Visible to the public Biblio

Found 1012 results

Filters: First Letter Of Title is C  [Clear All Filters]
Submitted
2020
Kummerow, A., Monsalve, C., Rösch, D., Schäfer, K., Nicolai, S..  2020.  Cyber-physical data stream assessment incorporating Digital Twins in future power systems. 2020 International Conference on Smart Energy Systems and Technologies (SEST). :1—6.

Reliable and secure grid operations become more and more challenging in context of increasing IT/OT convergence and decreasing dynamic margins in today's power systems. To ensure the correct operation of monitoring and control functions in control centres, an intelligent assessment of the different information sources is necessary to provide a robust data source in case of critical physical events as well as cyber-attacks. Within this paper, a holistic data stream assessment methodology is proposed using an expert knowledge based cyber-physical situational awareness for different steady and transient system states. This approach goes beyond existing techniques by combining high-resolution PMU data with SCADA information as well as Digital Twin and AI based anomaly detection functionalities.

Javid, T., Faris, M., Beenish, H., Fahad, M..  2020.  Cybersecurity and Data Privacy in the Cloudlet for Preliminary Healthcare Big Data Analytics. 2020 International Conference on Computing and Information Technology (ICCIT-1441). :1—4.

In cyber physical systems, cybersecurity and data privacy are among most critical considerations when dealing with communications, processing, and storage of data. Geospatial data and medical data are examples of big data that require seamless integration with computational algorithms as outlined in Industry 4.0 towards adoption of fourth industrial revolution. Healthcare Industry 4.0 is an application of the design principles of Industry 4.0 to the medical domain. Mobile applications are now widely used to accomplish important business functions in almost all industries. These mobile devices, however, are resource poor and proved insufficient for many important medical applications. Resource rich cloud services are used to augment poor mobile device resources for data and compute intensive applications in the mobile cloud computing paradigm. However, the performance of cloud services is undesirable for data-intensive, latency-sensitive mobile applications due increased hop count between the mobile device and the cloud server. Cloudlets are virtual machines hosted in server placed nearby the mobile device and offer an attractive alternative to the mobile cloud computing in the form of mobile edge computing. This paper outlines cybersecurity and data privacy aspects for communications of measured patient data from wearable wireless biosensors to nearby cloudlet host server in order to facilitate the cloudlet based preliminary and essential complex analytics for the medical big data.

Dodson, Michael, Beresford, Alastair R., Richardson, Alexander, Clarke, Jessica, Watson, Robert N. M..  2020.  CHERI Macaroons: Efficient, host-based access control for cyber-physical systems. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :688–693.
Cyber-Physical Systems (CPS) often rely on network boundary defence as a primary means of access control; therefore, the compromise of one device threatens the security of all devices within the boundary. Resource and real-time constraints, tight hardware/software coupling, and decades-long service lifetimes complicate efforts for more robust, host-based access control mechanisms. Distributed capability systems provide opportunities for restoring access control to resource-owning devices; however, such a protection model requires a capability-based architecture for CPS devices as well as task compartmentalisation to be effective.This paper demonstrates hardware enforcement of network bearer tokens using an efficient translation between CHERI (Capability Hardware Enhanced RISC Instructions) architectural capabilities and Macaroon network tokens. While this method appears to generalise to any network-based access control problem, we specifically consider CPS, as our method is well-suited for controlling resources in the physical domain. We demonstrate the method in a distributed robotics application and in a hierarchical industrial control application, and discuss our plans to evaluate and extend the method.
Johnson, N., Near, J. P., Hellerstein, J. M., Song, D..  2020.  Chorus: a Programming Framework for Building Scalable Differential Privacy Mechanisms. 2020 IEEE European Symposium on Security and Privacy (EuroS P). :535–551.
Differential privacy is fast becoming the gold standard in enabling statistical analysis of data while protecting the privacy of individuals. However, practical use of differential privacy still lags behind research progress because research prototypes cannot satisfy the scalability requirements of production deployments. To address this challenge, we present Chorus, a framework for building scalable differential privacy mechanisms which is based on cooperation between the mechanism itself and a high-performance production database management system (DBMS). We demonstrate the use of Chorus to build the first highly scalable implementations of complex mechanisms like Weighted PINQ, MWEM, and the matrix mechanism. We report on our experience deploying Chorus at Uber, and evaluate its scalability on real-world queries.
Islam, M., Rahaman, S., Meng, N., Hassanshahi, B., Krishnan, P., Yao, D. D..  2020.  Coding Practices and Recommendations of Spring Security for Enterprise Applications. 2020 IEEE Secure Development (SecDev). :49—57.
Spring security is tremendously popular among practitioners for its ease of use to secure enterprise applications. In this paper, we study the application framework misconfiguration vulnerabilities in the light of Spring security, which is relatively understudied in the existing literature. Towards that goal, we identify 6 types of security anti-patterns and 4 insecure vulnerable defaults by conducting a measurement-based approach on 28 Spring applications. Our analysis shows that security risks associated with the identified security anti-patterns and insecure defaults can leave the enterprise application vulnerable to a wide range of high-risk attacks. To prevent these high-risk attacks, we also provide recommendations for practitioners. Consequently, our study has contributed one update to the official Spring security documentation while other security issues identified in this study are being considered for future major releases by Spring security community.
Pialov, K., Slutsky, R., Maizel, A..  2020.  Coupled calculation of hydrodynamic and acoustic characteristics in the far-field of the ship propulsor. 2020 International Conference on Dynamics and Vibroacoustics of Machines (DVM). :1–6.
This report provides a calculation example of hydrodynamic and acoustic characteristics of the ship propulsor using numerical modelling with the help of RANS-models and eddy-resolving approaches in the hydrodynamics task, acoustic analogy in the acoustics tasks and harmonic analysis of the propulsor under hydrodynamic loads.
Atlidakis, V., Godefroid, P., Polishchuk, M..  2020.  Checking Security Properties of Cloud Service REST APIs. 2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST). :387—397.

Most modern cloud and web services are programmatically accessed through REST APIs. This paper discusses how an attacker might compromise a service by exploiting vulnerabilities in its REST API. We introduce four security rules that capture desirable properties of REST APIs and services. We then show how a stateful REST API fuzzer can be extended with active property checkers that automatically test and detect violations of these rules. We discuss how to implement such checkers in a modular and efficient way. Using these checkers, we found new bugs in several deployed production Azure and Office365 cloud services, and we discuss their security implications. All these bugs have been fixed.

Doğu, S., Alidoustaghdam, H., Dilman, İ, Akıncı, M. N..  2020.  The Capability of Truncated Singular Value Decomposition Method for Through the Wall Microwave Imaging. 2020 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW). 1:76–81.
In this study, a truncated singular value decomposition (TSVD) based computationally efficient through the wall imaging (TWI) is addressed. Mainly, two different scenarios with identical and non-identical multiple scatterers behind the wall have been considered. The scattered data are processed with special scheme in order to improve quality of the results and measurements are performed at four different frequencies. Next, effects of selecting truncation threshold in TSVD methods are analyzed and a detailed quantitative comparison is provided to demonstrate capabilities of these TSVD methods over selection of truncation threshold.
Noel, M. D., Waziri, O. V., Abdulhamid, M. S., Ojeniyi, A. J., Okoro, M. U..  2020.  Comparative Analysis of Classical and Post-quantum Digital Signature Algorithms used in Bitcoin Transactions. 2020 2nd International Conference on Computer and Information Sciences (ICCIS). :1–6.

The use of public key cryptosystems ranges from securely encrypting bitcoin transactions and creating digital signatures for non-repudiation. The cryptographic systems security of public key depends on the complexity in solving mathematical problems. Quantum computers pose a threat to the current day algorithms used. This research presents analysis of two Hash-based Signature Schemes (MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and ECDSA) used in bitcoin transaction security. The results as shown in table II indicates that RSA key generation takes 0.2012s, signature generation takes 0.0778s and signature verification is 0.0040s. ECDSA key generation is 0.1378s, signature generation takes 0.0187s, and verification time for the signature is 0.0164s. The W-OTS key generation is 0.002s. To generate a signature in W-OTS, it takes 0.001s and verification time for the signature is 0.0002s. Lastly MSS Key generation, signature generation and verification has high values which are 16.290s, 17.474s, and 13.494s respectively. Based on the results, W-OTS is recommended for bitcoin transaction security because of its efficiency and ability to resist quantum computer attacks on the bitcoin network.

Aydeger, A., Saputro, N., Akkaya, K..  2020.  Cloud-based Deception against Network Reconnaissance Attacks using SDN and NFV. 2020 IEEE 45th Conference on Local Computer Networks (LCN). :279—285.

An attacker's success crucially depends on the reconnaissance phase of Distributed Denial of Service (DDoS) attacks, which is the first step to gather intelligence. Although several solutions have been proposed against network reconnaissance attacks, they fail to address the needs of legitimate users' requests. Thus, we propose a cloud-based deception framework which aims to confuse the attacker with reconnaissance replies while allowing legitimate uses. The deception is based on for-warding the reconnaissance packets to a cloud infrastructure through tunneling and SDN so that the returned IP addresses to the attacker will not be genuine. For handling legitimate requests, we create a reflected virtual topology in the cloud to match any changes in the original physical network to the cloud topology using SDN. Through experimentations on GENI platform, we show that our framework can provide reconnaissance responses with negligible delays to the network clients while also reducing the management costs significantly.

Sidhu, H. J. Singh, Khanna, M. S..  2020.  Cloud's Transformative Involvement in Managing BIG-DATA ANALYTICS For Securing Data in Transit, Storage And Use: A Study. 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC). :297—302.

with the advent of Cloud Computing a new era of computing has come into existence. No doubt, there are numerous advantages associated with the Cloud Computing but, there is other side of the picture too. The challenges associated with it need a more promising reply as far as the security of data that is stored, in process and in transit is concerned. This paper put forth a cloud computing model that tries to answer the data security queries; we are talking about, in terms of the four cryptographic techniques namely Homomorphic Encryption (HE), Verifiable Computation (VC), Secure Multi-Party Computation (SMPC), Functional Encryption (FE). This paper takes into account the various cryptographic techniques to undertake cloud computing security issues. It also surveys these important (existing) cryptographic tools/techniques through a proposed Cloud computation model that can be used for Big Data applications. Further, these cryptographic tools are also taken into account in terms of CIA triad. Then, these tools/techniques are analyzed by comparing them on the basis of certain parameters of concern.

Le, T. V., Huan, T. T..  2020.  Computational Intelligence Towards Trusted Cloudlet Based Fog Computing. 2020 5th International Conference on Green Technology and Sustainable Development (GTSD). :141—147.

The current trend of IoT user is toward the use of services and data externally due to voluminous processing, which demands resourceful machines. Instead of relying on the cloud of poor connectivity or a limited bandwidth, the IoT user prefers to use a cloudlet-based fog computing. However, the choice of cloudlet is solely dependent on its trust and reliability. In practice, even though a cloudlet possesses a required trusted platform module (TPM), we argue that the presence of a TPM is not enough to make the cloudlet trustworthy as the TPM supports only the primitive security of the bootstrap. Besides uncertainty in security, other uncertain conditions of the network (e.g. network bandwidth, latency and expectation time to complete a service request for cloud-based services) may also prevail for the cloudlets. Therefore, in order to evaluate the trust value of multiple cloudlets under uncertainty, this paper broadly proposes the empirical process for evaluation of trust. This will be followed by a measure of trust-based reputation of cloudlets through computational intelligence such as fuzzy logic and ant colony optimization (ACO). In the process, fuzzy logic-based inference and membership evaluation of trust are presented. In addition, ACO and its pheromone communication across different colonies are being modeled with multiple cloudlets. Finally, a measure of affinity or popular trust and reputation of the cloudlets is also proposed. Together with the context of application under multiple cloudlets, the computationally intelligent approaches have been investigated in terms of performance. Hence the contribution is subjected towards building a trusted cloudlet-based fog platform.

Segovia, Mariana, Rubio-Hernan, Jose, Cavalli, Ana R., Garcia-Alfaro, Joaquin.  2020.  Cyber-Resilience Evaluation of Cyber-Physical Systems. 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA). :1—8.
Cyber-Physical Systems (CPS) use computational resources to control physical processes and provide critical services. For this reason, an attack in these systems may have dangerous consequences in the physical world. Hence, cyber- resilience is a fundamental property to ensure the safety of the people, the environment and the controlled physical processes. In this paper, we present metrics to quantify the cyber-resilience level based on the design, structure, stability, and performance under the attack of a given CPS. The metrics provide reference points to evaluate whether the system is better prepared or not to face the adversaries. This way, it is possible to quantify the ability to recover from an adversary using its mathematical model based on actuators saturation. Finally, we validate our approach using a numeric simulation on the Tennessee Eastman control challenge problem.
Ming, Kun.  2020.  Chinese Coreference Resolution via Bidirectional LSTMs using Word and Token Level Representations. 2020 16th International Conference on Computational Intelligence and Security (CIS). :73–76.
Coreference resolution is an important task in the field of natural language processing. Most existing methods usually utilize word-level representations, ignoring massive information from the texts. To address this issue, we investigate how to improve Chinese coreference resolution by using span-level semantic representations. Specifically, we propose a model which acquires word and character representations through pre-trained Skip-Gram embeddings and pre-trained BERT, then explicitly leverages span-level information by performing bidirectional LSTMs among above representations. Experiments on CoNLL-2012 shared task have demonstrated that the proposed model achieves 62.95% F1-score, outperforming our baseline methods.
Gomes, F., Correia, M..  2020.  Cryptojacking Detection with CPU Usage Metrics. 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA). :1—10.
Cryptojacking is currently being exploited by cyber-criminals. This form of malware runs in the computers of victims without their consent. It often infects browsers and does CPU-intensive computations to mine cryptocurrencies on behalf of the cyber-criminal, which takes the profits without paying for the resources consumed. Such attacks degrade computer performance and potentially reduce the hardware lifetime. We introduce a new cryptojacking detection mechanism based on monitoring the CPU usage of the visited web pages. This may look like an unreliable way to detect mining malware since many web sites are heavy computationally and that malware often throttles CPU usage. However, by combining a set of CPU monitoring features and using machine learning, we manage to obtain metrics like precision and recall close to 1.
Giechaskiel, I., Rasmussen, K. B., Szefer, J..  2020.  C3APSULe: Cross-FPGA Covert-Channel Attacks through Power Supply Unit Leakage. 2020 IEEE Symposium on Security and Privacy (SP). :1728—1741.
Field-Programmable Gate Arrays (FPGAs) are versatile, reconfigurable integrated circuits that can be used as hardware accelerators to process highly-sensitive data. Leaking this data and associated cryptographic keys, however, can undermine a system's security. To prevent potentially unintentional interactions that could break separation of privilege between different data center tenants, FPGAs in cloud environments are currently dedicated on a per-user basis. Nevertheless, while the FPGAs themselves are not shared among different users, other parts of the data center infrastructure are. This paper specifically shows for the first time that powering FPGAs, CPUs, and GPUs through the same power supply unit (PSU) can be exploited in FPGA-to-FPGA, CPU-to-FPGA, and GPU-to-FPGA covert channels between independent boards. These covert channels can operate remotely, without the need for physical access to, or modifications of, the boards. To demonstrate the attacks, this paper uses a novel combination of "sensing" and "stressing" ring oscillators as receivers on the sink FPGA. Further, ring oscillators are used as transmitters on the source FPGA. The transmitting and receiving circuits are used to determine the presence of the leakage on off-the-shelf Xilinx boards containing Artix 7 and Kintex 7 FPGA chips. Experiments are conducted with PSUs by two vendors, as well as CPUs and GPUs of different generations. Moreover, different sizes and types of ring oscillators are also tested. In addition, this work discusses potential countermeasures to mitigate the impact of the cross-board leakage. The results of this paper highlight the dangers of shared power supply units in local and cloud FPGAs, and therefore a fundamental need to re-think FPGA security for shared infrastructures.
Kumar, N., Rathee, M., Chandran, N., Gupta, D., Rastogi, A., Sharma, R..  2020.  CrypTFlow: Secure TensorFlow Inference. 2020 IEEE Symposium on Security and Privacy (SP). :336–353.
We present CrypTFlow, a first of its kind system that converts TensorFlow inference code into Secure Multi-party Computation (MPC) protocols at the push of a button. To do this, we build three components. Our first component, Athos, is an end-to-end compiler from TensorFlow to a variety of semihonest MPC protocols. The second component, Porthos, is an improved semi-honest 3-party protocol that provides significant speedups for TensorFlow like applications. Finally, to provide malicious secure MPC protocols, our third component, Aramis, is a novel technique that uses hardware with integrity guarantees to convert any semi-honest MPC protocol into an MPC protocol that provides malicious security. The malicious security of the protocols output by Aramis relies on integrity of the hardware and semi-honest security of MPC. Moreover, our system matches the inference accuracy of plaintext TensorFlow.We experimentally demonstrate the power of our system by showing the secure inference of real-world neural networks such as ResNet50 and DenseNet121 over the ImageNet dataset with running times of about 30 seconds for semi-honest security and under two minutes for malicious security. Prior work in the area of secure inference has been limited to semi-honest security of small networks over tiny datasets such as MNIST or CIFAR. Even on MNIST/CIFAR, CrypTFlow outperforms prior work.
Sonekar, S. V., Pal, M., Tote, M., Sawwashere, S., Zunke, S..  2020.  Computation Termination and Malicious Node Detection using Finite State Machine in Mobile Adhoc Networks. 2020 7th International Conference on Computing for Sustainable Global Development (INDIACom). :156—161.

The wireless technology has knocked the door of tremendous usage and popularity in the last few years along with a high growth rate for new applications in the networking domain. Mobile Ad hoc Networks (MANETs) is solitary most appealing, alluring and challenging field where in the participating nodes do not require any active, existing and centralized system or rigid infrastructure for execution purpose and thus nodes have the moving capability on arbitrary basis. Radio range nodes directly communicate with each other through the wireless links whereas outside range nodes uses relay principle for communication. Though it is a rigid infrastructure less environment and has high growth rate but security is a major concern and becomes vital part of providing hostile free environment for communication. The MANET imposes several prominent challenges such as limited energy reserve, resource constraints, highly dynamic topology, sharing of wireless medium, energy inefficiency, recharging of the batteries etc. These challenges bound to make MANET more susceptible, more close to attacks and weak unlike the wired line networks. Theresearch paperismainly focused on two aspects, one is computation termination of cluster head algorithm and another is use of finite state machine for attacks identification.

Plager, Trenton, Zhu, Ying, Blackmon, Douglas A..  2020.  Creating a VR Experience of Solitary Confinement. 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). :692—693.
The goal of this project is to create a realistic VR experience of solitary confinement and study its impact on users. Although there have been active debates and studies on this subject, very few people have personal experience of solitary confinement. Our first aim is to create such an experience in VR to raise the awareness of solitary confinement. We also want to conduct user studies to compare the VR solitary confinement experience with other types of media experiences, such as films or personal narrations. Finally, we want to study people’s sense of time in such a VR environment.
Morozov, M. Y., Perfilov, O. Y., Malyavina, N. V., Teryokhin, R. V., Chernova, I. V..  2020.  Combined Approach to SSDF-Attacks Mitigation in Cognitive Radio Networks. 2020 Systems of Signals Generating and Processing in the Field of on Board Communications. :1–4.
Cognitive radio systems aim to solve the issue of spectrum scarcity through implementation of dynamic spectrum management and cooperative spectrum access. However, the structure of such systems introduced unique types of vulnerabilities and attacks, one of which is spectrum sensing data falsification attack (SSDF). In such attacks malicious users provide incorrect observations to the fusion center of the system, which may result in severe quality of service degradation and interference for licensed users. In this paper we investigate this type of attacks and propose a combined approach to their mitigation. On the first step a reputational method is used to isolate the initially untrustworthy nodes, on the second step specialized q-out-of-m fusion rule is utilized to mitigate the remains of attack. In this paper we present theoretical analysis of the proposed combined method.
Lee, J..  2020.  CanvasMirror: Secure Integration of Third-Party Libraries in a WebVR Environment. 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S). :75—76.

Web technology has evolved to offer 360-degree immersive browsing experiences. This new technology, called WebVR, enables virtual reality by rendering a three-dimensional world on an HTML canvas. Unfortunately, there exists no browser-supported way of sharing this canvas between different parties. As a result, third-party library providers with ill intent (e.g., stealing sensitive information from end-users) can easily distort the entire WebVR site. To mitigate the new threats posed in WebVR, we propose CanvasMirror, which allows publishers to specify the behaviors of third-party libraries and enforce this specification. We show that CanvasMirror effectively separates the third-party context from the host origin by leveraging the privilege separation technique and safely integrates VR contents on a shared canvas.

Khan, A., Chefranov, A. G..  2020.  A Captcha-Based Graphical Password With Strong Password Space and Usability Study. 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). :1—6.

Security for authentication is required to give a superlative secure users' personal information. This paper presents a model of the Graphical password scheme under the impact of security and ease of use for user authentication. We integrate the concept of recognition with re-called and cued-recall based schemes to offer superior security compared to existing schemes. Click Symbols (CS) Alphabet combine into one entity: Alphanumeric (A) and Visual (V) symbols (CS-AV) is Captcha-based password scheme, we integrate it with recall-based n ×n grid points, where a user can draw the shape or pattern by the intersection of the grid points as a way to enter a graphical password. Next scheme, the combination of CS-AV with grid cells allows very large password space ( 2.4 ×104 bits of entropy) and provides reasonable usability results by determining an empirical study of memorable password space. Proposed schemes support most applicable platform for input devices and promising strong resistance to shoulder surfing attacks on a mobile device which can be occurred during unlocking (pattern) the smartphone.

Javed, M. U., Jamal, A., Javaid, N., Haider, N., Imran, M..  2020.  Conditional Anonymity enabled Blockchain-based Ad Dissemination in Vehicular Ad-hoc Network. 2020 International Wireless Communications and Mobile Computing (IWCMC). :2149—2153.

Advertisement sharing in vehicular network through vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication is a fascinating in-vehicle service for advertisers and the users due to multiple reasons. It enable advertisers to promote their product or services in the region of their interest. Also the users get to receive more relevant ads. Usually, users tend to contribute in dissemination of ads if their privacy is preserved and if some incentive is provided. Recent researches have focused on enabling both of the parameters for the users by developing fair incentive mechanism which preserves privacy by using Zero-Knowledge Proof of Knowledge (ZKPoK) (Ming et al., 2019). However, the anonymity provided by ZKPoK can introduce internal attacker scenarios in the network due to which authenticated users can disseminate fake ads in the network without payment. As the existing scheme uses certificate-less cryptography, due to which malicious users cannot be removed from the network. In order to resolve these challenges, we employed conditional anonymity and introduced Monitoring Authority (MA) in the system. In our proposed scheme, the pseudonyms are assigned to the vehicles while their real identities are stored in Certification Authority (CA) in encrypted form. The pseudonyms are updated after a pre-defined time threshold to prevent behavioural privacy leakage. We performed security and performance analysis to show the efficiency of our proposed system.

Fejrskov, M., Pedersen, J. M., Vasilomanolakis, E..  2020.  Cyber-security research by ISPs: A NetFlow and DNS Anonymization Policy. :1—8.

Internet Service Providers (ISPs) have an economic and operational interest in detecting malicious network activity relating to their subscribers. However, it is unclear what kind of traffic data an ISP has available for cyber-security research, and under which legal conditions it can be used. This paper gives an overview of the challenges posed by legislation and of the data sources available to a European ISP. DNS and NetFlow logs are identified as relevant data sources and the state of the art in anonymization and fingerprinting techniques is discussed. Based on legislation, data availability and privacy considerations, a practically applicable anonymization policy is presented.