Visible to the public Biblio

Found 787 results

Filters: First Letter Of Title is A  [Clear All Filters]
[A] B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Wei Liu, Ming Yu.  2014.  AASR: Authenticated Anonymous Secure Routing for MANETs in Adversarial Environments. Vehicular Technology, IEEE Transactions on. 63:4585-4593.

Anonymous communications are important for many of the applications of mobile ad hoc networks (MANETs) deployed in adversary environments. A major requirement on the network is the ability to provide unidentifiability and unlinkability for mobile nodes and their traffic. Although a number of anonymous secure routing protocols have been proposed, the requirement is not fully satisfied. The existing protocols are vulnerable to the attacks of fake routing packets or denial-of-service broadcasting, even the node identities are protected by pseudonyms. In this paper, we propose a new routing protocol, i.e., authenticated anonymous secure routing (AASR), to satisfy the requirement and defend against the attacks. More specifically, the route request packets are authenticated by a group signature, to defend against potential active attacks without unveiling the node identities. The key-encrypted onion routing with a route secret verification message is designed to prevent intermediate nodes from inferring a real destination. Simulation results have demonstrated the effectiveness of the proposed AASR protocol with improved performance as compared with the existing protocols.

Bhatt, Smriti, Patwa, Farhan, Sandhu, Ravi.  2017.  ABAC with Group Attributes and Attribute Hierarchies Utilizing the Policy Machine. Proceedings of the 2Nd ACM Workshop on Attribute-Based Access Control. :17–28.

Attribute-Based Access Control (ABAC) has received significant attention in recent years, although the concept has been around for over two decades now. Many ABAC models, with different variations, have been proposed and formalized. Besides basic ABAC models, there are models designed with additional capabilities such as group attributes, group and attribute hierarchies and so on. Hierarchical relationship among groups and attributes enhances access control flexibility and facilitates attribute management and administration. However, implementation and demonstration of ABAC models in real-world applications is still lacking. In this paper, we present a restricted HGABAC (rHGABAC) model with user and object groups and group hierarchy. We then introduce attribute hierarchies in this model. We also present an authorization architecture for implementing rHGABAC utilizing the NIST Policy Machine (PM). PM allows to define attribute-based access control policies, however, the attributes in PM are different in nature than attributes in typical ABAC models as name-value pairs. We identify a policy configuration mechanism for our proposed model employing PM capabilities, and demonstrate use cases and their configuration and implementation in PM using our authorization architecture.

Yueguo Zhang, Lili Dong, Shenghong Li, Jianhua Li.  2014.  Abnormal crowd behavior detection using interest points. Broadband Multimedia Systems and Broadcasting (BMSB), 2014 IEEE International Symposium on. :1-4.

Abnormal crowd behavior detection is an important research issue in video processing and computer vision. In this paper we introduce a novel method to detect abnormal crowd behaviors in video surveillance based on interest points. A complex network-based algorithm is used to detect interest points and extract the global texture features in scenarios. The performance of the proposed method is evaluated on publicly available datasets. We present a detailed analysis of the characteristics of the crowd behavior in different density crowd scenes. The analysis of crowd behavior features and simulation results are also demonstrated to illustrate the effectiveness of our proposed method.

Qi, L. T., Huang, H. P., Wang, P., Wang, R. C..  2018.  Abnormal Item Detection Based on Time Window Merging for Recommender Systems. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :252–259.

CFRS (Collaborative Filtering Recommendation System) is one of the most widely used individualized recommendation systems. However, CFRS is susceptible to shilling attacks based on profile injection. The current research on shilling attack mainly focuses on the recognition of false user profiles, but these methods depend on the specific attack models and the computational cost is huge. From the view of item, some abnormal item detection methods are proposed which are independent of attack models and overcome the defects of user profiles model, but its detection rate, false alarm rate and time overhead need to be further improved. In order to solve these problems, it proposes an abnormal item detection method based on time window merging. This method first uses the small window to partition rating time series, and determine whether the window is suspicious in terms of the number of abnormal ratings within it. Then, the suspicious small windows are merged to form suspicious intervals. We use the rating distribution characteristics RAR (Ratio of Abnormal Rating), ATIAR (Average Time Interval of Abnormal Rating), DAR(Deviation of Abnormal Rating) and DTIAR (Deviation of Time Interval of Abnormal Rating) in the suspicious intervals to determine whether the item is subject to attacks. Experiment results on the MovieLens 100K data set show that the method has a high detection rate and a low false alarm rate.

Le, Van-Khoa, Beauseroy, Pierre, Grall-Maes, Edith.  2018.  Abnormal Trajectory Detection for Security Infrastructure. Proceedings of the 2Nd International Conference on Digital Signal Processing. :1–5.

In this work, an approach for the automatic analysis of people trajectories is presented, using a multi-camera and card reader system. Data is first extracted from surveillance cameras and card readers to create trajectories which are sequences of paths and activities. A distance model is proposed to compare sequences and calculate similarities. The popular unsupervised model One-Class Support Vector Machine (One-Class SVM) is used to train a detector. The proposed method classifies trajectories as normal or abnormal and can be used in two modes: off-line and real-time. Experiments are based on data simulation corresponding to an attack scenario proposed by a security expert. Results show that the proposed method successfully detects the abnormal sequences in the scenario with very low false alarm rate.

Sharma, Manoj Kumar, Sheet, Debdoot, Biswas, Prabir Kumar.  2016.  Abnormality Detecting Deep Belief Network. Proceedings of the International Conference on Advances in Information Communication Technology & Computing. :11:1–11:6.

Abnormality detection is useful in reducing the amount of data to be processed manually by directing attention to the specific portion of data. However, selections of suitable features are important for the success of an abnormality detection system. Designing and selecting appropriate features are time-consuming, requires expensive domain knowledge and human labor. Further, it is very challenging to represent high-level concepts of abnormality in terms of raw input. Most of the existing abnormality detection system use handcrafted feature detector and are based on shallow architecture. In this work, we explore Deep Belief Network for abnormality detection and simultaneously, compared the performance of classic neural network in terms of features learned and accuracy of detecting the abnormality. Further, we explore the set of features learn by each layer of the deep architecture. We also provide a simple and fast mechanism to visualize the feature at the higher layer. Further, the effect of different activation function on abnormality detection is also compared. We observed that deep learning based approach can be used for detecting an abnormality. It has better performance compare to classical neural network in separating distinct as well as almost similar data.

Donghoon Kim, Henry E. Schaffer, Mladen Vouk.  2015.  About PaaS Security. 3rd International IBM Cloud Academy Conference (ICACON 2015).
Kim, Donghoon, Schaffer, Henry E., Vouk, Mladen A..  2015.  About PaaS Security. 3rd International IBM Cloud Academy Conference (ICACON 2015).

Platform as a Service (PaaS) provides middleware resources to cloud customers. As demand for PaaS services increases, so do concerns about the security of PaaS. This paper discusses principal PaaS security and integrity requirements, and vulnerabilities and the corresponding countermeasures. We consider three core cloud elements: multi-tenancy, isolation, and virtualization and how they relate to PaaS services and security trends and concerns such as user and resource isolation, side-channel vulnerabilities in multi-tenant environments, and protection of sensitive data

Sanandaji, B.M., Bitar, E., Poolla, K., Vincent, T.L..  2014.  An abrupt change detection heuristic with applications to cyber data attacks on power systems. American Control Conference (ACC), 2014. :5056-5061.

We present an analysis of a heuristic for abrupt change detection of systems with bounded state variations. The proposed analysis is based on the Singular Value Decomposition (SVD) of a history matrix built from system observations. We show that monitoring the largest singular value of the history matrix can be used as a heuristic for detecting abrupt changes in the system outputs. We provide sufficient detectability conditions for the proposed heuristic. As an application, we consider detecting malicious cyber data attacks on power systems and test our proposed heuristic on the IEEE 39-bus testbed.
 

Hu, Zhengbing, Vasiliu, Yevhen, Smirnov, Oleksii, Sydorenko, Viktoriia, Polishchuk, Yuliia.  2019.  Abstract Model of Eavesdropper and Overview on Attacks in Quantum Cryptography Systems. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 1:399–405.
In today's world, it's almost impossible to find a sphere of human life in which information technologies would not be used. On the one hand, it simplifies human life - virtually everyone carries a mini-computer in his pocket and it allows to perform many operations, that took a lot of time, in minutes. In addition, IT has simplified and promptly developed areas such as medicine, banking, document circulation, military, and many other infrastructures of the state. Nevertheless, even today, privacy remains a major problem in many information transactions. One of the most important directions for ensuring the information confidentiality in open communication networks has been and remains its protection by cryptographic methods. Although it is known that traditional cryptography methods give reasons to doubt in their reliability, quantum cryptography has proven itself as a more reliable information security technology. As far is it quite new direction there is no sufficiently complete classification of attacks on quantum cryptography methods, in view of this new extended classification of attacks on quantum protocols and quantum cryptosystems is proposed in this work. Classification takes into account the newest attacks (which use devices loopholes) on quantum key distribution equipment. These attacks have been named \textbackslashtextless; \textbackslashtextless; quantum hacking\textbackslashtextgreater\textbackslashtextgreater. Such classification may be useful for choosing commercially available quantum key distribution system. Also abstract model of eavesdropper in quantum systems was created and it allows to determine a set of various nature measures that need to be further implemented to provide reliable security with the help of specific quantum systems.
Abi-Antoun, Marwan, Khalaj, Ebrahim, Vanciu, Radu, Moghimi, Ahmad.  2016.  Abstract Runtime Structure for Reasoning About Security: Poster. Proceedings of the Symposium and Bootcamp on the Science of Security. :1–3.

We propose an interactive approach where analysts reason about the security of a system using an abstraction of its runtime structure, as opposed to looking at the code. They interactively refine a hierarchical object graph, set security properties on abstract objects or edges, query the graph, and investigate the results by studying highlighted objects or edges or tracing to the code. Behind the scenes, an inference analysis and an extraction analysis maintain the soundness of the graph with respect to the code.

Bolla, R., Carrega, A., Repetto, M..  2019.  An abstraction layer for cybersecurity context. 2019 International Conference on Computing, Networking and Communications (ICNC). :214—218.

The growing complexity and diversification of cyber-attacks are largely reflected in the increasing sophistication of security appliances, which are often too cumbersome to be run in virtual services and IoT devices. Hence, the design of cyber-security frameworks is today looking at more cooperative models, which collect security-related data from a large set of heterogeneous sources for centralized analysis and correlation.In this paper, we outline a flexible abstraction layer for access to security context. It is conceived to program and gather data from lightweight inspection and enforcement hooks deployed in cloud applications and IoT devices. We also provide a preliminary description of its implementation, by reviewing the main software components and their role.

Bronzino, Francesco, Raychaudhuri, Dipankar.  2016.  Abstractions and Solutions to Support Smart-objects in the Future Internet. Proceedings of the 2Nd Workshop on Experiences in the Design and Implementation of Smart Objects. :41–46.

As the number of devices that gain connectivity and join the category of smart-objects increases every year reaching unprecedented numbers, new challenges are imposed on our networks. While specialized solutions for certain use cases have been proposed, more flexible and scalable new approaches to networking will be required to deal with billions or trillions of smart objects connected to the Internet. With this paper, we take a step back looking at the set of basic problems that are posed by this group of devices. In order to develop an analysis on how these issues could be approached, we define which fundamental abstractions might help solving or at least reducing their impact on the network by offering support for fundamental matters such as mobility, group based delivery and support for distributed computing resources. Based on the concept of named-objects, we propose a set of solutions that network and show how this approach can address both scalability and functional requirements. Finally, we describe a comprehensive clean-slate network architecture (MobiityFirst) which attempts to realize the proposed capabilities.

Buranasaksee, U., Porkaew, K., Supasitthimethee, U..  2014.  AccAuth: Accounting system for OAuth protocol. Applications of Digital Information and Web Technologies (ICADIWT), 2014 Fifth International Conference on the. :8-13.

When a user accesses a resource, the accounting process at the server side does the job of keeping track of the resource usage so as to charge the user. In cloud computing, a user may use more than one service provider and need two independent service providers to work together. In this user-centric context, the user is the owner of the information and has the right to authorize to a third party application to access the protected resource on the user's behalf. Therefore, the user also needs to monitor the authorized resource usage he granted to third party applications. However, the existing accounting protocols were proposed to monitor the resource usage in terms of how the user uses the resource from the service provider. This paper proposed the user-centric accounting model called AccAuth which designs an accounting layer to an OAuth protocol. Then the prototype was implemented, and the proposed model was evaluated against the standard requirements. The result showed that AccAuth passed all the requirements.
 

Abdelhadi, Ameer M.S., Bouganis, Christos-Savvas, Constantinides, George A..  2019.  Accelerated Approximate Nearest Neighbors Search Through Hierarchical Product Quantization. 2019 International Conference on Field-Programmable Technology (ICFPT). :90—98.
A fundamental recurring task in many machine learning applications is the search for the Nearest Neighbor in high dimensional metric spaces. Towards answering queries in large scale problems, state-of-the-art methods employ Approximate Nearest Neighbors (ANN) search, a search that returns the nearest neighbor with high probability, as well as techniques that compress the dataset. Product-Quantization (PQ) based ANN search methods have demonstrated state-of-the-art performance in several problems, including classification, regression and information retrieval. The dataset is encoded into a Cartesian product of multiple low-dimensional codebooks, enabling faster search and higher compression. Being intrinsically parallel, PQ-based ANN search approaches are amendable for hardware acceleration. This paper proposes a novel Hierarchical PQ (HPQ) based ANN search method as well as an FPGA-tailored architecture for its implementation that outperforms current state of the art systems. HPQ gradually refines the search space, reducing the number of data compares and enabling a pipelined search. The mapping of the architecture on a Stratix 10 FPGA device demonstrates over ×250 speedups over current state-of-the-art systems, opening the space for addressing larger datasets and/or improving the query times of current systems.
Kuka, Mário, Vojanec, Kamil, Kučera, Jan, Benáček, Pavel.  2019.  Accelerated DDoS Attacks Mitigation using Programmable Data Plane. 2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS). :1–3.

DDoS attacks are a significant threat to internet service or infrastructure providers. This poster presents an FPGA-accelerated device and DDoS mitigation technique to overcome such attacks. Our work addresses amplification attacks whose goal is to generate enough traffic to saturate the victims links. The main idea of the device is to efficiently filter malicious traffic at high-speeds directly in the backbone infrastructure before it even reaches the victim's network. We implemented our solution for two FPGA platforms using the high-level description in P4, and we report on its performance in terms of throughput and hardware resources.

Badii, A., Faulkner, R., Raval, R., Glackin, C., Chollet, G..  2017.  Accelerated Encryption Algorithms for Secure Storage and Processing in the Cloud. 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). :1–6.

The objective of this paper is to outline the design specification, implementation and evaluation of a proposed accelerated encryption framework which deploys both homomorphic and symmetric-key encryptions to serve the privacy preserving processing; in particular, as a sub-system within the Privacy Preserving Speech Processing framework architecture as part of the PPSP-in-Cloud Platform. Following a preliminary study of GPU efficiency gains optimisations benchmarked for AES implementation we have addressed and resolved the Big Integer processing challenges in parallel implementation of bilinear pairing thus enabling the creation of partially homomorphic encryption schemes which facilitates applications such as speech processing in the encrypted domain on the cloud. This novel implementation has been validated in laboratory tests using a standard speech corpus and can be used for other application domains to support secure computation and privacy preserving big data storage/processing in the cloud.

Wang, X., Zhou, S..  2017.  Accelerated Stochastic Gradient Method for Support Vector Machines Classification with Additive Kernel. 2017 First International Conference on Electronics Instrumentation Information Systems (EIIS). :1–6.

Support vector machines (SVMs) have been widely used for classification in machine learning and data mining. However, SVM faces a huge challenge in large scale classification tasks. Recent progresses have enabled additive kernel version of SVM efficiently solves such large scale problems nearly as fast as a linear classifier. This paper proposes a new accelerated mini-batch stochastic gradient descent algorithm for SVM classification with additive kernel (AK-ASGD). On the one hand, the gradient is approximated by the sum of a scalar polynomial function for each feature dimension; on the other hand, Nesterov's acceleration strategy is used. The experimental results on benchmark large scale classification data sets show that our proposed algorithm can achieve higher testing accuracies and has faster convergence rate.

Perry, David M., Mattavelli, Andrea, Zhang, Xiangyu, Cadar, Cristian.  2017.  Accelerating Array Constraints in Symbolic Execution. Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis. :68–78.

Despite significant recent advances, the effectiveness of symbolic execution is limited when used to test complex, real-world software. One of the main scalability challenges is related to constraint solving: large applications and long exploration paths lead to complex constraints, often involving big arrays indexed by symbolic expressions. In this paper, we propose a set of semantics-preserving transformations for array operations that take advantage of contextual information collected during symbolic execution. Our transformations lead to simpler encodings and hence better performance in constraint solving. The results we obtain are encouraging: we show, through an extensive experimental analysis, that our transformations help to significantly improve the performance of symbolic execution in the presence of arrays. We also show that our transformations enable the analysis of new code, which would be otherwise out of reach for symbolic execution.

Jaeger, D., Cheng, F., Meinel, C..  2018.  Accelerating Event Processing for Security Analytics on a Distributed In-Memory Platform. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :634-643.

The analysis of security-related event logs is an important step for the investigation of cyber-attacks. It allows tracing malicious activities and lets a security operator find out what has happened. However, since IT landscapes are growing in size and diversity, the amount of events and their highly different representations are becoming a Big Data challenge. Unfortunately, current solutions for the analysis of security-related events, so called Security Information and Event Management (SIEM) systems, are not able to keep up with the load. In this work, we propose a distributed SIEM platform that makes use of highly efficient distributed normalization and persists event data into an in-memory database. We implement the normalization on common distribution frameworks, i.e. Spark, Storm, Trident and Heron, and compare their performance with our custom-built distribution solution. Additionally, different tuning options are introduced and their speed advantage is presented. In the end, we show how the writing into an in-memory database can be tuned to achieve optimal persistence speed. Using the proposed approach, we are able to not only fully normalize, but also persist more than 20 billion events per day with relatively small client hardware. Therefore, we are confident that our approach can handle the load of events in even very large IT landscapes.

Duraisamy, Karthi, Lu, Hao, Pande, Partha Pratim, Kalyanaraman, Ananth.  2017.  Accelerating Graph Community Detection with Approximate Updates via an Energy-Efficient NoC. Proceedings of the 54th Annual Design Automation Conference 2017. :89:1–89:6.

Community detection is an advanced graph operation that is used to reveal tightly-knit groups of vertices (aka. communities) in real-world networks. Given the intractability of the problem, efficient heuristics are used in practice. Yet, even the best of these state-of-the-art heuristics can become computationally demanding over large inputs and can generate workloads that exhibit inherent irregularity in data movement on manycore platforms. In this paper, we posit that effective acceleration of the graph community detection operation can be achieved by reducing the cost of data movement through a combined innovation at both software and hardware levels. More specifically, we first propose an efficient software-level parallelization of community detection that uses approximate updates to cleverly exploit a diminishing returns property of the algorithm. Secondly, as a way to augment this innovation at the software layer, we design an efficient Wireless Network on Chip (WiNoC) architecture that is suited to handle the irregular on-chip data movements exhibited by the community detection algorithm under both unicast- and broadcast-heavy cache coherence protocols. Experimental results show that our resulting WiNoC-enabled manycore platform achieves on average 52% savings in execution time, without compromising on the quality of the outputs, when compared to a traditional manycore platform designed with a wireline mesh NoC and running community detection without employing approximate updates.

Choi, Jongsok, Lian, Ruolong, Li, Zhi, Canis, Andrew, Anderson, Jason.  2018.  Accelerating Memcached on AWS Cloud FPGAs. Proceedings of the 9th International Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies. :2:1–2:8.
In recent years, FPGAs have been deployed in data centres of major cloud service providers, such as Microsoft [1], Amazon [2], Alibaba [3], Tencent [4], Huawei [5], and Nimbix [6]. This marks the beginning of bringing FPGA computing to the masses, as being in the cloud, one can access an FPGA from anywhere. A wide range of applications are run in the cloud, including web servers and databases among many others. Memcached is a high-performance in-memory ob ject caching system, which acts as a caching layer between web servers and databases. It is used by many companies, including Flicker, Wikipedia, Wordpress, and Facebook [7, 8]. In this paper, we present a Memcached accelerator implemented on the AWS FPGA cloud (F1 instance). Compared to AWS ElastiCache, an AWS-managed CPU Memcached service, our Memcached accelerator provides up to 9 x better throughput and latency. A live demo of the Memcached accelerator running on F1 can be accessed on our website [9].
Victor Heorhiadi, Michael K. Reiter, Vyas Sekar.  2015.  Accelerating the Development of Software-Defined Network Optimization Applications Using SOL.

Software-defined networking (SDN) can enable diverse network management applications such as traffic engineering, service chaining, network function outsourcing, and topology reconfiguration. Realizing the benefits of SDN for these applications, however, entails addressing complex network optimizations that are central to these problems. Unfortunately, such optimization problems require significant manual effort and expertise to express and non-trivial computation and/or carefully crafted heuristics to solve. Our vision is to simplify the deployment of SDN applications using general high-level abstractions for capturing optimization requirements from which we can efficiently generate optimal solutions. To this end, we present SOL, a framework that demonstrates that it is indeed possible to simultaneously achieve generality and efficiency. The insight underlying SOL is that SDN applications can be recast within a unifying path-based optimization abstraction, from which it efficiently generates near-optimal solutions, and device configurations to implement those solutions. We illustrate the generality of SOL by prototyping diverse and new applications. We show that SOL simplifies the development of SDN-based network optimization applications and provides comparable or better scalability than custom optimization solutions.

Bai, Xu, Jiang, Lei, Dai, Qiong, Yang, Jiajia, Tan, Jianlong.  2017.  Acceleration of RSA processes based on hybrid ARM-FPGA cluster. 2017 IEEE Symposium on Computers and Communications (ISCC). :682–688.

Cooperation of software and hardware with hybrid architectures, such as Xilinx Zynq SoC combining ARM CPU and FPGA fabric, is a high-performance and low-power platform for accelerating RSA Algorithm. This paper adopts the none-subtraction Montgomery algorithm and the Chinese Remainder Theorem (CRT) to implement high-speed RSA processors, and deploys a 48-node cluster infrastructure based on Zynq SoC to achieve extremely high scalability and throughput of RSA computing. In this design, we use the ARM to implement node-to-node communication with the Message Passing Interface (MPI) while use the FPGA to handle complex calculation. Finally, the experimental results show that the overall performance is linear with the number of nodes. And the cluster achieves 6× 9× speedup against a multi-core desktop (Intel i7-3770) and comparable performance to a many-core server (288-core). In addition, we gain up to 2.5× energy efficiency compared to these two traditional platforms.

Oharada, Kazuya, Shizuki, Buntarou, Takahashi, Shin.  2017.  AccelTag: A Passive Smart ID Tag with Acceleration Sensor for Interactive Applications. Adjunct Publication of the 30th Annual ACM Symposium on User Interface Software and Technology. :63–64.

There are many everyday situations in which users need to enter their user identification (user ID), such as logging in to computer systems and entering secure offices. In such situations, contactless passive IC cards are convenient because users can input their user ID simply by passing the card over a reader. However, these cards cannot be used for successive interactions. To address this issue, we propose AccelTag, a contactless IC card equipped with an acceleration sensor and a liquid crystal display (LCD). AccelTag utilizes high-function RFID technology so that the acceleration sensor and the LCD can also be driven by a wireless power supply. With its built-in acceleration sensor, AccelTag can acquire its direction and movement when it is waved over the reader. We demonstrate several applications using AccelTag, such as displaying several types of information in the card depending on the user's requirements.