Visible to the public Biblio

Found 777 results

Filters: First Letter Of Title is M  [Clear All Filters]
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
Steinke, Michael, Adam, Iris, Hommel, Wolfgang.  2018.  Multi-Tenancy-Capable Correlation of Security Events in 5G Networks. 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :1–6.
The concept of network slicing in 5G mobile networks introduces new challenges for security management: Given the combination of Infrastructure-as-a-Service cloud providers, mobile network operators as Software-as-a-Service providers, and the various verticals as customers, multi-layer and multi-tenancy-capable management architectures are required. This paper addresses the challenges for correlation of security events in such 5G scenarios with a focus on event processing at telecommunication service providers. After an analysis of the specific demand for network-slice-centric security event correlation in 5G networks, ongoing standardization efforts, and related research, we propose a multi-tenancy-capable event correlation architecture along with a scalable information model. The event processing, alerting, and correlation workflow is discussed and has been implemented in a network and security management system prototype, leading to a demonstration of first results acquired in a lab setup.
Wu, L., Chen, X., Meng, L., Meng, X..  2020.  Multitask Adversarial Learning for Chinese Font Style Transfer. 2020 International Joint Conference on Neural Networks (IJCNN). :1–8.
Style transfer between Chinese fonts is challenging due to both the complexity of Chinese characters and the significant difference between fonts. Existing algorithms for this task typically learn a mapping between the reference and target fonts for each character. Subsequently, this mapping is used to generate the characters that do not exist in the target font. However, the characters available for training are unlikely to cover all fine-grained parts of the missing characters, leading to the overfitting problem. As a result, the generated characters of the target font may suffer problems of incomplete or even radicals and dirty dots. To address this problem, this paper presents a multi-task adversarial learning approach, termed MTfontGAN, to generate more vivid Chinese characters. MTfontGAN learns to transfer a reference font to multiple target ones simultaneously. An alignment is imposed on the encoders of different tasks to make them focus on the important parts of the characters in general style transfer. Such cross-task interactions at the feature level effectively improve the generalization capability of MTfontGAN. The performance of MTfontGAN is evaluated on three Chinese font datasets. Experimental results show that MTfontGAN outperforms the state-of-the-art algorithms in a single-task setting. More importantly, increasing the number of tasks leads to better performance in all of them.
Hachimi, Marouane, Kaddoum, Georges, Gagnon, Ghyslain, Illy, Poulmanogo.  2020.  Multi-stage Jamming Attacks Detection using Deep Learning Combined with Kernelized Support Vector Machine in 5G Cloud Radio Access Networks. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—5.

In 5G networks, the Cloud Radio Access Network (C-RAN) is considered a promising future architecture in terms of minimizing energy consumption and allocating resources efficiently by providing real-time cloud infrastructures, cooperative radio, and centralized data processing. Recently, given their vulnerability to malicious attacks, the security of C-RAN networks has attracted significant attention. Among various anomaly-based intrusion detection techniques, the most promising one is the machine learning-based intrusion detection as it learns without human assistance and adjusts actions accordingly. In this direction, many solutions have been proposed, but they show either low accuracy in terms of attack classification or they offer just a single layer of attack detection. This research focuses on deploying a multi-stage machine learning-based intrusion detection (ML-IDS) in 5G C-RAN that can detect and classify four types of jamming attacks: constant jamming, random jamming, deceptive jamming, and reactive jamming. This deployment enhances security by minimizing the false negatives in C-RAN architectures. The experimental evaluation of the proposed solution is carried out using WSN-DS (Wireless Sensor Networks DataSet), which is a dedicated wireless dataset for intrusion detection. The final classification accuracy of attacks is 94.51% with a 7.84% false negative rate.

Mishra, A., Kumar, K., Rai, S. N., Mittal, V. K..  2015.  Multi-stage face recognition for biometric access. 2015 Annual IEEE India Conference (INDICON). :1–6.

Protecting the privacy of user-identification data is fundamental to protect the information systems from attacks and vulnerabilities. Providing access to such data only to the limited and legitimate users is the key motivation for `Biometrics'. In `Biometric Systems' confirming a user's claim of his/her identity reliably, is more important than focusing on `what he/she really possesses' or `what he/she remembers'. In this paper the use of face image for biometric access is proposed using two multistage face recognition algorithms that employ biometric facial features to validate the user's claim. The proposed algorithms use standard algorithms and classifiers such as EigenFaces, PCA and LDA in stages. Performance evaluation of both proposed algorithms is carried out using two standard datasets, the Extended Yale database and AT&T database. Results using the proposed multi-stage algorithms are better than those using other standard algorithms. Current limitations and possible applications of the proposed algorithms are also discussed along, with further scope of making these robust to pose, illumination and noise variations.

Nguyen, Thanh H., Wright, Mason, Wellman, Michael P., Baveja, Satinder.  2017.  Multi-Stage Attack Graph Security Games: Heuristic Strategies, with Empirical Game-Theoretic Analysis. Proceedings of the 2017 Workshop on Moving Target Defense. :87–97.

We study the problem of allocating limited security countermeasures to protect network data from cyber-attacks, for scenarios modeled by Bayesian attack graphs. We consider multi-stage interactions between a network administrator and cybercriminals, formulated as a security game. This formulation is capable of representing security environments with significant dynamics and uncertainty, and very large strategy spaces. For the game model, we propose parameterized heuristic strategies for both players. Our heuristics exploit the topological structure of the attack graphs and employ different sampling methodologies to overcome the computational complexity in determining players' actions. Given the complexity of the game, we employ a simulation-based methodology, and perform empirical game analysis over an enumerated set of these heuristic strategies. Finally, we conduct experiments based on a variety of game settings to demonstrate the advantages of our heuristics in obtaining effective defense strategies which are robust to the uncertainty of the security environment.

Hammoud, R.I., Sahin, C.S., Blasch, E.P., Rhodes, B.J..  2014.  Multi-source Multi-modal Activity Recognition in Aerial Video Surveillance. Computer Vision and Pattern Recognition Workshops (CVPRW), 2014 IEEE Conference on. :237-244.

Recognizing activities in wide aerial/overhead imagery remains a challenging problem due in part to low-resolution video and cluttered scenes with a large number of moving objects. In the context of this research, we deal with two un-synchronized data sources collected in real-world operating scenarios: full-motion videos (FMV) and analyst call-outs (ACO) in the form of chat messages (voice-to-text) made by a human watching the streamed FMV from an aerial platform. We present a multi-source multi-modal activity/event recognition system for surveillance applications, consisting of: (1) detecting and tracking multiple dynamic targets from a moving platform, (2) representing FMV target tracks and chat messages as graphs of attributes, (3) associating FMV tracks and chat messages using a probabilistic graph-based matching approach, and (4) detecting spatial-temporal activity boundaries. We also present an activity pattern learning framework which uses the multi-source associated data as training to index a large archive of FMV videos. Finally, we describe a multi-intelligence user interface for querying an index of activities of interest (AOIs) by movement type and geo-location, and for playing-back a summary of associated text (ACO) and activity video segments of targets-of-interest (TOIs) (in both pixel and geo-coordinates). Such tools help the end-user to quickly search, browse, and prepare mission reports from multi-source data.

Zhang, Chenwei, Xie, Sihong, Li, Yaliang, Gao, Jing, Fan, Wei, Yu, Philip S..  2016.  Multi-source Hierarchical Prediction Consolidation. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. :2251–2256.
In big data applications such as healthcare data mining, due to privacy concerns, it is necessary to collect predictions from multiple information sources for the same instance, with raw features being discarded or withheld when aggregating multiple predictions. Besides, crowd-sourced labels need to be aggregated to estimate the ground truth of the data. Due to the imperfection caused by predictive models or human crowdsourcing workers, noisy and conflicting information is ubiquitous and inevitable. Although state-of-the-art aggregation methods have been proposed to handle label spaces with flat structures, as the label space is becoming more and more complicated, aggregation under a label hierarchical structure becomes necessary but has been largely ignored. These label hierarchies can be quite informative as they are usually created by domain experts to make sense of highly complex label correlations such as protein functionality interactions or disease relationships. We propose a novel multi-source hierarchical prediction consolidation method to effectively exploits the complicated hierarchical label structures to resolve the noisy and conflicting information that inherently originates from multiple imperfect sources. We formulate the problem as an optimization problem with a closed-form solution. The consolidation result is inferred in a totally unsupervised, iterative fashion. Experimental results on both synthetic and real-world data sets show the effectiveness of the proposed method over existing alternatives.
Ross, Kevin, Moh, Melody, Moh, Teng-Sheng, Yao, Jason.  2018.  Multi-source Data Analysis and Evaluation of Machine Learning Techniques for SQL Injection Detection. Proceedings of the ACMSE 2018 Conference. :1:1–1:8.

SQL Injection continues to be one of the most damaging security exploits in terms of personal information exposure as well as monetary loss. Injection attacks are the number one vulnerability in the most recent OWASP Top 10 report, and the number of these attacks continues to increase. Traditional defense strategies often involve static, signature-based IDS (Intrusion Detection System) rules which are mostly effective only against previously observed attacks but not unknown, or zero-day, attacks. Much current research involves the use of machine learning techniques, which are able to detect unknown attacks, but depending on the algorithm can be costly in terms of performance. In addition, most current intrusion detection strategies involve collection of traffic coming into the web application either from a network device or from the web application host, while other strategies collect data from the database server logs. In this project, we are collecting traffic from two points: at the web application host, and at a Datiphy appliance node located between the webapp host and the associated MySQL database server. In our analysis of these two datasets, and another dataset that is correlated between the two, we have been able to demonstrate that accuracy obtained with the correlated dataset using algorithms such as rule-based and decision tree are nearly the same as those with a neural network algorithm, but with greatly improved performance.

Trabelsi, W., Selmi, M.H..  2014.  Multi-signature robust video watermarking. Advanced Technologies for Signal and Image Processing (ATSIP), 2014 1st International Conference on. :158-163.

Watermarking is a recently developed technique which is currently dominating the world of security and digital processing in order to ensure the protection of digitized trade. The purpose of this work is twofold. It is firstly to establish a state of the art that goes through the existing watermarking methods and their performances. And secondly to design, implement and evaluate a new watermarking solution that aims to optimize the compromise robustness-invisibility-capacity. The proposed approach consists on applying a frequency watermarking based on singular value decomposition (SVD) and exploiting the mosaic made from all video frames as well as inserting a double signature in order to increase watermarking algorithm capacity.

Liu, Q., Zhao, X. g, Hou, Z. g, Liu, H. g.  2015.  Multi-scale wavelet kernel extreme learning machine for EEG feature classification. 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). :1546–1551.

In this paper, the principle of the kernel extreme learning machine (ELM) is analyzed. Based on that, we introduce a kind of multi-scale wavelet kernel extreme learning machine classifier and apply it to electroencephalographic (EEG) signal feature classification. Experiments show that our classifier achieves excellent performance.

Liu, Donglei, Niu, Zhendong, Zhang, Chunxia, Zhang, Jiadi.  2019.  Multi-Scale Deformable CNN for Answer Selection. IEEE Access. 7:164986—164995.

The answer selection task is one of the most important issues within the automatic question answering system, and it aims to automatically find accurate answers to questions. Traditional methods for this task use manually generated features based on tf-idf and n-gram models to represent texts, and then select the right answers according to the similarity between the representations of questions and the candidate answers. Nowadays, many question answering systems adopt deep neural networks such as convolutional neural network (CNN) to generate the text features automatically, and obtained better performance than traditional methods. CNN can extract consecutive n-gram features with fixed length by sliding fixed-length convolutional kernels over the whole word sequence. However, due to the complex semantic compositionality of the natural language, there are many phrases with variable lengths and be composed of non-consecutive words in natural language, such as these phrases whose constituents are separated by other words within the same sentences. But the traditional CNN is unable to extract the variable length n-gram features and non-consecutive n-gram features. In this paper, we propose a multi-scale deformable convolutional neural network to capture the non-consecutive n-gram features by adding offset to the convolutional kernel, and also propose to stack multiple deformable convolutional layers to mine multi-scale n-gram features by the means of generating longer n-gram in higher layer. Furthermore, we apply the proposed model into the task of answer selection. Experimental results on public dataset demonstrate the effectiveness of our proposed model in answer selection.

Helwa, M. K., Schoellig, A. P..  2017.  Multi-robot transfer learning: A dynamical system perspective. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :4702–4708.

Multi-robot transfer learning allows a robot to use data generated by a second, similar robot to improve its own behavior. The potential advantages are reducing the time of training and the unavoidable risks that exist during the training phase. Transfer learning algorithms aim to find an optimal transfer map between different robots. In this paper, we investigate, through a theoretical study of single-input single-output (SISO) systems, the properties of such optimal transfer maps. We first show that the optimal transfer learning map is, in general, a dynamic system. The main contribution of the paper is to provide an algorithm for determining the properties of this optimal dynamic map including its order and regressors (i.e., the variables it depends on). The proposed algorithm does not require detailed knowledge of the robots' dynamics, but relies on basic system properties easily obtainable through simple experimental tests. We validate the proposed algorithm experimentally through an example of transfer learning between two different quadrotor platforms. Experimental results show that an optimal dynamic map, with correct properties obtained from our proposed algorithm, achieves 60-70% reduction of transfer learning error compared to the cases when the data is directly transferred or transferred using an optimal static map.

Ababii, V., Sudacevschi, V., Braniste, R., Nistiriuc, A., Munteanu, S., Borozan, O..  2020.  Multi-Robot System Based on Swarm Intelligence for Optimal Solution Search. 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1–5.
This work presents the results of the Multi-Robot System designing that works on the basis of Swarm Intelligence models and is used to search for optimal solutions. The process of searching for optimal solutions is performed based on a field of gradient vectors that can be generated by ionizing radiation sources, radio-electro-magnetic devices, temperature generating sources, etc. The concept of the operation System is based on the distribution in the search space of a multitude of Mobile Robots that form a Mesh network between them. Each Mobile Robot has a set of ultrasonic sensors for excluding the collisions with obstacles, two sensors for identifying the gradient vector of the analyzed field, resources for wireless storage, processing and communication. The direction of the Mobile Robot movement is determined by the rotational speed of two DC motors which is calculated based on the models of Artificial Neural Networks. Gradient vectors generated by all Mobile Robots in the system structure are used to calculate the movement direction.
Kang, Eunsuk, Milicevic, Aleksandar, Jackson, Daniel.  2016.  Multi-representational Security Analysis. Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. :181–192.

Security attacks often exploit flaws that are not anticipated in an abstract design, but are introduced inadvertently when high-level interactions in the design are mapped to low-level behaviors in the supporting platform. This paper proposes a multi-representational approach to security analysis, where models capturing distinct (but possibly overlapping) views of a system are automatically composed in order to enable an end-to-end analysis. This approach allows the designer to incrementally explore the impact of design decisions on security, and discover attacks that span multiple layers of the system. This paper describes Poirot, a prototype implementation of the approach, and reports on our experience on applying Poirot to detect previously unknown security flaws in publicly deployed systems.

Jansen, Kai, Tippenhauer, Nils Ole, Pöpper, Christina.  2016.  Multi-receiver GPS Spoofing Detection: Error Models and Realization. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :237–250.

Spoofing is a serious threat to the widespread use of Global Navigation Satellite Systems (GNSSs) such as GPS and can be expected to play an important role in the security of many future IoT systems that rely on time, location, or navigation information. In this paper, we focus on the technique of multi-receiver GPS spoofing detection, so far only proposed theoretically. This technique promises to detect malicious spoofing signals by making use of the reported positions of several GPS receivers deployed in a fixed constellation. We scrutinize the assumptions of prior work, in particular the error models, and investigate how these models and their results can be improved due to the correlation of errors at co-located receiver positions. We show that by leveraging spatial noise correlations, the false acceptance rate of the countermeasure can be improved while preserving the sensitivity to attacks. As a result, receivers can be placed significantly closer together than previously expected, which broadens the applicability of the countermeasure. Based on theoretical and practical investigations, we build the first realization of a multi-receiver countermeasure and experimentally evaluate its performance both in authentic and in spoofing scenarios.

Vaidya, S. P..  2018.  Multipurpose Color Image Watermarking in Wavelet Domain Using Multiple Decomposition Techniques. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). :251-255.

A multipurpose color image watermarking method is presented to provide \textcopyright protection and ownership verification of the multimedia information. For robust color image watermarking, color watermark is utilized to bring universality and immense applicability to the proposed scheme. The cover information is first converted to Red, Green and Blue components image. Each component is transformed in wavelet domain using DWT (Discrete Wavelet Transform) and then decomposition techniques like Singular Value Decomposition (SVD), QR and Schur decomposition are applied. Multiple watermark embedding provides the watermarking scheme free from error (false positive). The watermark is modified by scrambling it using Arnold transform. In the proposed watermarking scheme, robustness and quality is tested with metrics like Peak Signal to Noise Ratio (PSNR) and Normalized Correlation Coefficient (NCC). Further, the proposed scheme is compared with related watermarking schemes.

Jahan, Thanveer, Narsimha, G., Rao, C. V. Guru.  2016.  Multiplicative Data Perturbation Using Fuzzy Logic in Preserving Privacy. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :38:1–38:5.

In Data mining is the method of extracting the knowledge from huge amount of data and interesting patterns. With the rapid increase of data storage, cloud and service-based computing, the risk of misuse of data has become a major concern. Protecting sensitive information present in the data is crucial and critical. Data perturbation plays an important role in privacy preserving data mining. The major challenge of privacy preserving is to concentrate on factors to achieve privacy guarantee and data utility. We propose a data perturbation method that perturbs the data using fuzzy logic and random rotation. It also describes aspects of comparable level of quality over perturbed data and original data. The comparisons are illustrated on different multivariate datasets. Experimental study has proved the model is better in achieving privacy guarantee of data, as well as data utility.

Rana, Krishan, Dasagi, Vibhavari, Talbot, Ben, Milford, Michael, Sünderhauf, Niko.  2020.  Multiplicative Controller Fusion: Leveraging Algorithmic Priors for Sample-efficient Reinforcement Learning and Safe Sim-To-Real Transfer. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :6069—6076.
Learning-based approaches often outperform hand-coded algorithmic solutions for many problems in robotics. However, learning long-horizon tasks on real robot hardware can be intractable, and transferring a learned policy from simulation to reality is still extremely challenging. We present a novel approach to model-free reinforcement learning that can leverage existing sub-optimal solutions as an algorithmic prior during training and deployment. During training, our gated fusion approach enables the prior to guide the initial stages of exploration, increasing sample-efficiency and enabling learning from sparse long-horizon reward signals. Importantly, the policy can learn to improve beyond the performance of the sub-optimal prior since the prior's influence is annealed gradually. During deployment, the policy's uncertainty provides a reliable strategy for transferring a simulation-trained policy to the real world by falling back to the prior controller in uncertain states. We show the efficacy of our Multiplicative Controller Fusion approach on the task of robot navigation and demonstrate safe transfer from simulation to the real world without any fine-tuning. The code for this project is made publicly available at
Han, Xiao, Yin, Jingwei, Yu, Ge.  2016.  Multiple-input Multiple-output Under-ice Acoustic Communication in Shallow Water. Proceedings of the 11th ACM International Conference on Underwater Networks & Systems. :7:1–7:2.

Multiple-input multiple-output (MIMO) techniques have been the subject of increased attention for underwater acoustic communication for its ability to significantly improve the channel capabilities. Recently, an under-ice MIMO acoustic communication experiment was conducted in shallow water which differs from previous works in that the water column was covered by about 40 centimeters thick sea ice. In this experiment, high frequency MIMO signals centered at 10 kHz were transmitted from a two-element source array to a four-element vertical receive array at 1km range. The unique under-ice acoustic propagation environment in shallow water seems naturally separate data streams from different transducers, but there is still co-channel interference. Time reversal followed by a single channel decision feedback equalizer is used in this paper to compensate for the inter-symbol interference and co-channel interference. It is demonstrated that this simple receiver scheme is good enough to realize robust performance using fewer hydrophones (i.e. 2) without the explicit use of complex co-channel interference cancelation algorithms such as parallel interference cancelation or serial interference cancelation. Two channel estimation algorithms based on least square and least mean square are also studied for MIMO communications in this paper and their performance are compared using experimental data.

Lu Wang, Yung, N.H.C., Lisheng Xu.  2014.  Multiple-Human Tracking by Iterative Data Association and Detection Update. Intelligent Transportation Systems, IEEE Transactions on. 15:1886-1899.

Multiple-object tracking is an important task in automated video surveillance. In this paper, we present a multiple-human-tracking approach that takes the single-frame human detection results as input and associates them to form trajectories while improving the original detection results by making use of reliable temporal information in a closed-loop manner. It works by first forming tracklets, from which reliable temporal information is extracted, and then refining the detection responses inside the tracklets, which also improves the accuracy of tracklets' quantities. After this, local conservative tracklet association is performed and reliable temporal information is propagated across tracklets so that more detection responses can be refined. The global tracklet association is done last to resolve association ambiguities. Experimental results show that the proposed approach improves both the association and detection results. Comparison with several state-of-the-art approaches demonstrates the effectiveness of the proposed approach.

Dong, H., Ma, T., He, B., Zheng, J., Liu, G..  2017.  Multiple-fault diagnosis of analog circuit with fault tolerance. 2017 6th Data Driven Control and Learning Systems (DDCLS). :292–296.

A novel method, consisting of fault detection, rough set generation, element isolation and parameter estimation is presented for multiple-fault diagnosis on analog circuit with tolerance. Firstly, a linear-programming concept is developed to transform fault detection of circuit with limited accessible terminals into measurement to check existence of a feasible solution under tolerance constraints. Secondly, fault characteristic equation is deduced to generate a fault rough set. It is proved that the node voltages of nominal circuit can be used in fault characteristic equation with fault tolerance. Lastly, fault detection of circuit with revised deviation restriction for suspected fault elements is proceeded to locate faulty elements and estimate their parameters. The diagnosis accuracy and parameter identification precision of the method are verified by simulation results.

El-Koujok, M., Benammar, M., Meskin, N., Al-Naemi, M., Langari, R..  2014.  Multiple Sensor Fault Diagnosis by Evolving Data-driven Approach. Inf. Sci.. 259:346–358.

Sensors are indispensable components of modern plants and processes and their reliability is vital to ensure reliable and safe operation of complex systems. In this paper, the problem of design and development of a data-driven Multiple Sensor Fault Detection and Isolation (MSFDI) algorithm for nonlinear processes is investigated. The proposed scheme is based on an evolving multi-Takagi Sugeno framework in which each sensor output is estimated using a model derived from the available input/output measurement data. Our proposed MSFDI algorithm is applied to Continuous-Flow Stirred-Tank Reactor (CFSTR). Simulation results demonstrate and validate the performance capabilities of our proposed MSFDI algorithm.

Love, Fred, McMillin, Bruce, Tulasidas, Sivanesan, Balachandran, W..  2016.  Multiple Security Domain Nondeducibility for Point-of-care Diagnostic Technology: WiP Abstract. Proceedings of the 7th International Conference on Cyber-Physical Systems. :42:1–42:1.

Microfluidics is an interdisciplinary science focusing on the development of devices and systems that process low volumes of fluid for applications such as high throughput DNA sequencing, immunoassays, and entire Labs-on-Chip platforms. Microfluidic diagnostic technology enables these advances by facilitating the miniaturization and integration of complex biochemical processing through a microfluidic biochip [1]. This approach tightly couples the biochemical operations, sensing system, control algorithm, and droplet-based biochip. During the process the status of a droplet is monitored in real-time to detect operational errors. If an error has occurred, the control algorithm dynamically reconfigures to allow recovery and rescheduling of on-chip operations. During this recovery procedure the droplet that is the source of the error is discarded to prevent the propagation of the error and the operation is repeated. Threats to the operation of the microfluidics biochip include (1) integrity: an attack can modify control electrodes to corrupt the diagnosis, and (2) privacy: what can a user/operator deduce about the diagnosis? It is challenging to describe both these aspects using existing models; as Figure 1 depicts there are multiple security domains, Unidirectional information flows shown in black indicate undesirable flows, the bidirectional black arrows indicate desirable, but possibly corrupted, information flows, and the unidirectional red arrows indicate undesirable information flows. As with Stuxnet, a bidirectional, deducible information flow is needed between the monitoring security domain and internal security domain (biochip) [2]. Simultaneously, the attacker and the operators should receive a nondeducible information flow. Likewise, the red attack arrows should be deducible to the internal domain. Our current security research direction uses the novel approach of Multiple Security Domain Nondeducibility [2] to explore the vulnerabilities of exploiting this error recovery process through information flow leakages and leads to protection of the system through desirable information flows.

Sriborrirux, W., Promsiri, P., Limmanee, A..  2014.  Multiple Secret Key Sharing Based on the Network Coding Technique for an Open Cloud DRM Service Provider. Computational Science and Engineering (CSE), 2014 IEEE 17th International Conference on. :953-959.

In this paper, we present an open cloud DRM service provider to protect the digital content's copyright. The proposed architecture enables the service providers to use an on-the fly DRM technique with digital signature and symmetric-key encryption. Unlike other similar works, our system does not keep the encrypted digital content but lets the content creators do so in their own cloud storage. Moreover, the key used for symmetric encryption are managed in an extremely secure way by means of the key fission engine and the key fusion engine. The ideas behind the two engines are taken from the works in secure network coding and secret sharing. Although the use of secret sharing and secure network coding for the storage of digital content is proposed in some other works, this paper is the first one employing those ideas only for key management while letting the content be stored in the owner's cloud storage. In addition, we implement an Android SDK for e-Book readers to be compatible with our proposed open cloud DRM service provider. The experimental results demonstrate that our proposal is feasible for the real e-Book market, especially for individual businesses.

Ma, C., Guo, Y., Su, J..  2017.  A Multiple Paths Scheme with Labels for Key Distribution on Quantum Key Distribution Network. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :2513–2517.

This paper establishes a probability model of multiple paths scheme of quantum key distribution with public nodes among a set of paths which are used to transmit the key between the source node and the destination node. Then in order to be used in universal net topologies, combining with the key routing in the QKD network, the algorithm of the multiple paths scheme of key distribution we propose includes two major aspects: one is an approach which can confirm the number and the distance of the selection of paths, and the other is the strategy of stochastic paths with labels that can decrease the number of public nodes and avoid the phenomenon that the old scheme may produce loops and often get the nodes apart from the destination node father than current nodes. Finally, the paper demonstrates the rationality of the probability model and strategies about the algorithm.