method compared to state-of-the-art recommendation methods.
With wide applications like surveillance and imaging, securing underwater acoustic Mobile Ad-hoc NETworks (MANET) becomes a double-edged sword for oceanographic operations. Underwater acoustic MANET inherits vulnerabilities from 802.11-based MANET which renders traditional cryptographic approaches defenseless. A Trust Management Framework (TMF), allowing maintained confidence among participating nodes with metrics built from their communication activities, promises secure, efficient and reliable access to terrestrial MANETs. TMF cannot be directly applied to the underwater environment due to marine characteristics that make it difficult to differentiate natural turbulence from intentional misbehavior. This work proposes a trust model to defend underwater acoustic MANETs against attacks using a machine learning method with carefully chosen communication metrics, and a cloud model to address the uncertainty of trust in harsh underwater environments. By integrating the trust framework of communication with the cloud model to combat two kinds of uncertainties: fuzziness and randomness, trust management is greatly improved for underwater acoustic MANETs.
Nowadays, trust and reputation models are used to build a wide range of trust-based security mechanisms and trust-based service management applications on the Internet of Things (IoT). Considering trust as a single unit can result in missing important and significant factors. We split trust into its building-blocks, then we sort and assign weight to these building-blocks (trust metrics) on the basis of its priorities for the transaction context of a particular goal. To perform these processes, we consider trust as a multi-criteria decision-making problem, where a set of trust worthiness metrics represent the decision criteria. We introduce Entropy-based fuzzy analytic hierarchy process (EFAHP) as a trust model for selecting a trustworthy service provider, since the sense of decision making regarding multi-metrics trust is structural. EFAHP gives 1) fuzziness, which fits the vagueness, uncertainty, and subjectivity of trust attributes; 2) AHP, which is a systematic way for making decisions in complex multi-criteria decision making; and 3) entropy concept, which is utilized to calculate the aggregate weights for each service provider. We present a numerical illustration in trust-based Service Oriented Architecture in the IoT (SOA-IoT) to demonstrate the service provider selection using the EFAHP Model in assessing and aggregating the trust scores.
We address the problem of distributed state estimation of a linear dynamical process in an attack-prone environment. A network of sensors, some of which can be compromised by adversaries, aim to estimate the state of the process. In this context, we investigate the impact of making a small subset of the nodes immune to attacks, or “trusted”. Given a set of trusted nodes, we identify separate necessary and sufficient conditions for resilient distributed state estimation. We use such conditions to illustrate how even a small trusted set can achieve a desired degree of robustness (where the robustness metric is specific to the problem under consideration) that could otherwise only be achieved via additional measurement and communication-link augmentation. We then establish that, unfortunately, the problem of selecting trusted nodes is NP-hard. Finally, we develop an attack-resilient, provably-correct distributed state estimation algorithm that appropriately leverages the presence of the trusted nodes.
In order to improve the accuracy of similarity, an improved collaborative filtering algorithm based on trust and information entropy is proposed in this paper. Firstly, the direct trust between the users is determined by the user's rating to explore the potential trust relationship of the users. The time decay function is introduced to realize the dynamic portrayal of the user's interest decays over time. Secondly, the direct trust and the indirect trust are combined to obtain the overall trust which is weighted with the Pearson similarity to obtain the trust similarity. Then, the information entropy theory is introduced to calculate the similarity based on weighted information entropy. At last, the trust similarity and the similarity based on weighted information entropy are weighted to obtain the similarity combing trust and information entropy which is used to predicted the rating of the target user and create the recommendation. The simulation shows that the improved algorithm has a higher accuracy of recommendation and can provide more accurate and reliable recommendation service.
Cloud systems are becoming more complex and vulnerable to attacks. Cyber attacks are also becoming more sophisticated and harder to detect. Therefore, it is increasingly difficult for a single cloud-based intrusion detection system (IDS) to detect all attacks, because of limited and incomplete knowledge about attacks. The recent researches in cyber-security have shown that a co-operation among IDSs can bring higher detection accuracy in such complex computer systems. Through collaboration, a cloud-based IDS can consult other IDSs about suspicious intrusions and increase the decision accuracy. The problem of existing cooperative IDS approaches is that they overlook having untrusted (malicious or not) IDSs that may negatively effect the decision about suspicious intrusions in the cloud. Moreover, they rely on a centralized architecture in which a central agent regulates the cooperation, which contradicts the distributed nature of the cloud. In this paper, we propose a framework that enables IDSs to distributively form trustworthy IDSs communities. We devise a novel decentralized algorithm, based on coalitional game theory, that allows a set of cloud-based IDSs to cooperatively set up their coalition in such a way to make their individual detection accuracy increase, even in the presence of untrusted IDSs.
At present, cloud computing technology has made outstanding contributions to the Internet in data unification and sharing applications. However, the problem of information security in cloud computing environment has to be paid attention to and effective measures have to be taken to solve it. In order to control the data security under cloud services, the DS evidence theory method is introduced. The trust management mechanism is established from the source of big data, and a cloud computing security assessment model is constructed to achieve the quantifiable analysis purpose of cloud computing security assessment. Through the simulation, the innovative way of quantifying the confidence criterion through big data trust management and DS evidence theory not only regulates the data credible quantification mechanism under cloud computing, but also improves the effectiveness of cloud computing security assessment, providing a friendly service support platform for subsequent cloud computing service.
Internet of Things (IoT) is an evolving research area for the last two decades. The integration of the IoT and social networking concept results in developing an interdisciplinary research area called the Social Internet of Things (SIoT). The SIoT is dominant over the traditional IoT because of its structure, implementation, and operational manageability. In the SIoT, devices interact with each other independently to establish a social relationship for collective goals. To establish trustworthy relationships among the devices significantly improves the interaction in the SIoT and mitigates the phenomenon of risk. The problem is to choose a trustworthy node who is most suitable according to the choice parameters of the node. The best-selected node by one node is not necessarily the most suitable node for other nodes, as the trustworthiness of the node is independent for everyone. We employ some theoretical characterization of the soft-set theory to deal with this kind of decision-making problem. In this paper, we developed a weighted based trustworthiness ranking model by using soft set theory to evaluate the trustworthiness in the SIoT. The purpose of the proposed research is to reduce the risk of fraudulent transactions by identifying the most trusted nodes.
This work takes a novel approach to classifying the behavior of devices by exploiting the single-purpose nature of IoT devices and analyzing the complexity and variance of their network traffic. We develop a formalized measurement of complexity for IoT devices, and use this measurement to precisely tune an anomaly detection algorithm for each device. We postulate that IoT devices with low complexity lead to a high confidence in their behavioral model and have a correspondingly more precise decision boundary on their predicted behavior. Conversely, complex general purpose devices have lower confidence and a more generalized decision boundary. We show that there is a positive correlation to our complexity measure and the number of outliers found by an anomaly detection algorithm. By tuning this decision boundary based on device complexity we are able to build a behavioral framework for each device that reduces false positive outliers. Finally, we propose an architecture that can use this tuned behavioral model to rank each flow on the network and calculate a trust score ranking of all traffic to and from a device which allows the network to autonomously make access control decisions on a per-flow basis.
Recently, the increase of different services makes the design of routing protocols more difficult in mobile ad hoc networks (MANETs), e.g., how to guarantee the QoS of different types of traffics flows in MANETs with resource constrained and malicious nodes. opportunistic routing (OR) can make full use of the broadcast characteristics of wireless channels to improve the performance of MANETs. In this paper, we propose a traffic-differentiated secure opportunistic routing from a game theoretic perspective, DSOR. In the proposed scheme, we use a novel method to calculate trust value, considering node's forwarding capability and the status of different types of flows. According to the resource status of the network, we propose a service price and resource price for the auction model, which is used to select optimal candidate forwarding sets. At the same time, the optimal bid price has been proved and a novel flow priority decision for transmission is presented, which is based on waiting time and requested time. The simulation results show that the network lifetime, packet delivery rate and delay of the DSOR are better than existing works.
In an Internet of Things (IOT) network, each node (device) provides and requires services and with the growth in IOT, the number of nodes providing the same service have also increased, thus creating a problem of selecting one reliable service from among many providers. In this paper, we propose a scalable graph-based collaborative filtering recommendation algorithm, improved using trust to solve service selection problem, which can scale to match the growth in IOT unlike a central recommender which fails. Using this recommender, a node can predict its ratings for the nodes that are providing the required service and then select the best rated service provider.