Visible to the public Biblio

Found 1021 results

Filters: First Letter Of Title is C  [Clear All Filters]
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Squires, Walter, Centonze, Paolina.  2016.  Cross-platform Access-rights Analysis of Mobile Applications. Proceedings of the International Conference on Mobile Software Engineering and Systems. :295–296.

We live in the era of mobile computing. Mobile devices have more sensors and more capabilities than desktop computers. For any computing device that contains sensitive information and accesses the Internet, security is a major concern for both enterprises and end-users. Of the mobile devices commonly in The emphasis of this research focuses on to the ways in which the popular iOS and Android platforms handle permissions in an attempt to discern if there are any identifiable trends on either platform w.r.t. applications being over- or underprivileged.

Sovilj, Dusan, Sanner, Scott, Soh, Harold, Li, Hanze.  2018.  Collaborative Filtering with Behavioral Models. Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization. :91–99.

Collaborative filtering (CF) has made it possible to build personalized recommendation models leveraging the collective data of large user groups, albeit with prescribed models that cannot easily leverage the existence of known behavioral models in particular settings. In this paper, we facilitate the combination of CF with existing behavioral models by introducing Bayesian Behavioral Collaborative Filtering (BBCF). BBCF works by embedding arbitrary (black-box) probabilistic models of human behavior in a latent variable Bayesian framework capable of collectively leveraging behavioral models trained on all users for personalized recommendation. There are three key advantages of BBCF compared to traditional CF and non-CF methods: (1) BBCF can leverage highly specialized behavioral models for specific CF use cases that may outperform existing generic models used in standard CF, (2) the behavioral models used in BBCF may offer enhanced intepretability and explainability compared to generic CF methods, and (3) compared to non-CF methods that would train a behavioral model per specific user and thus may suffer when individual user data is limited, BBCF leverages the data of all users thus enabling strong performance across the data availability spectrum including the near cold-start case. Experimentally, we compare BBCF to individual and global behavioral models as well as CF techniques; our evaluation domains span sequential and non-sequential tasks with a range of behavioral models for individual users, tasks, or goal-oriented behavior. Our results demonstrate that BBCF is competitive if not better than existing methods while still offering the interpretability and explainability benefits intrinsic to many behavioral models.

Soudeh Ghorbani, University of Illinois at Urbana-Champaign, P. Brighten Godfrey, University of Illinois at Urbana-Champaign.  2017.  COCONUT: Seamless Scale Out of Network Elements. Twelfth European Conference on Computer Systems (EuroSys 2017).

A key use of software-defined networking is to enable scaleout of network data plane elements. Naively scaling networking elements, however, can cause incorrect behavior. For example, we show that an IDS system which operates correctly as a single network element can erroneously and permanently block hosts when it is replicated.

In this paper, we provide a system, COCONUT, for seamless scale-out of network forwarding elements; that is, an SDN application programmer can program to what functionally appears to be a single forwarding element, but whichmay be replicated behind the scenes. To do this, we identifythe key property for seamless scale out, weak causality,and guarantee it through a practical and scalable implementation of vector clocks in the data plane. We prove that COCONUT enables seamless scale out of networking elements, i.e., the user-perceived behavior of any COCONUT element implemented with a distributed set of concurrent replicas is provably indistinguishable from its singleton implementation. Finally, we build a prototype of COCONUT and experimentally demonstrate its correct behavior. We also show that its abstraction enables a more efficient implementation of seamless scale-out compared to a naive baseline.

Soper, Braden C..  2019.  A Cyber-Nuclear Deterrence Game. 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton). :470—479.

The reliability of nuclear command, control and communications has long been identified as a critical component of the strategic stability among nuclear states. Advances in offensive cyber weaponry have the potential to negatively impact this reliability, threatening strategic stability. In this paper we present a game theoretic model of preemptive cyber attacks against nuclear command, control and communications. The model is a modification of the classic two-player game of Chicken, a standard game theoretic model for nuclear brinksmanship. We fully characterize equilibria in both the complete information game and two distinct two-sided incomplete information games. We show that when both players have advanced cyber capabilities conflict is more likely in equilibrium, regardless of information structure. On the other hand, when at most one player has advanced cyber capabilities, strategic stability depends on the information structure. Under complete information, asymmetric cyber capabilities have a stabilizing effect in which the player with strong cyber has the resolve to stand firm in equilibrium. Under incomplete information, asymmetric cyber capabilities can have both stabilizing and destabilizing effects depending on prior beliefs over opponent cyber capabilities.

Soo, L. H..  2015.  Comparative analysis of Governmental Countermeasures to cyber attacks. 2015 International Carnahan Conference on Security Technology (ICCST). :1–6.

Sony in United States and KHNP in South Korea were hit by a series of cyberattacks late in 2014 that were blamed on North Korea. U.S. president Obama responded strongly and positively as control tower, and led Sony do not surrender to hacker's demand. U.S government demonstrated retaliatory action against North Korea under the proportional principle, blacklisted 3 North Korean entities and 10 officials. That days, there was the outrage of internet of North Korea. In order to enhance the cyber security response capability, U.S created a new office, CTIIC and encouraged the development of ISAOs, and made Sanctions EO, Information Sharing EO etc. KHNP and the Ministry of Industry rectified incidents itself early period when cyber incident arose, and the situation did not recovered as quickly as desired. S. Korea had not retaliation actions, otherwise called for closer global cooperation against cyber-attacks. To enhance national cyber security and resilience, S. Korea government created the new post of presidential secretary for cyber security and draw up `Strengthening National Cyber Security Posture' initiative.

Song, Shaoxu, Zhu, Han, Wang, Jianmin.  2016.  Constraint-Variance Tolerant Data Repairing. Proceedings of the 2016 International Conference on Management of Data. :877–892.

Integrity constraints, guiding the cleaning of dirty data, are often found to be imprecise as well. Existing studies consider the inaccurate constraints that are oversimplified, and thus refine the constraints via inserting more predicates (attributes). We note that imprecise constraints may not only be oversimplified so that correct data are erroneously identified as violations, but also could be overrefined that the constraints overfit the data and fail to identify true violations. In the latter case, deleting excessive predicates applies. To address the oversimplified and overrefined constraint inaccuracies, in this paper, we propose to repair data by allowing a small variation (with both predicate insertion and deletion) on the constraints. A novel θ-tolerant repair model is introduced, which returns a (minimum) data repair that satisfies at least one variant of the constraints (with constraint variation no greater than θ compared to the given constraints). To efficiently repair data among various constraint variants, we propose a single round, sharing enabled approach. Results on real data sets demonstrate that our proposal can capture more accurate data repairs compared to the existing methods with/without constraint repairs.

Sonekar, S. V., Pal, M., Tote, M., Sawwashere, S., Zunke, S..  2020.  Computation Termination and Malicious Node Detection using Finite State Machine in Mobile Adhoc Networks. 2020 7th International Conference on Computing for Sustainable Global Development (INDIACom). :156—161.

The wireless technology has knocked the door of tremendous usage and popularity in the last few years along with a high growth rate for new applications in the networking domain. Mobile Ad hoc Networks (MANETs) is solitary most appealing, alluring and challenging field where in the participating nodes do not require any active, existing and centralized system or rigid infrastructure for execution purpose and thus nodes have the moving capability on arbitrary basis. Radio range nodes directly communicate with each other through the wireless links whereas outside range nodes uses relay principle for communication. Though it is a rigid infrastructure less environment and has high growth rate but security is a major concern and becomes vital part of providing hostile free environment for communication. The MANET imposes several prominent challenges such as limited energy reserve, resource constraints, highly dynamic topology, sharing of wireless medium, energy inefficiency, recharging of the batteries etc. These challenges bound to make MANET more susceptible, more close to attacks and weak unlike the wired line networks. Theresearch paperismainly focused on two aspects, one is computation termination of cluster head algorithm and another is use of finite state machine for attacks identification.

Some, Dolière Francis, Bielova, Nataliia, Rezk, Tamara.  2017.  On the Content Security Policy Violations Due to the Same-Origin Policy. Proceedings of the 26th International Conference on World Wide Web. :877–886.
Modern browsers implement different security policies such as the Content Security Policy (CSP), a mechanism designed to mitigate popular web vulnerabilities, and the Same Origin Policy (SOP), a mechanism that governs interactions between resources of web pages. In this work, we describe how CSP may be violated due to the SOP when a page contains an embedded iframe from the same origin. We analyse 1 million pages from 10,000 top Alexa sites and report that at least 31.1% of current CSP-enabled pages are potentially vulnerable to CSP violations. Further considering real-world situations where those pages are involved in same-origin nested browsing contexts, we found that in at least 23.5% of the cases, CSP violations are possible. During our study, we also identified a divergence among browsers implementations in the enforcement of CSP in srcdoc sandboxed iframes, which actually reveals a problem in Gecko-based browsers CSP implementation. To ameliorate the problematic conflicts of the security mechanisms, we discuss measures to avoid CSP violations.
Sneps-Sneppe, Manfred, Namiot, Dmitry.  2019.  The curse of software: Pentagon telecommunications case. 2019 International Symposium on Systems Engineering (ISSE). :1—8.

A main goal of the paper is to discuss the world telecommunications strategy in transition to the IP world. The paper discuss the shifting from circuit switching to packet switching in telecommunications and show the main obstacle is excessive software. As a case, we are passing through the three generations of American military communications: (1) implementation of signaling protocol SS7 and Advanced Intelligent Network, (2) transformation from SS7 to IP protocol and, finally, (3) the extremely ambitious cybersecurity issues. We use the newer unclassified open Defense Information Systems Agency documents, particularly: Department of Defense Information Enterprise Architecture; Unified Capabilities the Army. We discuss the newer US Government Accountability Office (2018) report on military equipment cyber vulnerabilities.

Snader, Robin, Kravets, Robin, Harris, III, Albert F..  2016.  CryptoCoP: Lightweight, Energy-efficient Encryption and Privacy for Wearable Devices. Proceedings of the 2016 Workshop on Wearable Systems and Applications. :7–12.

As people use and interact with more and more wearables and IoT-enabled devices, their private information is being exposed without any privacy protections. However, the limited capabilities of IoT devices makes implementing robust privacy protections challenging. In response, we present CryptoCoP, an energy-efficient, content agnostic privacy and encryption protocol for IoT devices. Eavesdroppers cannot snoop on data protected by CryptoCoP or track users via their IoT devices. We evaluate CryptoCoP and show that the performance and energy overheads are viable in a wide variety of situations, and can be modified to trade off forward secrecy and energy consumption against required key storage on the device.

Smychkova, Anna, Zhukov, Dmitry.  2019.  Complex of Description Models for Analysis and Control Group Behavior Based on Stochastic Cellular Automata with Memory and Systems of Differential Kinetic Equations. 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA). :218—223.

This paper considers the complex of models for the description, analysis, and modeling of group behavior by user actions in complex social systems. In particular, electoral processes can be considered in which preferences are selected from several possible ones. For example, for two candidates, the choice is made from three states: for the candidate A, for candidate B and undecided (candidate C). Thus, any of the voters can be in one of the three states, and the interaction between them leads to the transition between the states with some delay time intervals, which are one of the parameters of the proposed models. The dynamics of changes in the preferences of voters can be described graphically on diagram of possible transitions between states, on the basis of which is possible to write a system of differential kinetic equations that describes the process. The analysis of the obtained solutions shows the possibility of existence within the model, different modes of changing the preferences of voters. In the developed model of stochastic cellular automata with variable memory at each step of the interaction process between its cells, a new network of random links is established, the minimum and the maximum number of which is selected from a given range. At the initial time, a cell of each type is assigned a numeric parameter that specifies the number of steps during which will retain its type (cell memory). The transition of cells between states is determined by the total number of cells of different types with which there was interaction at the given number of memory steps. After the number of steps equal to the depth of memory, transition to the type that had the maximum value of its sum occurs. The effect of external factors (such as media) on changes in node types can set for each step using a transition probability matrix. Processing of the electoral campaign's sociological data of 2015-2016 at the choice of the President of the United States using the method of almost-periodic functions allowed to estimate the parameters of a set of models and use them to describe, analyze and model the group behavior of voters. The studies show a good correspondence between the data observed in sociology and calculations using a set of developed models. Under some sets of values of the coefficients in the differential equations and models of cellular automata are observed the oscillating and almost-periodic character of changes in the preferences of the electorate, which largely coincides with the real observations.

Smith, E., Fuller, L..  2017.  Control systems and the internet of things \#x2014; Shrinking the factory. 2017 56th FITCE Congress. :68–73.

In this paper we discuss the Internet of Things (IoT) by exploring aspects which go beyond the proliferation of devices and information enabled by: the growth of the Internet, increased miniaturization, prolonged battery life and an IT literate user base. We highlight the role of feedback mechanisms and illustrate this with reference to implemented computer enabled factory control systems. As the technology has developed, the cost of computing has reduced drastically, programming interfaces have improved, sensors are simpler and more cost effective and high performance communications across a wide area are readily available. We illustrate this by considering an application based on the Raspberry Pi, which is a low cost, small, programmable and network capable computer based on a powerful ARM processor with a programmable I/O interface, which can provide access to sensors (and other devices). The prototype application running on this platform can sense the presence of human being, using inexpensive passive infrared detectors. This can be used to monitor the activity of vulnerable adults, logging the results to a central server using a domestic Internet solution over a Wireless LAN. Whilst this demonstrates the potential for the use of such control/monitoring systems, practical systems spanning thousands of sites will be more complex to deliver and will have more stringent data processing and management demands and security requirements. We will discuss these concepts in the context of delivery of a smart interconnected society.

Slavin, R., Hui Shen, Jianwei Niu.  2012.  Characterizations and boundaries of security requirements patterns. Requirements Patterns (RePa), 2012 IEEE Second International Workshop on. :48-53.

Very often in the software development life cycle, security is applied too late or important security aspects are overlooked. Although the use of security patterns is gaining popularity, the current state of security requirements patterns is such that there is not much in terms of a defining structure. To address this issue, we are working towards defining the important characteristics as well as the boundaries for security requirements patterns in order to make them more effective. By examining an existing general pattern format that describes how security patterns should be structured and comparing it to existing security requirements patterns, we are deriving characterizations and boundaries for security requirements patterns. From these attributes, we propose a defining format. We hope that these can reduce user effort in elicitation and specification of security requirements patterns.

Skrobot, Marjan, Lancrenon, Jean.  2018.  On Composability of Game-Based Password Authenticated Key Exchange. 2018 IEEE European Symposium on Security and Privacy (EuroS P). :443–457.

It is standard practice that the secret key derived from an execution of a Password Authenticated Key Exchange (PAKE) protocol is used to authenticate and encrypt some data payload using a Symmetric Key Protocol (SKP). Unfortunately, most PAKEs of practical interest are studied using so-called game-based models, which – unlike simulation models – do not guarantee secure composition per se. However, Brzuska et al. (CCS 2011) have shown that a middle ground is possible in the case of authenticated key exchange that relies on Public-Key Infrastructure (PKI): the game-based models do provide secure composition guarantees when the class of higher-level applications is restricted to SKPs. The question that we pose in this paper is whether or not a similar result can be exhibited for PAKE. Our work answers this question positively. More specifically, we show that PAKE protocols secure according to the game-based Real-or-Random (RoR) definition with the weak forward secrecy of Abdalla et al. (S&P 2015) allow for safe composition with arbitrary, higher-level SKPs. Since there is evidence that most PAKEs secure in the Find-then-Guess (FtG) model are in fact secure according to RoR definition, we can conclude that nearly all provably secure PAKEs enjoy a certain degree of composition, one that at least covers the case of implementing secure channels.

Skovajsová, Lenka.  2019.  Comparison of Cryptography by Chaotic Neural Network and by AES. 2019 IEEE 19th International Symposium on Computational Intelligence and Informatics and 7th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Sciences and Robotics (CINTI-MACRo). :000029–000032.
In this paper, the two methods for ciphering are presented and compared. The aim is to reveal the suitability of chaotic neural network approach to ciphering compared to AES cipher. The durations in seconds of both methods are presented and the two methods are compared. The results show, that the chaotic neural network is fast, suitable for ciphering of short plaintexts. AES ciphering is suitable for longer plaintexts or images and is also more reliable.
Skovajsová, L..  2019.  Comparison of Cryptography by Chaotic Neural Network and by AES. 2019 IEEE 19th International Symposium on Computational Intelligence and Informatics and 7th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Sciences and Robotics (CINTI-MACRo). :000029–000032.

In this paper, the two methods for ciphering are presented and compared. The aim is to reveal the suitability of chaotic neural network approach to ciphering compared to AES cipher. The durations in seconds of both methods are presented and the two methods are compared. The results show, that the chaotic neural network is fast, suitable for ciphering of short plaintexts. AES ciphering is suitable for longer plaintexts or images and is also more reliable.

ISSN: 2471-9269

Skelin, Mladen, Geilen, Marc.  2018.  Compositionality in Scenario-aware Dataflow: A Rendezvous Perspective. Proceedings of the 19th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems. :55–64.
Finite-state machine-based scenario-aware dataflow (FSM-SADF) is a dynamic dataflow model of computation that combines streaming data and finite-state control. For the most part, it preserves the determinism of its underlying synchronous dataflow (SDF) concurrency model and only when necessary introduces the non-deterministic variation in terms of scenarios that are represented by SDF graphs. This puts FSM-SADF in a sweet spot in the trade-off space between expressiveness and analyzability. However, FSM-SADF supports no notion of compositionality, which hampers its usability in modeling and consequent analysis of large systems. In this work we propose a compositional semantics for FSM-SADF that overcomes this problem. We base the semantics of the composition on standard composition of processes with rendezvous communication in the style of CCS or CSP at the control level and the parallel, serial and feedback composition of SDF graphs at the dataflow level. We evaluate the approach on a case study from the multimedia domain.
Sivanesh, S., Sarma Dhulipala, V.R..  2019.  Comparitive Analysis of Blackhole and Rushing Attack in MANET. 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW). :495—499.

For the past few decades, mobile ad hoc networks (MANETs) have been a global trend in wireless networking technology. These kind of ad-hoc networks are infrastructure less, dynamic in topology and further doesn't have a centralized network administration which makes it easier for the intruders to launch several attacks on MANETs. In this paper, we have made a comparative analysis of the network layer attack by simulating rushing and black hole attack using NS-2 network simulator. For determining the most vulnerable attack we have considered packet delivery ratio, end to end delay and throughput as a evaluation metrices. Here, AODV routing protocol has been configured for data forwarding operations. From our Simulation result, it is evident that the black hole attack is more vulnerable when compared to the rushing attack.

Sivanantham, S., Abirami, R., Gowsalya, R..  2019.  Comparing the Performance of Adaptive Boosted Classifiers in Anomaly based Intrusion Detection System for Networks. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–5.

The computer network is used by billions of people worldwide for variety of purposes. This has made the security increasingly important in networks. It is essential to use Intrusion Detection Systems (IDS) and devices whose main function is to detect anomalies in networks. Mostly all the intrusion detection approaches focuses on the issues of boosting techniques since results are inaccurate and results in lengthy detection process. The major pitfall in network based intrusion detection is the wide-ranging volume of data gathered from the network. In this paper, we put forward a hybrid anomaly based intrusion detection system which uses Classification and Boosting technique. The Paper is organized in such a way it compares the performance three different Classifiers along with boosting. Boosting process maximizes classification accuracy. Results of proposed scheme will analyzed over different datasets like Intrusion Detection Kaggle Dataset and NSL KDD. Out of vast analysis it is found Random tree provides best average Accuracy rate of around 99.98%, Detection rate of 98.79% and a minimum False Alarm rate.

Šišejković, Dominik, Merchant, Farhad, Leupers, Rainer, Ascheid, Gerd, Kiefer, Volker.  2019.  A Critical Evaluation of the Paradigm Shift in the Design of Logic Encryption Algorithms. 2019 International Symposium on VLSI Design, Automation and Test (VLSI-DAT). :1—4.
The globalization of the integrated circuit supply chain has given rise to major security concerns ranging from intellectual property piracy to hardware Trojans. Logic encryption is a promising solution to tackle these threats. Recently, a Boolean satisfiability attack capable of unlocking existing logic encryption techniques was introduced. This attack initiated a paradigm shift in the design of logic encryption algorithms. However, recent approaches have been strongly focusing on low-cost countermeasures that unfortunately lead to low functional and structural corruption. In this paper, we show that a simple approach can offer provable security and more than 99% corruption if a higher area overhead is accepted. Our results strongly suggest that future proposals should consider higher overheads or more realistic circuit sizes for the evaluation of modern logic encryption algorithms.
Singi, Kapil, Kaulgud, Vikrant, Bose, R.P. Jagadeesh Chandra, Podder, Sanjay.  2019.  CAG: Compliance Adherence and Governance in Software Delivery Using Blockchain. 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB). :32—39.

The software development life cycle (SDLC) starts with business and functional specifications signed with a client. In addition to this, the specifications also capture policy / procedure / contractual / regulatory / legislation / standard compliances with respect to a given client industry. The SDLC must adhere to service level agreements (SLAs) while being compliant to development activities, processes, tools, frameworks, and reuse of open-source software components. In today's world, global software development happens across geographically distributed (autonomous) teams consuming extraordinary amounts of open source components drawn from a variety of disparate sources. Although this is helping organizations deal with technical and economic challenges, it is also increasing unintended risks, e.g., use of a non-complaint license software might lead to copyright issues and litigations, use of a library with vulnerabilities pose security risks etc. Mitigation of such risks and remedial measures is a challenge due to lack of visibility and transparency of activities across these distributed teams as they mostly operate in silos. We believe a unified model that non-invasively monitors and analyzes the activities of distributed teams will help a long way in building software that adhere to various compliances. In this paper, we propose a decentralized CAG - Compliance Adherence and Governance framework using blockchain technologies. Our framework (i) enables the capturing of required data points based on compliance specifications, (ii) analyzes the events for non-conformant behavior through smart contracts, (iii) provides real-time alerts, and (iv) records and maintains an immutable audit trail of various activities.

Singh, Prateek Kumar, Kar, Koushik.  2018.  Countering Control Message Manipulation Attacks on OLSR. Proceedings of the 19th International Conference on Distributed Computing and Networking. :22:1–22:9.

In this work we utilize a Reputation Routing Model (RRM), which we developed in an earlier work, to mitigate the impact of three different control message based blackhole attacks in Optimized Link State Routing (OLSR) for Mobile Ad Hoc Networks (MANETs). A malicious node can potentially introduce three types of blackhole attacks on OLSR, namely TC-Blackhole attack, HELLO-Blackhole attack and TC-HELLO-Blackhole attack, by modifying its TC and HELLO messages with false information and disseminating them in the network in order to fake its advertisement. This results in node(s) diverting their messages toward the malicious node, therefore posing great security risks. Our solution reduces the risk posed by such bad nodes in the network and tries to isolate such links by feeding correct link state information to OLSR. We evaluate the performance of our model by emulating network scenarios on Common Open Research Emulator (CORE) for static as well as dynamic topologies. From our findings, it is observed that our model diminishes the effect of all three blackhole attacks on OLSR protocol in terms of packet delivery rates, especially at static and low mobility.

Singh, M., Kim, S..  2018.  Crypto trust point (cTp) for secure data sharing among intelligent vehicles. 2018 International Conference on Electronics, Information, and Communication (ICEIC). :1–4.
Tremendous amount of research is going on in the field of Intelligent vehicles (IVs)in industries and academics. Although, IV supports a better convenience for the society, but it also suffers from some concerns. Security is the major concern in Intelligent vehicle technology, due to its high exposure to data and information communication. The environment of the IV communication has many security vulnerabilities, which cannot be solved by Traditional Security approaches due to their fixed capabilities. Among security, trust, data accuracy and reliability of communication data in the communication channel are the other issues in IV communication. Blockchain is a peer-to-peer, distributed and decentralized technology which is used by the digital currency Bit-coin, to build trust and reliability and it has capability and is feasible to use Blockchain in IV Communication. In this paper, we propose, Blockchain based crypto Trust point (cTp) mechanism for IV communication. Using cTp in the IVs communication environment can provide IV data security and reliability. cTp mechanism accounts for the legitimate and illegitimate vehicles behavior, and rewarding thereby building trust among the vehicles. We also propose a reward based system using cTp (exchange of some cTp among IVs, during successful communication). We use blockchain technology in the Intelligent Transportation System (ITS) for the data management of the cTp. Using ITS, cTp details of every vehicle can be accessed ubiquitously by IVs. We evaluation, our proposal using the intersection use case scenario for intelligent vehicles communication.
Singh, Gagandeep, Kad, Sandeep.  2016.  Comparative Study of Watermarking an Image Using GA and BFO with GA and HBO Technique. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :5:1–5:5.

Multimedia security and copyright protection has been a popular topic for research and application, due to the explosion of data exchange over the internet and the widespread use of digital media. Watermarking is a process of hiding the digital information inside a digital media. Information hiding as digital watermarks in multimedia enables protection mechanism in decrypted contents. This paper presents a comparative study of existing technique used for digital watermarking an image using Genetic Algorithm and Bacterial Foraging Algorithm (BFO) based optimization technique with proposed one which consists of Genetic Algorithm and Honey Bee based optimization technique. The results obtained after experiment conclude that, new method has indeed outperformed then the conventional technique. The implementation is done over the MATLAB.

Singh, Dhananjay, Tripathi, Gaurav, Shah, Sayed Chhattan, da Rosa Righi, Rodrigo.  2018.  Cyber physical surveillance system for Internet of Vehicles. 2018 IEEE 4th World Forum on Internet of Things (WF-IoT). :546—551.

Internet of Vehicle (IoV) is an essential part of the Intelligent Transportation system (ITS) which is growing exponentially in the automotive industry domain. The term IoV is used in this paper for Internet of Vehicles. IoV is conceptualized for sharing traffic, safety and several other vehicle-related information between vehicles and end user. In recent years, the number of connected vehicles has increased allover the world. Having information sharing and connectivity as its advantage, IoV also faces the challenging task in the cybersecurity-related matters. The future consists of crowded places in an interconnected world through wearable's, sensors, smart phones etc. We are converging towards IoV technology and interactions with crowded space of connected peoples. However, this convergence demands high-security mechanism from the connected crowd as-well-as other connected vehicles to safeguard of proposed IoV system. In this paper, we coin the term of smart people crowd (SPC) and the smart vehicular crowd (SVC) for the Internet of Vehicles (IoV). These specific crowds of SPC and SVC are the potential cyber attackers of the smart IoV. People connected to the internet in the crowded place are known as a smart crowd. They have interfacing devices with sensors and the environment. A smart crowd would also consist of the random number of smart vehicles. With the future converging in to the smart connected framework for crowds, vehicles and connected vehicles, we present a novel cyber-physical surveillance system (CPSS) framework to tackle the security threats in the crowded environment for the smart automotive industry and provide the cyber security mechanism in the crowded places. We also describe an overview of use cases and their security challenges on the Internet of Vehicles.