Visible to the public Biblio

Found 932 results

Filters: First Letter Of Title is D  [Clear All Filters]
A B C [D] E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Tanana, D..  2019.  Decentralized Labor Record System Based on Wavelet Consensus Protocol. 2019 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). :0496—0499.

The labor market involves several untrusted actors with contradicting objectives. We propose a blockchain based system for labor market, which provides benefits to all participants in terms of confidence, transparency, trust and tracking. Our system would handle employment data through new Wavelet blockchain platform. It would change the job market enabling direct agreements between parties without other participants, and providing new mechanisms for negotiating the employment conditions. Furthermore, our system would reduce the need in existing paper workflow as well as in major internet recruiting companies. The key differences of our work from other blockchain based labor record systems are usage of Wavelet blockchain platform, which features metastability, directed acyclic graph system and Turing complete smart contracts platform and introduction of human interaction inside the smart contracts logic, instead of automatic execution of contracts. The results are promising while inconclusive and we would further explore potential of blockchain solutions for labor market problems.

Zhang, Chiyu, Hwang, Inseok.  2019.  Decentralized Multi-Sensor Scheduling for Multi-Target Tracking and Identity Management. 2019 18th European Control Conference (ECC). :1804–1809.
This paper proposes a multi-target tracking and identity management method with multiple sensors: a primary sensor with a large detection range to provide the targets' state estimates, and multiple secondary sensors capable of recognizing the targets' identities. Each of the secondary sensors is assigned to a sector of the operation area; a secondary sensor decides which target in its assigned sector to be identified and controls itself to identify the target. We formulate the decision-making process as an optimization problem to minimize the uncertainty of the targets' identities subject to the sensor dynamic constraints. The proposed algorithm is decentralized since the secondary sensors only communicate with the primary sensor for the target information, and need not to synchronize with each other. By integrating the proposed algorithm with the existing multi-target tracking algorithms, we develop a closed-loop multi-target tracking and identity management algorithm. The effectiveness of the proposed algorithm is demonstrated with illustrative numerical examples.
Azad, Muhammad Ajmal, Bag, Samiran.  2017.  Decentralized Privacy-aware Collaborative Filtering of Smart Spammers in a Telecommunication Network. Proceedings of the Symposium on Applied Computing. :1711–1717.

Smart spammers and telemarketers circumvent the standalone spam detection systems by making low rate spam-ming activity to a large number of recipients distributed across many telecommunication operators. The collaboration among multiple telecommunication operators (OPs) will allow operators to get rid of unwanted callers at the early stage of their spamming activity. The challenge in the design of collaborative spam detection system is that OPs are not willing to share certain information about behaviour of their users/customers because of privacy concerns. Ideally, operators agree to share certain aggregated statistical information if collaboration process ensures complete privacy protection of users and their network data. To address this challenge and convince OPs for the collaboration, this paper proposes a decentralized reputation aggregation protocol that enables OPs to take part in a collaboration process without use of a trusted third party centralized system and without developing a predefined trust relationship with other OPs. To this extent, the collaboration among operators is achieved through the exchange of cryptographic reputation scores among OPs thus fully protects relationship network and reputation scores of users even in the presence of colluders. We evaluate the performance of proposed protocol over the simulated data consisting of five collaborators. Experimental results revealed that proposed approach outperforms standalone systems in terms of true positive rate and false positive rate.

Engoulou, Richard Gilles, Bellaiche, Martine, Halabi, Talal, Pierre, Samuel.  2019.  A Decentralized Reputation Management System for Securing the Internet of Vehicles. 2019 International Conference on Computing, Networking and Communications (ICNC). :900–904.
The evolution of the Internet of Vehicles (IoV) paradigm has recently attracted a lot of researchers and industries. Vehicular Ad Hoc Networks (VANET) is the networking model that lies at the heart of this technology. It enables the vehicles to exchange relevant information concerning road conditions and safety. However, ensuring communication security has been and still is one of the main challenges to vehicles' interconnection. To secure the interconnected vehicular system, many cryptography techniques, communication protocols, and certification and reputation-based security approaches were proposed. Nonetheless, some limitations are still present, preventing the practical implementation of such approaches. In this paper, we first define a set of locally-perceived behavioral reputation parameters that enable a distributed evaluation of vehicles' reputation. Then, we integrate these parameters into the design of a reputation management system to exclude malicious or faulty vehicles from the IoV network. Our system can help in the prevention of several attacks on the VANET environment such as Sybil and Denial of Service attacks, and can be implemented in a fully decentralized fashion.
Kuehner, Holger, Hartenstein, Hannes.  2016.  Decentralized Secure Data Sharing with Attribute-Based Encryption: A Resource Consumption Analysis. Proceedings of the 4th ACM International Workshop on Security in Cloud Computing. :74–81.

Secure Data Sharing (SDS) enables users to share data in the cloud in a confidential and integrity-preserving manner. Many recent SDS approaches are based on Attribute-Based Encryption (ABE), leveraging the advantage that ABE allows to address a multitude of users with only one ciphertext. However, ABE approaches often come with the downside that they require a central fully-trusted entity that is able to decrypt any ciphertext in the system. In this paper, we investigate on whether ABE could be used to efficiently implement Decentralized Secure Data Sharing (D-SDS), which explicitly demands that the authorization and access control enforcement is carried out solely by the owner of the data, without the help of a fully-trusted third party. For this purpose, we did a comprehensive analysis of recent ABE approaches with regard to D-SDS requirements. We found one ABE approach to be suitable, and we show different alternatives to employ this ABE approach in a group-based D-SDS scenario. For a realistic estimation of the resource consumption, we give concrete resource consumption values for workloads taken from real-world system traces and exemplary up-to-date mobile devices. Our results indicate that for the most D-SDS operations, the resulting computation times and outgoing network traffic will be acceptable in many use cases. However, the computation times and outgoing traffic for the management of large groups might prevent using mobile devices.

Kanellopoulos, Aris, Vamvoudakis, Kyriakos G., Gupta, Vijay.  2019.  Decentralized Verification for Dissipativity of Cascade Interconnected Systems. 2019 IEEE 58th Conference on Decision and Control (CDC). :3629—3634.

In this paper, we consider the problem of decentralized verification for large-scale cascade interconnections of linear subsystems such that dissipativity properties of the overall system are guaranteed with minimum knowledge of the dynamics. In order to achieve compositionality, we distribute the verification process among the individual subsystems, which utilize limited information received locally from their immediate neighbors. Furthermore, to obviate the need for full knowledge of the subsystem parameters, each decentralized verification rule employs a model-free learning structure; a reinforcement learning algorithm that allows for online evaluation of the appropriate storage function that can be used to verify dissipativity of the system up to that point. Finally, we show how the interconnection can be extended by adding learning-enabled subsystems while ensuring dissipativity.

Durand, Arnaud, Gremaud, Pascal, Pasquier, Jacques.  2017.  Decentralized Web of Trust and Authentication for the Internet of Things. Proceedings of the Seventh International Conference on the Internet of Things. :27:1–27:2.

As the Internet of Thing (IoT) matures, a lot of concerns are being raised about security, privacy and interoperability. The Web of Things (WoT) model leverages web technologies to improve interoperability. Due to its distributed components, the web scaled well beyond initial expectations. Still, secure authentication and communication across organization boundaries rely on the Public Key Infrastructure (PKI) which is a non-transparent, centralized single point of failure. We can improve transparency and reduce the chain of trust–-thus significantly improving the IoT security–-by empowering blockchain technology and web security standards. In this paper, we build a scalable, decentralized IoT-centric PKI and discuss how we can combine it with the emerging web authentication and authorization framework for constrained environments.

Quanyan Zhu, University of Illinois at Urbana-Champaign, Andrew Clark, Radha Poovendran, Tamer Başar, University of Illinois at Urbana-Champaign.  2012.  Deceptive Routing Games. 51st IEEE Conference on Decision and Control.

The use of a shared medium leaves wireless networks, including mobile ad hoc and sensor networks, vulnerable to jamming attacks. In this paper, we introduce a jamming defense mechanism for multiple-path routing networks based on maintaining deceptive flows, consisting of fake packets, between a source and a destination. An adversary observing a deceptive flow will expend energy on disrupting the fake packets, allowing the real data packets to arrive at the destination unharmed. We model this deceptive flow-based defense within a multi-stage stochastic game framework between the network nodes, which choose a routing path and flow rates for the real and fake data, and an adversary, which chooses which fraction of each flow to target at each hop. We develop an efficient, distributed procedure for computing the optimal routing at each hop and the optimal flow allocation at the destination. Furthermore, by studying the equilibria of the game, we quantify the benefit arising from deception, as reflected in an increase in the valid throughput. Our results are demonstrated via a simulation study.

Andrew Clark, University of Washington, Quanyan Zhu, University of Illinois at Urbana-Champaign, Radha Poovendran, University of Washington, Tamer Başar, University of Illinois at Urbana-Champaign.  2012.  Deceptive Routing in Relay Networks. Conference on Decision and Game Theory for Security.

Physical-layer and MAC-layer defense mechanisms against jamming attacks are often inherently reactive to experienced delay and loss of throughput after being attacked. In this paper, we study a proactive defense mechanism against jamming in multi-hop relay networks, in which one or more network sources introduce a deceptive network flow along a disjoint routing path. The deceptive mechanism leverages strategic jamming behaviors, causing the attacker to expend resources on targeting deceptive flows and thereby reducing the impact on real network trac. We use a two-stage game model to obtain deception strategies at Stackelberg equilibrium for sel sh and altruistic nodes. The equilibrium solutions are illustrated and corroborated through a simulation study.

Padon, Oded, Immerman, Neil, Shoham, Sharon, Karbyshev, Aleksandr, Sagiv, Mooly.  2016.  Decidability of Inferring Inductive Invariants. Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. :217–231.

Induction is a successful approach for verification of hardware and software systems. A common practice is to model a system using logical formulas, and then use a decision procedure to verify that some logical formula is an inductive safety invariant for the system. A key ingredient in this approach is coming up with the inductive invariant, which is known as invariant inference. This is a major difficulty, and it is often left for humans or addressed by sound but incomplete abstract interpretation. This paper is motivated by the problem of inductive invariants in shape analysis and in distributed protocols. This paper approaches the general problem of inferring first-order inductive invariants by restricting the language L of candidate invariants. Notice that the problem of invariant inference in a restricted language L differs from the safety problem, since a system may be safe and still not have any inductive invariant in L that proves safety. Clearly, if L is finite (and if testing an inductive invariant is decidable), then inferring invariants in L is decidable. This paper presents some interesting cases when inferring inductive invariants in L is decidable even when L is an infinite language of universal formulas. Decidability is obtained by restricting L and defining a suitable well-quasi-order on the state space. We also present some undecidability results that show that our restrictions are necessary. We further present a framework for systematically constructing infinite languages while keeping the invariant inference problem decidable. We illustrate our approach by showing the decidability of inferring invariants for programs manipulating linked-lists, and for distributed protocols.

Li, Feiyan, Li, Wei, Huo, Hongtao, Ran, Qiong.  2019.  Decision Fusion Based on Joint Low Rank and Sparse Component for Hyperspectral Image Classification. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :401—404.

Sparse and low rank matrix decomposition is a method that has recently been developed for estimating different components of hyperspectral data. The rank component is capable of preserving global data structures of data, while a sparse component can select the discriminative information by preserving details. In order to take advantage of both, we present a novel decision fusion based on joint low rank and sparse component (DFJLRS) method for hyperspectral imagery in this paper. First, we analyzed the effects of different components on classification results. Then a novel method adopts a decision fusion strategy which combines a SVM classifier with the information provided by joint sparse and low rank components. With combination of the advantages, the proposed method is both representative and discriminative. The proposed algorithm is evaluated using several hyperspectral images when compared with traditional counterparts.

Nicho, M., Khan, S. N..  2018.  A Decision Matrix Model to Identify and Evaluate APT Vulnerabilities at the User Plane. 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). :1155-1160.

While advances in cyber-security defensive mechanisms have substantially prevented malware from penetrating into organizational Information Systems (IS) networks, organizational users have found themselves vulnerable to threats emanating from Advanced Persistent Threat (APT) vectors, mostly in the form of spear phishing. In this respect, the question of how an organizational user can differentiate between a genuine communication and a similar looking fraudulent communication in an email/APT threat vector remains a dilemma. Therefore, identifying and evaluating the APT vector attributes and assigning relative weights to them can assist the user to make a correct decision when confronted with a scenario that may be genuine or a malicious APT vector. In this respect, we propose an APT Decision Matrix model which can be used as a lens to build multiple APT threat vector scenarios to identify threat attributes and their weights, which can lead to systems compromise.

Verbeek, F., Schmaltz, J..  2014.  A Decision Procedure for Deadlock-Free Routing in Wormhole Networks. Parallel and Distributed Systems, IEEE Transactions on. 25:1935-1944.

Deadlock freedom is a key challenge in the design of communication networks. Wormhole switching is a popular switching technique, which is also prone to deadlocks. Deadlock analysis of routing functions is a manual and complex task. We propose an algorithm that automatically proves routing functions deadlock-free or outputs a minimal counter-example explaining the source of the deadlock. Our algorithm is the first to automatically check a necessary and sufficient condition for deadlock-free routing. We illustrate its efficiency in a complex adaptive routing function for torus topologies. Results are encouraging. Deciding deadlock freedom is co-NP-Complete for wormhole networks. Nevertheless, our tool proves a 13 × 13 torus deadlock-free within seconds. Finding minimal deadlocks is more difficult. Our tool needs four minutes to find a minimal deadlock in a 11 × 11 torus while it needs nine hours for a 12 × 12 network.

Balduccini, Marcello, Griffor, Edward, Huth, Michael, Vishik, Claire, Wollman, David, Kamongi, Patrick.  2019.  Decision Support for Smart Grid: Using Reasoning to Contextualize Complex Decision Making. 2019 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1—6.

The smart grid is a complex cyber-physical system (CPS) that poses challenges related to scale, integration, interoperability, processes, governance, and human elements. The US National Institute of Standards and Technology (NIST) and its government, university and industry collaborators, developed an approach, called CPS Framework, to reasoning about CPS across multiple levels of concern and competency, including trustworthiness, privacy, reliability, and regulatory. The approach uses ontology and reasoning techniques to achieve a greater understanding of the interdependencies among the elements of the CPS Framework model applied to use cases. This paper demonstrates that the approach extends naturally to automated and manual decision-making for smart grids: we apply it to smart grid use cases, and illustrate how it can be used to analyze grid topologies and address concerns about the smart grid. Smart grid stakeholders, whose decision making may be assisted by this approach, include planners, designers and operators.

Salamai, Abdullah, Hussain, Omar, Saberi, Morteza.  2019.  Decision Support System for Risk Assessment Using Fuzzy Inference in Supply Chain Big Data. 2019 International Conference on High Performance Big Data and Intelligent Systems (HPBD IS). :248–253.

Currently, organisations find it difficult to design a Decision Support System (DSS) that can predict various operational risks, such as financial and quality issues, with operational risks responsible for significant economic losses and damage to an organisation's reputation in the market. This paper proposes a new DSS for risk assessment, called the Fuzzy Inference DSS (FIDSS) mechanism, which uses fuzzy inference methods based on an organisation's big data collection. It includes the Emerging Association Patterns (EAP) technique that identifies the important features of each risk event. Then, the Mamdani fuzzy inference technique and several membership functions are evaluated using the firm's data sources. The FIDSS mechanism can enhance an organisation's decision-making processes by quantifying the severity of a risk as low, medium or high. When it automatically predicts a medium or high level, it assists organisations in taking further actions that reduce this severity level.

Jim, Lincy Elizebeth, Chacko, Jim.  2019.  Decision Tree based AIS strategy for Intrusion Detection in MANET. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :1191–1195.
Mobile Ad hoc Networks (MANETs) are wireless networks that are void of fixed infrastructure as the communication between nodes are dependent on the liaison of each node in the network. The efficacy of MANET in critical scenarios like battlefield communications, natural disaster require new security strategies and policies to guarantee the integrity of nodes in the network. Due to the inherent frailty of MANETs, new security measures need to be developed to defend them. Intrusion Detection strategy used in wired networks are unbefitting for wireless networks due to reasons not limited to resource constraints of participating nodes and nature of communication. Nodes in MANET utilize multi hop communication to forward packets and this result in consumption of resources like battery and memory. The intruder or cheat nodes decide to cooperate or non-cooperate with other nodes. The cheat nodes reduce the overall effectiveness of network communications such as reduced packet delivery ratio and sometimes increase the congestion of the network by forwarding the packet to wrong destination and causing packets to take more times to reach the appropriate final destination. In this paper a decision tree based artificial immune system (AIS) strategy is utilized to detect such cheat nodes thereby improving the efficiency of packet delivery.
Talebi, Shahriar, Simaan, Marwan A., Qu, Zhihua.  2019.  Decision-Making in Complex Dynamical Systems of Systems With One Opposing Subsystem. 2019 18th European Control Conference (ECC). :2789—2795.
Many complex dynamical systems consist of a large number of interacting subsystems that operate harmoniously and make decisions that are designed for the benefit of the entire enterprise. If, in an attempt to disrupt the operation of the entire system, one subsystem gets attacked and is made to operate in a manner that is adversarial with the others, then the entire system suffers, resulting in an adversarial decision-making environment among its subsystems. Such an environment may affect not only the decision-making process of the attacked subsystem but also possibly the other remaining subsystems as well. The disruption caused by the attacked subsystem may cause the remaining subsystems to either coalesce as a unified team making team-based decisions, or disintegrate and act as independent decision-making entities. The decision-making process in these types of complex systems of systems is best analyzed within the general framework of cooperative and non-cooperative game theory. In this paper, we will develop an analysis that provides a theoretical basis for modeling the decision-making process in such complex systems. We show how cooperation among the subsystems can produce Noninferior Nash Strategies (NNS) that are fair and acceptable to all subsystems within the team while at the same time provide the subsystems in the team with the security of the Nash equilibrium against the opposing attacked subsystem. We contrast these strategies with the all Nash Strategies (NS) that would result if the operation of the entire system disintegrated and became adversarial among all subsystems as a result of the attack. An example of a system consisting of three subsystems with one opposing subsystem as a result of an attack is included to illustrate the results.
Felmlee, D., Lupu, E., McMillan, C., Karafili, E., Bertino, E..  2017.  Decision-making in policy governed human-autonomous systems teams. 2017 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computed, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1–6.

Policies govern choices in the behavior of systems. They are applied to human behavior as well as to the behavior of autonomous systems but are defined differently in each case. Generally humans have the ability to interpret the intent behind the policies, to bring about their desired effects, even occasionally violating them when the need arises. In contrast, policies for automated systems fully define the prescribed behavior without ambiguity, conflicts or omissions. The increasing use of AI techniques and machine learning in autonomous systems such as drones promises to blur these boundaries and allows us to conceive in a similar way more flexible policies for the spectrum of human-autonomous systems collaborations. In coalition environments this spectrum extends across the boundaries of authority in pursuit of a common coalition goal and covers collaborations between human and autonomous systems alike. In social sciences, social exchange theory has been applied successfully to explain human behavior in a variety of contexts. It provides a framework linking the expected rewards, costs, satisfaction and commitment to explain and anticipate the choices that individuals make when confronted with various options. We discuss here how it can be used within coalition environments to explain joint decision making and to help formulate policies re-framing the concepts where appropriate. Social exchange theory is particularly attractive within this context as it provides a theory with “measurable” components that can be readily integrated in machine reasoning processes.

Chen, Simin.  2012.  Declarative Access Policies Based on Objects, Relationships, and States. Proceedings of the 3rd Annual Conference on Systems, Programming, and Applications: Software for Humanity. :99–100.
Access policies are hard to express in existing programming languages. However, their accurate expression is a prerequisite for many of today's applications. We propose a new language that uses classes, first-class relationships, and first-class states to express access policies in a more declarative and fine-grained way than existing solutions allow.
Shukla, Anjali, Rakshit, Arnab, Konar, Amit, Ghosh, Lidia, Nagar, Atulya K..  2018.  Decoding of Mind-Generated Pattern Locks for Security Checking Using Type-2 Fuzzy Classifier. 2018 IEEE Symposium Series on Computational Intelligence (SSCI). :1976-1981.

Brain Computer Interface (BCI) aims at providing a better quality of life to people suffering from neuromuscular disability. This paper establishes a BCI paradigm to provide a biometric security option, used for locking and unlocking personal computers or mobile phones. Although it is primarily meant for the people with neurological disorder, its application can safely be extended for the use of normal people. The proposed scheme decodes the electroencephalogram signals liberated by the brain of the subjects, when they are engaged in selecting a sequence of dots in(6×6)2-dimensional array, representing a pattern lock. The subject, while selecting the right dot in a row, would yield a P300 signal, which is decoded later by the brain-computer interface system to understand the subject's intention. In case the right dots in all the 6 rows are correctly selected, the subject would yield P300 signals six times, which on being decoded by a BCI system would allow the subject to access the system. Because of intra-subjective variation in the amplitude and wave-shape of the P300 signal, a type 2 fuzzy classifier has been employed to classify the presence/absence of the P300 signal in the desired window. A comparison of performances of the proposed classifier with others is also included. The functionality of the proposed system has been validated using the training instances generated for 30 subjects. Experimental results confirm that the classification accuracy for the present scheme is above 90% irrespective of subjects.

Nanda, Mangala Gowri, Arun-Kumar, S..  2016.  Decompiling Boolean Expressions from Java™ Bytecode. Proceedings of the 9th India Software Engineering Conference. :59–69.

Java bytecode obfuscates the original structure of a Java expression in the source code. So a simple expression such as (c1 {\textbackslash}textbar{\textbackslash}textbar c2) or (c1 && c2) may be captured in the bytecode in 4 different ways (as shown in the paper). And correspondingly, when we reconvert the bytecode back into Java source code, there are four different ways this may happen. Further, although gotos are not permitted in the Java source code, the bytecode is full of gotos. If you were to blindly convert the bytecode into Java source code, then you would replace a goto by a labeled break. A labeled break has the advantage that it only allows you to break out of a block structure and (unlike a setjump) does not permit you to jump arbitrarily into a block structure. So while the data structures used in the regenerated Java source code are still relatively "clean" arbitrary usage of labeled breaks makes for unreadable code (as we show in the paper). And this can be a point of concern, since decompilation is generally related to debugging code. Instead of dumping arbitrary labeled breaks, we try to reconstruct the original expression, in terms of && and {\textbackslash}textbar{\textbackslash}textbar clauses as well as ternary operators "?:" (c0 ? c1 : c2); Thus our goal is quite simply to regenerate, without using goto or labeled breaks, the expressions as close to the original as possible (it is not possible to guarantee an exact match). In this paper we explain what is the state of the art in Java decompilers for decoding complex expressions. Then we will present our solution. We have implemented the algorithms described here in this paper and give you our experience with it.

Antonopoulos, Timos, Gazzillo, Paul, Hicks, Michael, Koskinen, Eric, Terauchi, Tachio, Wei, Shiyi.  2017.  Decomposition Instead of Self-composition for Proving the Absence of Timing Channels. Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation. :362–375.

We present a novel approach to proving the absence of timing channels. The idea is to partition the program’s execution traces in such a way that each partition component is checked for timing attack resilience by a time complexity analysis and that per-component resilience implies the resilience of the whole program. We construct a partition by splitting the program traces at secret-independent branches. This ensures that any pair of traces with the same public input has a component containing both traces. Crucially, the per-component checks can be normal safety properties expressed in terms of a single execution. Our approach is thus in contrast to prior approaches, such as self-composition, that aim to reason about multiple (k≥ 2) executions at once. We formalize the above as an approach called quotient partitioning, generalized to any k-safety property, and prove it to be sound. A key feature of our approach is a demand-driven partitioning strategy that uses a regex-like notion called trails to identify sets of execution traces, particularly those influenced by tainted (or secret) data. We have applied our technique in a prototype implementation tool called Blazer, based on WALA, PPL, and the brics automaton library. We have proved timing-channel freedom of (or synthesized an attack specification for) 24 programs written in Java bytecode, including 6 classic examples from the literature and 6 examples extracted from the DARPA STAC challenge problems.

Maslovskiy, A., Kolchigin, N., Legenkiy, M., Antyufeyeva, M..  2017.  Decomposition method for complex target RCS measuring. 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). :156–159.

In this paper a method of monostatic RCS measuring in real conditions for complex shaped objects is proposed. The basic idea of the method is to provide measuring in near field zone for different parts of the object (fragments) separately. This technique is titled "decomposition method". After such measurements all RCS data are summed and one can obtain the average RCS of investigated object. Such method is much more accessible in comparison with natural measurements in far field zone. In this paper the decomposition method is tested numerically. For this a model of complex shape object (tank T-90) is divided into the fragments for some direction of view. It is shown that the sum of RCS of the fragments is close to the full object RCS for corresponding direction.

Martin, Jeremy, Rye, Erik, Beverly, Robert.  2016.  Decomposition of MAC Address Structure for Granular Device Inference. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :78–88.

Common among the wide variety of ubiquitous networked devices in modern use is wireless 802.11 connectivity. The MAC addresses of these devices are visible to a passive adversary, thereby presenting security and privacy threats - even when link or application-layer encryption is employed. While it is well-known that the most significant three bytes of a MAC address, the OUI, coarsely identify a device's manufacturer, we seek to better understand the ways in which the remaining low-order bytes are allocated in practice. From a collection of more than two billion 802.11 frames observed in the wild, we extract device and model information details for over 285K devices, as leaked by various management frames and discovery protocols. From this rich dataset, we characterize overall device populations and densities, vendor address allocation policies and utilization, OUI sharing among manufacturers, discover unique models occurring in multiple OUIs, and map contiguous address blocks to specific devices. Our mapping thus permits fine-grained device type and model predictions for unknown devices solely on the basis of their MAC address. We validate our inferences on both ground-truth data and a third-party dataset, where we obtain high accuracy. Our results empirically demonstrate the extant structure of the low-order MAC bytes due to manufacturer's sequential allocation policies, and the security and privacy concerns therein.

Jhumka, Arshad, Bradbury, Matthew.  2017.  Deconstructing Source Location Privacy-Aware Routing Protocols. Proceedings of the Symposium on Applied Computing. :431–436.

Source location privacy (SLP) is becoming an important property for a large class of security-critical wireless sensor network applications such as monitoring and tracking. Much of the previous work on SLP have focused on the development of various protocols to enhance the level of SLP imparted to the network, under various attacker models and other conditions. Others works have focused on analysing the level of SLP being imparted by a specific protocol. In this paper, we focus on deconstructing routing-based SLP protocols to enable a better understanding of their structure. We argue that the SLP-aware routing protocols can be classified into two main categories, namely (i) spatial and (ii) temporal. Based on this, we show that there are three important components, namely (i) decoy selection, (ii) use and routing of control messages and (iii) use and routing of decoy messages. The decoy selection technique imparts the spatial or temporal property of SLP-aware routing. We show the viability of the framework through the construction of well-known SLP-aware routing protocols using the identified components.