Biblio
We rely on network infrastructure to deliver critical services and ensure security. Yet networks today have reached a level of complexity that is far beyond our ability to have confidence in their correct behavior – resulting in significant time investment and security vulnerabilities that can cost millions of dollars, or worse. Motivated by this need for rigorous understanding of complex networks, I will give an overview of our or Science of Security lablet project, A Hypothesis Testing Framework for Network Security.
First, I will discuss the emerging field of network verification, which transforms network security by rigorously checking that intended behavior is correctly realized across the live running network. Our research developed a technique called data plane verification, which has discovered problems in operational environments and can verify hypotheses and security policies with millisecond-level latency in dynamic networks. In just a few years, data plane verification has moved from early research prototypes to production deployment. We have built on this technique to reason about hypotheses even under the temporal uncertainty inherent in a large distributed network. Second, I will discuss a new approach to reasoning about networks as databases that we can query to determine answers to behavioral questions and to actively control the network. This talk will span work by a large group of folks, including Anduo Wang, Wenxu an Zhou, Dong Jin, Jason Croft, Matthew Caesar, Ahmed Khurshid, and Xuan Zou.
Presented at the Illinois ITI Joint Trust and Security/Science of Security Seminar, September 15, 2015.
Presented at NSA SoS Quarterly Meeting, July 2016 and November 2016
Presented at the Illinois SoS Bi-Weekly Meeting, February 2015.
Shared resources are an essential part of cloud computing. Virtualization and multi-tenancy provide a number of advantages for increasing resource utilization and for providing on demand elasticity. However, these cloud features also raise many security concerns related to cloud computing resources. In this paper, we propose an architecture and approach for leveraging the virtualization technology at the core of cloud computing to perform intrusion detection security using hypervisor performance metrics. Through the use of virtual machine performance metrics gathered from hypervisors, such as packets transmitted/received, block device read/write requests, and CPU utilization, we demonstrate and verify that suspicious activities can be profiled without detailed knowledge of the operating system running within the virtual machines. The proposed hypervisor-based cloud intrusion detection system does not require additional software installed in virtual machines and has many advantages compared to host-based and network based intrusion detection systems which can complement these traditional approaches to intrusion detection.
Hypervisor activity is designed to be hidden from guest Virtual Machines (VM) as well as external observers. In this paper, we demonstrate that this does not always occur. We present a method by which an external observer can learn sensitive information about hypervisor internals, such as VM scheduling or hypervisor-level monitoring schemes, by observing a VM. We refer to this capability as Hypervisor Introspection (HI).
HI can be viewed as the inverse process of the well-known Virtual Machine Introspection (VMI) technique. VMI is a technique to extract VMs’ internal state from the hypervi- sor, facilitating the implementation of reliability and security monitors[1]. Conversely, HI is a technique that allows VMs to autonomously extract hypervisor information. This capability enables a wide range of attacks, for example, learning a hypervisor’s properties (version, configuration, etc.), defeating hypervisor-level monitoring systems, and compromising the confidentiality of co-resident VMs. This paper focuses on the discovery of a channel to implement HI, and then leveraging that channel for a novel attack against traditional VMI.
In order to perform HI, there must be a method of extracting information from the hypervisor. Since this information is intentionally hidden from a VM, we make use of a side channel. When the hypervisor checks a VM using VMI, VM execution (e.g. network communication between a VM and a remote system) must pause. Therefore, information regarding the hypervisor’s activity can be leaked through this suspension of execution. We call this side channel the VM suspend side channel, illustrated in Fig. 1. As a proof of concept, this paper presents how correlating the results of in-VM micro- benchmarking and out-of-VM reference monitoring can be used to determine when hypervisor-level monitoring tools are vulnerable to attacks.
Classifying Hyperspectral images with few training samples is a challenging problem. The generative adversarial networks (GAN) are promising techniques to address the problems. GAN constructs an adversarial game between a discriminator and a generator. The generator generates samples that are not distinguishable by the discriminator, and the discriminator determines whether or not a sample is composed of real data. In this paper, by introducing multilayer features fusion in GAN and a dynamic neighborhood voting mechanism, a novel algorithm for HSIs classification based on 1-D GAN was proposed. Extracting and fusing multiple layers features in discriminator, and using a little labeled samples, we fine-tuned a new sample 1-D CNN spectral classifier for HSIs. In order to improve the accuracy of the classification, we proposed a dynamic neighborhood voting mechanism to classify the HSIs with spatial features. The obtained results show that the proposed models provide competitive results compared to the state-of-the-art methods.
In monolithic operating system (OS), any error of system software can be exploit to destroy the whole system. The situation becomes much more severe in cloud environment, when the kernel and the hypervisor share the same address space. The security of guest Virtual Machines (VMs), both sensitive data and vital code, can no longer be guaranteed, once the hypervisor is compromised. Therefore, it is essential to deploy some security approaches to secure VMs, regardless of the hypervisor is safe or not. Some approaches propose microhypervisor reducing attack surface, or a new software requiring a higher privilege level than hypervisor. In this paper, we propose a novel approach, named HyperPS, which separates the fundamental and crucial privilege into a new trusted environment in order to monitor hypervisor. A pivotal condition for HyperPS is that hypervisor must not be allowed to manipulate any security-sensitive system resources, such as page tables, system control registers, interaction between VM and hypervisor as well as VM memory mapping. Besides, HyperPS proposes a trusted environment which does not rely on any higher privilege than the hypervisor. We have implemented a prototype for KVM hypervisor on x86 platform with multiple VMs running Linux. KVM with HyperPS can be applied to current commercial cloud computing industry with portability. The security analysis shows that this approach can provide effective monitoring against attacks, and the performance evaluation confirms the efficiency of HyperPS.
In this article, to deal with data security requirements of electric vehicle users, a key management scheme for smart charging has been studied. According to the characteristics of the network, three elements and a two-subnetwork model between the charging and the electric vehicle users have been designed. Based on the hypergraph theory, the hypergraph structure of the smart charging network is proposed. And the key management scheme SCHKM is designed to satisfy the operational and security requirements of this structure. The efficiency of SCHKM scheme is analyzed from the cost experiment of key generation and key storage. The experimental results show that compared with the LKH, OFT and GKMP, the proposed key management scheme has obvious advantages in multi-user and key generation cost.
This paper presents HyperFlow, a processor that enforces secure information flow, including control over timing channels. The design and implementation of HyperFlow offer security assurance because it is implemented using a security-typed hardware description language that enforces secure information flow. Unlike prior processors that aim to enforce simple information-flow policies such as noninterference, HyperFlow allows complex information flow policies that can be configured at run time. Its fine-grained, decentralized information flow mechanisms allow controlled communication among mutually distrusting processes and system calls into different security domains. We address the significant challenges in designing such a processor architecture with contributions in both the hardware architecture and the security type system. The paper discusses the architecture decisions that make the processor secure and describes ChiselFlow, a new secure hardware description language supporting lightweight information-flow enforcement. The HyperFlow architecture is prototyped on a full-featured processor that offers a complete RISC-V instruction set, and is shown to add moderate overhead to area and performance.
Third-party software daemons called host agents are increasingly responsible for a modern host's security, automation, and monitoring tasks. Because of their location within the host, these agents are at risk of manipulation by malware and users. Additionally, in virtualized environments where multiple adjacent guests each run their own set of agents, the cumulative resources that agents consume adds up rapidly. Consolidating agents onto the hypervisor can address these problems, but places a technical burden on agent developers. This work presents a development methodology to re-engineer a host agent in to a hyperagent, an out-of-guest agent that gains unique hypervisor-based advantages while retaining its original in-guest capabilities. This three-phase methodology makes integrating Virtual Machine Introspection (VMI) functionality in to existing code easier and more accessible, minimizing an agent developer's re-engineering effort. The benefits of hyperagents are illustrated by porting the GRR live forensics agent, which retains 89% of its codebase, uses 40% less memory than its in-guest counterparts, and enables a 4.9x speedup for a representative data-intensive workload. This work shows that a conventional off-the-shelf host agent can be feasibly transformed into a hyperagent and provide a powerful, efficient tool for defending virtualized systems.
The growing popularity of Android applications makes them vulnerable to security threats. There exist several studies that focus on the analysis of the behaviour of Android applications to detect the repackaged and malicious ones. These techniques use a variety of features to model the application's behaviour, among which the calls to Android API, made by the application components, are shown to be the most reliable. To generate the APIs that an application calls is not an easy task. This is because most malicious applications are obfuscated and do not come with the source code. This makes the problem of identifying the API methods invoked by an application an interesting research issue. In this paper, we present HyDroid, a hybrid approach that combines static and dynamic analysis to generate API call traces from the execution of an application's services. We focus on services because they contain key characteristics that allure attackers to misuse them. We show that HyDroid can be used to extract API call trace signatures of several malware families.
Due to the large quantity and diversity of content being easily available to users, recommender systems (RS) have become an integral part of nearly every online system. They allow users to resolve the information overload problem by proactively generating high-quality personalized recommendations. Trust metrics help leverage preferences of similar users and have led to improved predictive accuracy which is why they have become an important consideration in the design of RSs. We argue that there are additional aspects of trust as a human notion, that can be integrated with collaborative filtering techniques to suggest to users items that they might like. In this paper, we present an approach for the top-N recommendation task that computes prediction scores for items as a user specific combination of global and local trust models to capture differences in preferences. Our experiments show that the proposed method improves upon the standard trust model and outperforms competing top-N recommendation approaches on real world data by upto 19%.
Security is often treated as secondary or a non- functional feature of software which influences the approach of vendors and developers when describing their products often in terms of what it can do (Use Cases) or offer customers. However, tides are beginning to change as more experienced customers are beginning to demand for more secure and reliable software giving priority to confidentiality, integrity and privacy while using these applications. This paper presents the MOTH (Modeling Threats with Hybrid Techniques) framework designed to help organizations secure their software assets from attackers in order to prevent any instance of SQL Injection Attacks (SQLIAs). By focusing on the attack vectors and vulnerabilities exploited by the attackers and brainstorming over possible attacks, developers and security experts can better strategize and specify security requirements required to create secure software impervious to SQLIAs. A live web application was considered in this research work as a case study and results obtained from the hybrid models extensively exposes the vulnerabilities deep within the application and proposed resolution plans for blocking those security holes exploited by SQLIAs.
It is a well-known fact that the use of Cloud Computing is becoming very common all over the world for data storage and analysis. But the proliferation of the threats in cloud is also their; threats like Information breaches, Data thrashing, Cloud account or Service traffic hijacking, Insecure APIs, Denial of Service, Malicious Insiders, Abuse of Cloud services, Insufficient due Diligence and Shared Technology Vulnerable. This paper tries to come up with the solution for the threat (Denial of Service) in cloud. We attempt to give our newly proposed model by the hybridization of Genetic algorithm and extension of Diffie Hellman algorithm and tries to make cloud transmission secure from upcoming intruders.
This paper presents hybrid system to minimize damage by zero-day attack. Proposed system consists of signature-based NIDPS, honeypot and temporary queue. When proposed system receives packet from external network, packet which is known for attack packet is dropped by signature-based NIDPS. Passed packets are redirected to honeypot, because proposed system assumes that all packets which pass NIDPS have possibility of zero-day attack. Redirected packet is stored in temporary queue and if the packet has possibility of zero-day attack, honeypot extracts signature of the packet. Proposed system creates rule that match rule format of NIDPS based on extracted signatures and updates the rule. After the rule update is completed, temporary queue sends stored packet to NIDPS then packet with risk of attack can be dropped. Proposed system can reduce time to create and apply rule which can respond to unknown attack packets. Also, it can drop packets that have risk of zero-day attack in real time.