Visible to the public Biblio

Filters: First Letter Of Title is K  [Clear All Filters]
A B C D E F G H I J [K] L M N O P Q R S T U V W X Y Z   [Show ALL]
K
Jiang, Y., Hui, Q..  2017.  Kalman Filter with Diffusion Strategies for Detecting Power Grid False Data Injection Attacks. 2017 IEEE International Conference on Electro Information Technology (EIT). :254–259.
Electronic power grid is a distributed network used for transferring electricity and power from power plants to consumers. Based on sensor readings and control system signals, power grid states are measured and estimated. As a result, most conventional attacks, such as denial-of-service attacks and random attacks, could be found by using the Kalman filter. However, false data injection attacks are designed against state estimation models. Currently, distributed Kalman filtering is proved effective in sensor networks for detection and estimation problems. Since meters are distributed in smart power grids, distributed estimation models can be used. Thus in this paper, we propose a diffusion Kalman filter for the power grid to have a good performance in estimating models and to effectively detect false data injection attacks.
Chen, Yu, Zaki, Mohammed J..  2017.  KATE: K-Competitive Autoencoder for Text. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :85–94.

Autoencoders have been successful in learning meaningful representations from image datasets. However, their performance on text datasets has not been widely studied. Traditional autoencoders tend to learn possibly trivial representations of text documents due to their confoundin properties such as high-dimensionality, sparsity and power-law word distributions. In this paper, we propose a novel k-competitive autoencoder, called KATE, for text documents. Due to the competition between the neurons in the hidden layer, each neuron becomes specialized in recognizing specific data patterns, and overall the model can learn meaningful representations of textual data. A comprehensive set of experiments show that KATE can learn better representations than traditional autoencoders including denoising, contractive, variational, and k-sparse autoencoders. Our model also outperforms deep generative models, probabilistic topic models, and even word representation models (e.g., Word2Vec) in terms of several downstream tasks such as document classification, regression, and retrieval.

Chhetri, Sujit Rokka, Canedo, Arquimedes, Faruque, Mohammad Abdullah Al.  2016.  KCAD: Kinetic Cyber-attack Detection Method for Cyber-physical Additive Manufacturing Systems. Proceedings of the 35th International Conference on Computer-Aided Design. :74:1–74:8.

Additive Manufacturing (AM) uses Cyber-Physical Systems (CPS) (e.g., 3D Printers) that are vulnerable to kinetic cyber-attacks. Kinetic cyber-attacks cause physical damage to the system from the cyber domain. In AM, kinetic cyber-attacks are realized by introducing flaws in the design of the 3D objects. These flaws may eventually compromise the structural integrity of the printed objects. In CPS, researchers have designed various attack detection method to detect the attacks on the integrity of the system. However, in AM, attack detection method is in its infancy. Moreover, analog emissions (such as acoustics, electromagnetic emissions, etc.) from the side-channels of AM have not been fully considered as a parameter for attack detection. To aid the security research in AM, this paper presents a novel attack detection method that is able to detect zero-day kinetic cyber-attacks on AM by identifying anomalous analog emissions which arise as an outcome of the attack. This is achieved by statistically estimating functions that map the relation between the analog emissions and the corresponding cyber domain data (such as G-code) to model the behavior of the system. Our method has been tested to detect potential zero-day kinetic cyber-attacks in fused deposition modeling based AM. These attacks can physically manifest to change various parameters of the 3D object, such as speed, dimension, and movement axis. Accuracy, defined as the capability of our method to detect the range of variations introduced to these parameters as a result of kinetic cyber-attacks, is 77.45%.

Nishioka, Chifumi, Scherp, Ansgar.  2017.  Keeping Linked Open Data Caches Up-to-Date by Predicting the Life-Time of RDF Triples. Proceedings of the International Conference on Web Intelligence. :73–80.

Many Linked Open Data applications require fresh copies of RDF data at their local repositories. Since RDF documents constantly change and those changes are not automatically propagated to the LOD applications, it is important to regularly visit the RDF documents to refresh the local copies and keep them up-to-date. For this purpose, crawling strategies determine which RDF documents should be preferentially fetched. Traditional crawling strategies rely only on how an RDF document has been modified in the past. In contrast, we predict on the triple level whether a change will occur in the future. We use the weekly snapshots of the DyLDO dataset as well as the monthly snapshots of the Wikidata dataset. First, we conduct an in-depth analysis of the life span of triples in RDF documents. Through the analysis, we identify which triples are stable and which are ephemeral. We introduce different features based on the triples and apply a simple but effective linear regression model. Second, we propose a novel crawling strategy based on the linear regression model. We conduct two experimental setups where we vary the amount of available bandwidth as well as iteratively observe the quality of the local copies over time. The results demonstrate that the novel crawling strategy outperforms the state of the art in both setups.

Azarderakhsh, Reza, Jao, David, Kalach, Kassem, Koziel, Brian, Leonardi, Christopher.  2016.  Key Compression for Isogeny-Based Cryptosystems. Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography. :1–10.

We present a method for key compression in quantumresistant isogeny-based cryptosystems, which allows a reduction in and transmission costs of per-party public information by a factor of two, with no e ect on security. We achieve this reduction by associating a canonical choice of elliptic curve to each j-invariant, and representing elements on the curve as linear combinations with respect to a canonical choice of basis. This method of compressing public information can be applied to numerous isogeny-based protocols, such as key exchange, zero-knowledge identi cation, and public-key encryption. We performed personal computer and ARM implementations of the key exchange with compression and decompression in C and provided timing results, showing the computational cost of key compression and decompression at various security levels. Our results show that isogeny-based cryptosystems achieve by far the smallest possible key sizes among all existing families of post-quantum cryptosystems at practical security levels; e.g. 3073-bit public keys at the quantum 128-bit security level, comparable to (non-quantum) RSA key sizes.

Leonardi, Christopher, Koziel, Brian, Kalach, Kassem, Jao, David, Azarderakhsh, Reza.  2016.  Key Compression for Isogeny-Based Cryptosystems.

We present a method for key compression in quantumresistant isogeny-based cryptosystems, which allows a reduction in and transmission costs of per-party public information by a factor of two, with no e ect on security. We achieve this reduction by associating a canonical choice of elliptic curve to each j-invariant, and representing elements on the curve as linear combinations with respect to a canonical choice of basis. This method of compressing public information can be applied to numerous isogeny-based protocols, such as key exchange, zero-knowledge identi cation, and public-key encryption. We performed personal computer and ARM implementations of the key exchange with compression and decompression in C and provided timing results, showing the computational cost of key compression and decompression at various security levels. Our results show that isogeny-based cryptosystems achieve by far the smallest possible key sizes among all existing families of post-quantum cryptosystems at practical security levels; e.g. 3073-bit public keys at the quantum 128-bit security level, comparable to (non-quantum) RSA key sizes.

Hajomer, A. A. E., Yang, X., Sultan, A., Sun, W., Hu, W..  2018.  Key Generation and Distribution Using Phase Fluctuation in Classical Fiber Channel. 2018 20th International Conference on Transparent Optical Networks (ICTON). :1–3.

We propose a secure key generation and distribution scheme for data encryption in classical optical fiber channel. A Delay interferometer (DI) is used to track the random phase fluctuation inside fiber, while the reconfigurable lengths of polarization-maintaining (PM) fiber are set as the source of optical phase fluctuations. The output signals from DI are extracted as the secret key and shared between the two-legal transmitter and receiver. Because of the randomness of local environment and the uniqueness of fiber channel, the phase fluctuation between orthogonal polarization modes (OPMs) can be used as secure keys to enhance the level of security in physical layer. Experimentally, we realize the random key generation and distribution over 25-km standard single-mode fiber (SSMF). Moreover, the proposed key generation scheme has the advantages of low cost, compatible with current optical fiber networks and long distance transmission with optical amplifiers.

Buchade, A.R., Ingle, R..  2014.  Key Management for Cloud Data Storage: Methods and Comparisons. Advanced Computing Communication Technologies (ACCT), 2014 Fourth International Conference on. :263-270.

Cloud computing paradigm is being used because of its low up-front cost. In recent years, even mobile phone users store their data at Cloud. Customer information stored at Cloud needs to be protected against potential intruders as well as cloud service provider. There is threat to the data in transit and data at cloud due to different possible attacks. Organizations are transferring important information to the Cloud that increases concern over security of data. Cryptography is common approach to protect the sensitive information in Cloud. Cryptography involves managing encryption and decryption keys. In this paper, we compare key management methods, apply key management methods to various cloud environments and analyze symmetric key cryptography algorithms.

Gandino, F., Montrucchio, B., Rebaudengo, M..  2014.  Key Management for Static Wireless Sensor Networks With Node Adding. Industrial Informatics, IEEE Transactions on. 10:1133-1143.

Wireless sensor networks offer benefits in several applications but are vulnerable to various security threats, such as eavesdropping and hardware tampering. In order to reach secure communications among nodes, many approaches employ symmetric encryption. Several key management schemes have been proposed in order to establish symmetric keys. The paper presents an innovative key management scheme called random seed distribution with transitory master key, which adopts the random distribution of secret material and a transitory master key used to generate pairwise keys. The proposed approach addresses the main drawbacks of the previous approaches based on these techniques. Moreover, it overperforms the state-of-the-art protocols by providing always a high security level.

Kodali, Ravi Kishore.  2014.  Key management technique for WSNs. Region 10 Symposium, 2014 IEEE. :540-545.

In Wireless sensor networks (WSNs), many tiny sensor nodes communicate using wireless links and collaborate with each other. The data collected by each of the nodes is communicated towards the gateway node after carrying out aggregation of the data by different nodes. It is necessary to secure the data collected by the WSN nodes while they communicate among themselves using multi hop wireless links. To meet this objective it is required to make use of energy efficient cryptographic algorithms so that the same can be ported over the resource constrained nodes. It is needed to create trust initially among the WSN nodes while using any of the cryptographic algorithms. Towards this, a key management technique needs to be made use of. Due to the resource constrained nature of the WSN nodes and the remote deployment of the nodes, an implementation of conventional key management techniques is infeasible. This work proposes a key management technique, with its reduced resource overheads, which is highly suited to be used in hierarchical WSN applications. Both Identity based key management (IBK) and probabilistic key pre-distribution schemes are made use of at different hierarchical levels. The proposed key management technique has been implemented using IRIS WSN nodes. A comparison of resource overheads has also been carried out.

Singh, Neha, Singh, Saurabh, Kumar, Naveen, Kumar, Rakesh.  2016.  Key Management Techniques for Securing MANET. Proceedings of the ACM Symposium on Women in Research 2016. :77–80.

A Mobile Ad hoc Network (MANET) is a spontaneous network consisting of wireless nodes which are mobile and self-configuring in nature. Devices in MANET can move freely in any direction independently and change its link frequently to other devices. MANET does not have centralized infrastructure and its characteristics makes this network vulnerable to various kinds of attacks. Data transfer is a major problem due to its nature of unreliable wireless medium. Commonly used technique for secure transmission in wireless network is cryptography. Use of cryptography key is often involved in most of cryptographic techniques. Key management is main component in security issues of MANET and various schemes have been proposed for it. In this paper, a study on various kinds of key management techniques in MANET is presented.

Kurnikov, Arseny, Paverd, Andrew, Mannan, Mohammad, Asokan, N..  2018.  Keys in the Clouds: Auditable Multi-Device Access to Cryptographic Credentials. Proceedings of the 13th International Conference on Availability, Reliability and Security. :40:1-40:10.

Personal cryptographic keys are the foundation of many secure services, but storing these keys securely is a challenge, especially if they are used from multiple devices. Storing keys in a centralized location, like an Internet-accessible server, raises serious security concerns (e.g. server compromise). Hardware-based Trusted Execution Environments (TEEs) are a well-known solution for protecting sensitive data in untrusted environments, and are now becoming available on commodity server platforms. Although the idea of protecting keys using a server-side TEE is straight-forward, in this paper we validate this approach and show that it enables new desirable functionality. We describe the design, implementation, and evaluation of a TEE-based Cloud Key Store (CKS), an online service for securely generating, storing, and using personal cryptographic keys. Using remote attestation, users receive strong assurance about the behaviour of the CKS, and can authenticate themselves using passwords while avoiding typical risks of password-based authentication like password theft or phishing. In addition, this design allows users to i) define policy-based access controls for keys; ii) delegate keys to other CKS users for a specified time and/or a limited number of uses; and iii) audit all key usages via a secure audit log. We have implemented a proof of concept CKS using Intel SGX and integrated this into GnuPG on Linux and OpenKeychain on Android. Our CKS implementation performs approximately 6,000 signature operations per second on a single desktop PC. The latency is in the same order of magnitude as using locally-stored keys, and 20x faster than smart cards.

Idrus, S. Z. Syed, Cherrier, E., Rosenberger, C., Mondal, S., Bours, P..  2015.  Keystroke dynamics performance enhancement with soft biometrics. IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015). :1–7.

It is accepted that the way a person types on a keyboard contains timing patterns, which can be used to classify him/her, is known as keystroke dynamics. Keystroke dynamics is a behavioural biometric modality, whose performances, however, are worse than morphological modalities such as fingerprint, iris recognition or face recognition. To cope with this, we propose to combine keystroke dynamics with soft biometrics. Soft biometrics refers to biometric characteristics that are not sufficient to authenticate a user (e.g. height, gender, skin/eye/hair colour). Concerning keystroke dynamics, three soft categories are considered: gender, age and handedness. We present different methods to combine the results of a classical keystroke dynamics system with such soft criteria. By applying simple sum and multiply rules, our experiments suggest that the combination approach performs better than the classification approach with best result of 5.41% of equal error rate. The efficiency of our approaches is illustrated on a public database.

Amir, K. C., Goulart, A., Kantola, R..  2016.  Keyword-driven security test automation of Customer Edge Switching (CES) architecture. 2016 8th International Workshop on Resilient Networks Design and Modeling (RNDM). :216–223.

Customer Edge Switching (CES) is an experimental Internet architecture that provides reliable and resilient multi-domain communications. It provides resilience against security threats because domains negotiate inbound and outbound policies before admitting new traffic. As CES and its signalling protocols are being prototyped, there is a need for independent testing of the CES architecture. Hence, our research goal is to develop an automated test framework that CES protocol designers and early adopters can use to improve the architecture. The test framework includes security, functional, and performance tests. Using the Robot Framework and STRIDE analysis, in this paper we present this automated security test framework. By evaluating sample test scenarios, we show that the Robot Framework and our CES test suite have provided productive discussions about this new architecture, in addition to serving as clear, easy-to-read documentation. Our research also confirms that test automation can be useful to improve new protocol architectures and validate their implementation.

Hutton, W. J., Dang, Z., Cui, C..  2017.  Killing the password, part 1: An exploratory analysis of walking signatures. 2017 Computing Conference. :808–813.
For over 50 years, the password has been a frequently used, yet relatively ineffective security mechanism for user authentication. The ubiquitous smartphone is a compact suite of sensors, computation, and network connectivity that corporations are beginning to embrace under BYOD (bring your own device). In this paper, we hypothesize that each of us has a unique “walking signature” that a smartphone can recognize and use to provide passive, continuous authentication. This paper describes the exploratory data analysis of a small, cross-sectional, empirical study of users' walking signatures as observed by a smartphone. We then describe an identity management system that could use a walking signature as a means to passively and continuously authenticate a user and manage complex passwords to improve security.
Wang, Zhao, Xi, Yuan.  2016.  A Kind of De-noising and Segmentation Method for Hollow CAPTCHAs with Noise Arcs. Proceedings of the Fifth International Conference on Network, Communication and Computing. :68–72.
While many text-based CAPTCHA schemes have been broken, hollow CAPTCHAs as a new technology have been used by many websites. The generation method of currently used hollow CAPTCHAs is investigated, we found there is color difference between the boundary of characters contour lines and noise arcs. An algorithm of noise arcs removal to deal with this vulnerability is proposed. Furthermore, a de-noising and segmentation scheme for hollow CAPTCHAs with noise arcs is presented. The scheme is verified by the real CAPTCHA data from the website Sina Weibo. The success segmentation rate is 77%. Finally, some advice is given to improve the design of hollow CAPTCHA.
Miao Yingkai, Chen Jia.  2014.  A Kind of Identity Authentication under Cloud Computing Environment. Intelligent Computation Technology and Automation (ICICTA), 2014 7th International Conference on. :12-15.

An identity authentication scheme is proposed combining with biometric encryption, public key cryptography of homomorphism and predicate encryption technology under the cloud computing environment. Identity authentication scheme is proposed based on the voice and homomorphism technology. The scheme is divided into four stages, register and training template stage, voice login and authentication stage, authorization stage, and audit stage. The results prove the scheme has certain advantages in four aspects.

Brannsten, M. R., Bloebaum, T. H., Johnsen, F. T., Reitan, B. K..  2017.  Kings Eye: Platform Independent Situational Awareness. 2017 International Conference on Military Communications and Information Systems (ICMCIS). :1–5.

Kings Eye is a platform independent situational awareness prototype for smart devices. Platform independence is important as there are more and more soldiers bringing their own devices, with different operating systems, into the field. The concept of Bring Your Own Device (BYOD) is a low-cost approach to equipping soldiers with situational awareness tools and by this it is important to facilitate and evaluate such solutions.

Qazi, Zafar Ayyub, Penumarthi, Phani Krishna, Sekar, Vyas, Gopalakrishnan, Vijay, Joshi, Kaustubh, Das, Samir R..  2016.  KLEIN: A Minimally Disruptive Design for an Elastic Cellular Core. Proceedings of the Symposium on SDN Research. :2:1–2:12.

Today's cellular core, which connects the radio access network to the Internet, relies on fixed hardware appliances placed at a few dedicated locations and uses relatively static routing policies. As such, today's core design has key limitations—it induces inefficient provisioning tradeoffs and is poorly equipped to handle overload, failure scenarios, and diverse application requirements. To address these limitations, ongoing efforts envision "clean slate" solutions that depart from cellular standards and routing protocols; e.g., via programmable switches at base stations and per-flow SDN-like orchestration. The driving question of this work is to ask if a clean-slate redesign is necessary and if not, how can we design a flexible cellular core that is minimally disruptive. We propose KLEIN, a design that stays within the confines of current cellular standards and addresses the above limitations by combining network functions virtualization with smart resource management. We address key challenges w.r.t. scalability and responsiveness in realizing KLEIN via backwards-compatible orchestration mechanisms. Our evaluations through data-driven simulations and real prototype experiments using OpenAirInterface show that KLEIN can scale to billions of devices and is close to optimal for wide variety of traffic and deployment parameters.

Li, D., Zhang, Z., Liao, W., Xu, Z..  2018.  KLRA: A Kernel Level Resource Auditing Tool For IoT Operating System Security. 2018 IEEE/ACM Symposium on Edge Computing (SEC). :427-432.

Nowadays, the rapid development of the Internet of Things facilitates human life and work, while it also brings great security risks to the society due to the frequent occurrence of various security issues. IoT device has the characteristics of large-scale deployment and single responsibility application, which makes it easy to cause a chain reaction and results in widespread privacy leakage and system security problems when the software vulnerability is identified. It is difficult to guarantee that there is no security hole in the IoT operating system which is usually designed for MCU and has no kernel mode. An alternative solution is to identify the security issues in the first time when the system is hijacked and suspend the suspicious task before it causes irreparable damage. This paper proposes KLRA (A Kernel Level Resource Auditing Tool) for IoT Operating System Security This tool collects the resource-sensitive events in the kernel and audit the the resource consumption pattern of the system at the same time. KLRA can take fine-grained events measure with low cost and report the relevant security warning in the first time when the behavior of the system is abnormal compared with daily operations for the real responsibility of this device. KLRA enables the IoT operating system for MCU to generate the security early warning and thereby provides a self-adaptive heuristic security mechanism for the entire IoT system.

Shirazi, Hossein, Bezawada, Bruhadeshwar, Ray, Indrakshi.  2018.  "Kn0W Thy Doma1N Name": Unbiased Phishing Detection Using Domain Name Based Features. Proceedings of the 23Nd ACM on Symposium on Access Control Models and Technologies. :69-75.

Phishing websites remain a persistent security threat. Thus far, machine learning approaches appear to have the best potential as defenses. But, there are two main concerns with existing machine learning approaches for phishing detection. The first is the large number of training features used and the lack of validating arguments for these feature choices. The second concern is the type of datasets used in the literature that are inadvertently biased with respect to the features based on the website URL or content. To address these concerns, we put forward the intuition that the domain name of phishing websites is the tell-tale sign of phishing and holds the key to successful phishing detection. Accordingly, we design features that model the relationships, visual as well as statistical, of the domain name to the key elements of a phishing website, which are used to snare the end-users. The main value of our feature design is that, to bypass detection, an attacker will find it very difficult to tamper with the visual content of the phishing website without arousing the suspicion of the end user. Our feature set ensures that there is minimal or no bias with respect to a dataset. Our learning model trains with only seven features and achieves a true positive rate of 98% and a classification accuracy of 97%, on sample dataset. Compared to the state-of-the-art work, our per data instance classification is 4 times faster for legitimate websites and 10 times faster for phishing websites. Importantly, we demonstrate the shortcomings of using features based on URLs as they are likely to be biased towards specific datasets. We show the robustness of our learning algorithm by testing on unknown live phishing URLs and achieve a high detection accuracy of \$99.7%\$.

Cai, Y., Huang, H., Cai, H., Qi, Y..  2017.  A K-nearest neighbor locally search regression algorithm for short-term traffic flow forecasting. 2017 9th International Conference on Modelling, Identification and Control (ICMIC). :624–629.

Accurate short-term traffic flow forecasting is of great significance for real-time traffic control, guidance and management. The k-nearest neighbor (k-NN) model is a classic data-driven method which is relatively effective yet simple to implement for short-term traffic flow forecasting. For conventional prediction mechanism of k-NN model, the k nearest neighbors' outputs weighted by similarities between the current traffic flow vector and historical traffic flow vectors is directly used to generate prediction values, so that the prediction results are always not ideal. It is observed that there are always some outliers in k nearest neighbors' outputs, which may have a bad influences on the prediction value, and the local similarities between current traffic flow and historical traffic flows at the current sampling period should have a greater relevant to the prediction value. In this paper, we focus on improving the prediction mechanism of k-NN model and proposed a k-nearest neighbor locally search regression algorithm (k-LSR). The k-LSR algorithm can use locally search strategy to search for optimal nearest neighbors' outputs and use optimal nearest neighbors' outputs weighted by local similarities to forecast short-term traffic flow so as to improve the prediction mechanism of k-NN model. The proposed algorithm is tested on the actual data and compared with other algorithms in performance. We use the root mean squared error (RMSE) as the evaluation indicator. The comparison results show that the k-LSR algorithm is more successful than the k-NN and k-nearest neighbor locally weighted regression algorithm (k-LWR) in forecasting short-term traffic flow, and which prove the superiority and good practicability of the proposed algorithm.

Gu, P., Khatoun, R., Begriche, Y., Serhrouchni, A..  2017.  k-Nearest Neighbours classification based Sybil attack detection in Vehicular networks. 2017 Third International Conference on Mobile and Secure Services (MobiSecServ). :1–6.

In Vehicular networks, privacy, especially the vehicles' location privacy is highly concerned. Several pseudonymous based privacy protection mechanisms have been established and standardized in the past few years by IEEE and ETSI. However, vehicular networks are still vulnerable to Sybil attack. In this paper, a Sybil attack detection method based on k-Nearest Neighbours (kNN) classification algorithm is proposed. In this method, vehicles are classified based on the similarity in their driving patterns. Furthermore, the kNN methods' high runtime complexity issue is also optimized. The simulation results show that our detection method can reach a high detection rate while keeping error rate low.

Nadeem, Humaira, Rabbani, Imran Mujaddid, Aslam, Muhammad, M, Martinez Enriquez A..  2018.  KNN-Fuzzy Classification for Cloud Service Selection. Proceedings of the 2Nd International Conference on Future Networks and Distributed Systems. :66:1-66:8.

Cloud computing is an emerging technology that provides services to its users via Internet. It also allows sharing of resources there by reducing cost, money and space. With the popularity of cloud and its advantages, the trend of information industry shifting towards cloud services is increasing tremendously. Different cloud service providers are there on internet to provide services to the users. These services provided have certain parameters to provide better usage. It is difficult for the users to select a cloud service that is best suited to their requirements. Our proposed approach is based on data mining classification technique with fuzzy logic. Proposed algorithm uses cloud service design factors (security, agility and assurance etc.) and international standards to suggest the cloud service. The main objective of this research is to enable the end cloud users to choose best service as per their requirements and meeting international standards. We test our system with major cloud provider Google, Microsoft and Amazon.

Lu, Marisa, Bose, Gautam, Lee, Austin, Scupelli, Peter.  2017.  Knock Knock to Unlock: A Human-centered Novel Authentication Method for Secure System Fluidity. Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction. :729–732.

When a person gets to a door and wants to get in, what do they do? They knock. In our system, the user's specific knock pattern authenticates their identity, and opens the door for them. The system empowers people's intuitive actions and responses to affect the world around them in a new way. We leverage IOT, and physical computing to make more technology feel like less. From there, the system of a knock based entrance creates affordances in social interaction for shared spaces wherein ownership fluidity and accessibility needs to be balanced with security