Visible to the public Biblio

Found 777 results

Filters: First Letter Of Title is M  [Clear All Filters]
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
M
Anzer, Ayesha, Elhadef, Mourad.  2018.  A Multilayer Perceptron-Based Distributed Intrusion Detection System for Internet of Vehicles. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). :438—445.

Security of Internet of vehicles (IoV) is critical as it promises to provide with safer and secure driving. IoV relies on VANETs which is based on V2V (Vehicle to Vehicle) communication. The vehicles are integrated with various sensors and embedded systems allowing them to gather data related to the situation on the road. The collected data can be information associated with a car accident, the congested highway ahead, parked car, etc. This information exchanged with other neighboring vehicles on the road to promote safe driving. IoV networks are vulnerable to various security attacks. The V2V communication comprises specific vulnerabilities which can be manipulated by attackers to compromise the whole network. In this paper, we concentrate on intrusion detection in IoV and propose a multilayer perceptron (MLP) neural network to detect intruders or attackers on an IoV network. Results are in the form of prediction, classification reports, and confusion matrix. A thorough simulation study demonstrates the effectiveness of the new MLP-based intrusion detection system.

Clifford, J., Garfield, K., Towhidnejad, M., Neighbors, J., Miller, M., Verenich, E., Staskevich, G..  2017.  Multi-layer model of swarm intelligence for resilient autonomous systems. 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC). :1–4.

Embry-Riddle Aeronautical University (ERAU) is working with the Air Force Research Lab (AFRL) to develop a distributed multi-layer autonomous UAS planning and control technology for gathering intelligence in Anti-Access Area Denial (A2/AD) environments populated by intelligent adaptive adversaries. These resilient autonomous systems are able to navigate through hostile environments while performing Intelligence, Surveillance, and Reconnaissance (ISR) tasks, and minimizing the loss of assets. Our approach incorporates artificial life concepts, with a high-level architecture divided into three biologically inspired layers: cyber-physical, reactive, and deliberative. Each layer has a dynamic level of influence over the behavior of the agent. Algorithms within the layers act on a filtered view of reality, abstracted in the layer immediately below. Each layer takes input from the layer below, provides output to the layer above, and provides direction to the layer below. Fast-reactive control systems in lower layers ensure a stable environment supporting cognitive function on higher layers. The cyber-physical layer represents the central nervous system of the individual, consisting of elements of the vehicle that cannot be changed such as sensors, power plant, and physical configuration. On the reactive layer, the system uses an artificial life paradigm, where each agent interacts with the environment using a set of simple rules regarding wants and needs. Information is communicated explicitly via message passing and implicitly via observation and recognition of behavior. In the deliberative layer, individual agents look outward to the group, deliberating on efficient resource management and cooperation with other agents. Strategies at all layers are developed using machine learning techniques such as Genetic Algorithm (GA) or NN applied to system training that takes place prior to the mission.

Abbas, Syed Ghazanfar, Hashmat, Fabiha, Shah, Ghalib A..  2020.  A Multi-layer Industrial-IoT Attack Taxonomy: Layers, Dimensions, Techniques and Application. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1820—1825.

Industrial IoT (IIoT) is a specialized subset of IoT which involves the interconnection of industrial devices with ubiquitous control and intelligent processing services to improve industrial system's productivity and operational capability. In essence, IIoT adapts a use-case specific architecture based on RFID sense network, BLE sense network or WSN, where heterogeneous industrial IoT devices can collaborate with each other to achieve a common goal. Nonetheless, most of the IIoT deployments are brownfield in nature which involves both new and legacy technologies (SCADA (Supervisory Control and Data Acquisition System)). The merger of these technologies causes high degree of cross-linking and decentralization which ultimately increases the complexity of IIoT systems and introduce new vulnerabilities. Hence, industrial organizations becomes not only vulnerable to conventional SCADA attacks but also to a multitude of IIoT specific threats. However, there is a lack of understanding of these attacks both with respect to the literature and empirical evaluation. As a consequence, it is infeasible for industrial organizations, researchers and developers to analyze attacks and derive a robust security mechanism for IIoT. In this paper, we developed a multi-layer taxonomy of IIoT attacks by considering both brownfield and greenfield architecture of IIoT. The taxonomy consists of 11 layers 94 dimensions and approximately 100 attack techniques which helps to provide a holistic overview of the incident attack pattern, attack characteristics and impact on industrial system. Subsequently, we have exhibited the practical relevance of developed taxonomy by applying it to a real-world use-case. This research will benefit researchers and developers to best utilize developed taxonomy for analyzing attack sequence and to envisage an efficient security platform for futuristic IIoT applications.

Zhang, Fan, Kodituwakku, Hansaka Angel Dias Edirisinghe, Hines, J. Wesley, Coble, Jamie.  2019.  Multilayer Data-Driven Cyber-Attack Detection System for Industrial Control Systems Based on Network, System, and Process Data. IEEE Transactions on Industrial Informatics. 15:4362—4369.
The growing number of attacks against cyber-physical systems in recent years elevates the concern for cybersecurity of industrial control systems (ICSs). The current efforts of ICS cybersecurity are mainly based on firewalls, data diodes, and other methods of intrusion prevention, which may not be sufficient for growing cyber threats from motivated attackers. To enhance the cybersecurity of ICS, a cyber-attack detection system built on the concept of defense-in-depth is developed utilizing network traffic data, host system data, and measured process parameters. This attack detection system provides multiple-layer defense in order to gain the defenders precious time before unrecoverable consequences occur in the physical system. The data used for demonstrating the proposed detection system are from a real-time ICS testbed. Five attacks, including man in the middle (MITM), denial of service (DoS), data exfiltration, data tampering, and false data injection, are carried out to simulate the consequences of cyber attack and generate data for building data-driven detection models. Four classical classification models based on network data and host system data are studied, including k-nearest neighbor (KNN), decision tree, bootstrap aggregating (bagging), and random forest (RF), to provide a secondary line of defense of cyber-attack detection in the event that the intrusion prevention layer fails. Intrusion detection results suggest that KNN, bagging, and RF have low missed alarm and false alarm rates for MITM and DoS attacks, providing accurate and reliable detection of these cyber attacks. Cyber attacks that may not be detectable by monitoring network and host system data, such as command tampering and false data injection attacks by an insider, are monitored for by traditional process monitoring protocols. In the proposed detection system, an auto-associative kernel regression model is studied to strengthen early attack detection. The result shows that this approach detects physically impactful cyber attacks before significant consequences occur. The proposed multiple-layer data-driven cyber-attack detection system utilizing network, system, and process data is a promising solution for safeguarding an ICS.
DiPaola, Steve, Yalçin, Özge Nilay.  2019.  A multi-layer artificial intelligence and sensing based affective conversational embodied agent. 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW). :91–92.

Building natural and conversational virtual humans is a task of formidable complexity. We believe that, especially when building agents that affectively interact with biological humans in real-time, a cognitive science-based, multilayered sensing and artificial intelligence (AI) systems approach is needed. For this demo, we show a working version (through human interaction with it) our modular system of natural, conversation 3D virtual human using AI or sensing layers. These including sensing the human user via facial emotion recognition, voice stress, semantic meaning of the words, eye gaze, heart rate, and galvanic skin response. These inputs are combined with AI sensing and recognition of the environment using deep learning natural language captioning or dense captioning. These are all processed by our AI avatar system allowing for an affective and empathetic conversation using an NLP topic-based dialogue capable of using facial expressions, gestures, breath, eye gaze and voice language-based two-way back and forth conversations with a sensed human. Our lab has been building these systems in stages over the years.

Wu, Chuxin, Zhang, Peng, Liu, Hongwei, Liu, Yuhong.  2019.  Multi-keyword Ranked Searchable Encryption Supporting CP-ABE Test. 2019 Computing, Communications and IoT Applications (ComComAp). :220—225.

Internet of Things (IoT) and cloud computing are promising technologies that change the way people communicate and live. As the data collected through IoT devices often involve users' private information and the cloud is not completely trusted, users' private data are usually encrypted before being uploaded to cloud for security purposes. Searchable encryption, allowing users to search over the encrypted data, extends data flexibility on the premise of security. In this paper, to achieve the accurate and efficient ciphertext searching, we present an efficient multi-keyword ranked searchable encryption scheme supporting ciphertext-policy attribute-based encryption (CP-ABE) test (MRSET). For efficiency, numeric hierarchy supporting ranked search is introduced to reduce the dimensions of vectors and matrices. For practicality, CP-ABE is improved to support access right test, so that only documents that the user can decrypt are returned. The security analysis shows that our proposed scheme is secure, and the experimental result demonstrates that our scheme is efficient.

Chong, K. S., Yap, C. N., Tew, Z. H..  2020.  Multi-Key Homomorphic Encryption Create new Multiple Logic Gates and Arithmetic Circuit. 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1–4.
This is a feasibility study on homomorphic encryption using the MK-TFHE library in daily computing using cloud services. Logic gates OR, AND, XOR, XNOR, NOR were created. A basic set of arithmetic operations namely - addition, subtraction, multiplication and division were also created. This research is a continuation of a previous work and this peeks into the newly created logic gates on these arithmetic operations.
Przybylek, Michal Roman, Wierzbicki, Adam, Michalewicz, Zbigniew.  2016.  Multi-hard Problems in Uncertain Environment. Proceedings of the Genetic and Evolutionary Computation Conference 2016. :381–388.
Real-world problems are usually composed of two or more (potentially NP-Hard) problems that are interdependent on each other. Such problems have been recently identified as "multi-hard problems" and various strategies for solving them have been proposed. One of the most successful of the strategies is based on a decomposition approach, where each of the components of a multi-hard problem is solved separately (by state-of-the-art solver) and then a negotiation protocol between the sub-solutions is applied to mediate a global solution. Multi-hardness is, however, not the only crucial aspect of real-world problems. Many real-world problems operate in a dynamically-changing, uncertain environment. Special approaches such as risk analysis and minimization may be applied in cases when we know the possible variants of constraints and criteria, as well as their probabilities. On the other hand, adaptive algorithms may be used in the case of uncertainty about criteria variants or probabilities. While such approaches are not new, their application to multi-hard problems has not yet been studied systematically. In this paper we extend the benchmark problem for multi-hardness with the aspect of uncertainty. We adapt the decomposition-based approach to this new setting, and compare it against another promising heuristic (Monte-Carlo Tree Search) on a large publicly available dataset. Our comparisons show that the decomposition-based approach outperforms the other heuristic in most cases.
Huang, Y., Wang, Y..  2019.  Multi-format speech perception hashing based on time-frequency parameter fusion of energy zero ratio and frequency band variance. 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE). :243—251.

In order to solve the problems of the existing speech content authentication algorithm, such as single format, ununiversal algorithm, low security, low accuracy of tamper detection and location in small-scale, a multi-format speech perception hashing based on time-frequency parameter fusion of energy zero ratio and frequency band bariance is proposed. Firstly, the algorithm preprocesses the processed speech signal and calculates the short-time logarithmic energy, zero-crossing rate and frequency band variance of each speech fragment. Then calculate the energy to zero ratio of each frame, perform time- frequency parameter fusion on time-frequency features by mean filtering, and the time-frequency parameters are constructed by difference hashing method. Finally, the hash sequence is scrambled with equal length by logistic chaotic map, so as to improve the security of the hash sequence in the transmission process. Experiments show that the proposed algorithm is robustness, discrimination and key dependent.

Wang, X., Lin, S., Wang, S., Shi, J., Zhang, C..  2017.  A multi-fault diagnosis strategy of electro-hydraulic servo actuation system based on extended Kalman filter. 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM). :614–619.

Electro-hydraulic servo actuation system is a mechanical, electrical and hydraulic mixing complex system. If it can't be repaired for a long time, it is necessary to consider the possibility of occurrence of multiple faults. Considering this possibility, this paper presents an extended Kalman filter (EKF) based method for multiple faults diagnosis. Through analysing the failure modes and mechanism of the electro-hydraulic servo actuation system and modelling selected typical failure modes, the relationship between the key parameters of the system and the faults is obtained. The extended Kalman filter which is a commonly used algorithm for estimating parameters is used to on-line fault diagnosis. Then use the extended Kalman filter to diagnose potential faults. The simulation results show that the multi-fault diagnosis method based on extended Kalman filter is effective for multi-fault diagnosis of electro-hydraulic servo actuation system.

Kan-Siew-Leong, Chze, P. L. R., Wee, A. K., Sim, E., May, K. E..  2017.  A multi-factors security key generation mechanism for IoT. 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN). :1019–1021.

This paper introduces a multi-factors security key generation mechanism for self-organising Internet of Things (IoT) network and nodes. The mechanism enables users to generate unique set of security keys to enhance IoT security while meeting various business needs. The multi-factor security keys presents an additional security layer to existing security standards and practices currently being adopted by the IoT community. The proposed security key generation mechanism enables user to define and choose any physical and logical parameters he/she prefers, in generating a set of security keys to be encrypted and distributed to registered IoT nodes. IoT applications and services will only be activated after verifying that all security keys are present. Multiple levels of authorisation for different user groups can be easily created through the mix and match of the generated multi-factors security keys. A use case, covering indoor and outdoor field tests was conducted. The results of the tests showed that the mechanism is easily adaptable to meet diverse multivendor IoT devices and is scalable for various applications.

Mohd Ariffin, Noor Afiza, Mohd Sani, Noor Fazlida.  2018.  A Multi-factor Biometric Authentication Scheme Using Attack Recognition and Key Generator Technique for Security Vulnerabilities to Withstand Attacks. 2018 IEEE Conference on Application, Information and Network Security (AINS). :43–48.
Security plays an important role in many authentication applications. Modern era information sharing is boundless and becoming much easier to access with the introduction of the Internet and the World Wide Web. Although this can be considered as a good point, issues such as privacy and data integrity arise due to the lack of control and authority. For this reason, the concept of data security was introduced. Data security can be categorized into two which are secrecy and authentication. In particular, this research was focused on the authentication of data security. There have been substantial research which discusses on multi-factor authentication scheme but most of those research do not entirely protect data against all types of attacks. Most current research only focuses on improving the security part of authentication while neglecting other important parts such as the accuracy and efficiency of the system. Current multifactor authentication schemes were simply not designed to have security, accuracy, and efficiency as their main focus. To overcome the above issue, this research will propose a new multi-factor authentication scheme which is capable to withstand external attacks which are known security vulnerabilities and attacks which are based on user behavior. On the other hand, the proposed scheme still needs to maintain an optimum level of accuracy and efficiency. From the result of the experiments, the proposed scheme was proven to be able to withstand the attacks. This is due to the implementation of the attack recognition and key generator technique together with the use of multi-factor in the proposed scheme.
Murphy, J., Howells, G., McDonald-Maier, K. D..  2017.  Multi-factor authentication using accelerometers for the Internet-of-Things. 2017 Seventh International Conference on Emerging Security Technologies (EST). :103–107.

Embedded and mobile devices forming part of the Internet-of-Things (IoT) need new authentication technologies and techniques. This requirement is due to the increase in effort and time attackers will use to compromise a device, often remote, based on the possibility of a significant monetary return. This paper proposes exploiting a device's accelerometers in-built functionality to implement multi-factor authentication. An experimental embedded system designed to emulate a typical mobile device is used to implement the ideas and investigated as proof-of-concept.

Shah, R. H., Salapurkar, D. P..  2017.  A multifactor authentication system using secret splitting in the perspective of Cloud of Things. 2017 International Conference on Emerging Trends Innovation in ICT (ICEI). :1–4.

Internet of Things (IoT) is an emerging trend that is changing the way devices connect and communicate. Integration of cloud computing with IoT i.e. Cloud of Things (CoT) provide scalability, virtualized control and access to the services provided by IoT. Security issues are a major obstacle in widespread deployment and application of CoT. Among these issues, authentication and identification of user is crucial. In this study paper, survey of various authentication schemes is carried out. The aim of this paper is to study a multifactor authentication system which uses secret splitting in detail. The system uses exclusive-or operations, encryption algorithms and Diffie-Hellman key exchange algorithm to share key over the network. Security analysis shows the resistance of the system against different types of attacks.

Utomo, Subroto Budhi, Hendradjaya, Bayu.  2018.  Multifactor Authentication on Mobile Secure Attendance System. 2018 International Conference on ICT for Smart Society (ICISS). :1–5.
BYOD (Bring Your Own Device) trends allows employees to use the smartphone as a tool in everyday work and also as an attendance device. The security of employee attendance system is important to ensure that employees do not commit fraud in recording attendance and when monitoring activities at working hours. In this paper, we propose a combination of fingerprint, secure android ID, and GPS as authentication factors, also addition of anti emulator and anti fake location module turn Mobile Attendance System into Mobile Secure Attendance System. Testing based on scenarios that have been adapted to various possible frauds is done to prove whether the system can minimize the occurrence of fraud in attendance recording and monitoring of employee activities.
Dostálek, Libor.  2019.  Multi-Factor Authentication Modeling. 2019 9th International Conference on Advanced Computer Information Technologies (ACIT). :443–446.
The work defines a multi-factor authentication model in case the application supports multiple authentication factors. The aim of this modeling is to find acceptable authentication methods sufficient to access specifically qualified information. The core of the proposed model is risk-based authentication. Results of simulations of some key scenarios often used in practice are also presented.
Ibrokhimov, Sanjar, Hui, Kueh Lee, Abdulhakim Al-Absi, Ahmed, lee, hoon jae, Sain, Mangal.  2019.  Multi-Factor Authentication in Cyber Physical System: A State of Art Survey. 2019 21st International Conference on Advanced Communication Technology (ICACT). :279–284.
Digital Multifactor authentication is one of the best ways to make secure authentication. It covers many different areas of a Cyber-connected world, including online payments, communications, access right management, etc. Most of the time, Multifactor authentication is little complex as it require extra step from users. With two-factor authentication, along with the user-ID and password, user also needs to enter a special code which they normally receive by short message service or some special code which they got in advance. This paper will discuss the evolution from single authentication to Multi-Factor Authentication (MFA) starting from Single-Factor Authentication (SFA) and through Two-Factor Authentication (2FA). In addition, this paper presents five high-level categories of features of user authentication in the gadget-free world including security, privacy, and usability aspects. These are adapted and extended from earlier research on web authentication methods. In conclusion, this paper gives future research directions and open problems that stem from our observations.
Zhai, Liming, Wang, Lina, Ren, Yanzhen.  2019.  Multi-domain Embedding Strategies for Video Steganography by Combining Partition Modes and Motion Vectors. 2019 IEEE International Conference on Multimedia and Expo (ICME). :1402–1407.
Digital video has various types of entities, which are utilized as embedding domains to hide messages in steganography. However, nearly all video steganography uses only one type of embedding domain, resulting in limited embedding capacity and potential security risks. In this paper, we firstly propose to embed in multi-domains for video steganography by combining partition modes (PMs) and motion vectors (MVs). The multi-domain embedding (MDE) aims to spread the modifications to different embedding domains for achieving higher undetectability. The key issue of MDE is the interactions of entities across domains. To this end, we design two MDE strategies, which hide data in PM domain and MV domain by sequential embedding and simultaneous embedding respectively. These two strategies can be applied to existing steganography within a distortion-minimization framework. Experiments show that the MDE strategies achieve a significant improvement in security performance against targeted steganalysis and fusion based steganalysis.
Russell, S., Abdelzaher, T., Suri, N..  2019.  Multi-Domain Effects and the Internet of Battlefield Things. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :724—730.

This paper reviews the definitions and characteristics of military effects, the Internet of Battlefield Things (IoBT), and their impact on decision processes in a Multi-Domain Operating environment (MDO). The aspects of contemporary military decision-processes are illustrated and an MDO Effect Loop decision process is introduced. We examine the concept of IoBT effects and their implications in MDO. These implications suggest that when considering the concept of MDO, as a doctrine, the technological advances of IoBTs empower enhancements in decision frameworks and increase the viability of novel operational approaches and options for military effects.

Xu, P., Miao, Q., Liu, T., Chen, X..  2015.  Multi-direction Edge Detection Operator. 2015 11th International Conference on Computational Intelligence and Security (CIS). :187—190.

Due to the noise in the images, the edges extracted from these noisy images are always discontinuous and inaccurate by traditional operators. In order to solve these problems, this paper proposes multi-direction edge detection operator to detect edges from noisy images. The new operator is designed by introducing the shear transformation into the traditional operator. On the one hand, the shear transformation can provide a more favorable treatment for directions, which can make the new operator detect edges in different directions and overcome the directional limitation in the traditional operator. On the other hand, all the single pixel edge images in different directions can be fused. In this case, the edge information can complement each other. The experimental results indicate that the new operator is superior to the traditional ones in terms of the effectiveness of edge detection and the ability of noise rejection.

Jafarian, Jafar Haadi, Niakanlahiji, Amirreza, Al-Shaer, Ehab, Duan, Qi.  2016.  Multi-dimensional Host Identity Anonymization for Defeating Skilled Attackers. Proceedings of the 2016 ACM Workshop on Moving Target Defense. :47–58.

While existing proactive-based paradigms such as address mutation are effective in slowing down reconnaissance by naive attackers, they are ineffective against skilled human attackers. In this paper, we analytically show that the goal of defeating reconnaissance by skilled human attackers is only achievable by an integration of five defensive dimensions: (1) mutating host addresses, (2) mutating host fingerprints, (3) anonymizing host fingerprints, (4) deploying high-fidelity honeypots with context-aware fingerprints, and (5) deploying context-aware content on those honeypots. Using a novel class of honeypots, referred to as proxy honeypots (high-interaction honeypots with customizable fingerprints), we propose a proactive defense model, called (HIDE), that constantly mutates addresses and fingerprints of network hosts and proxy honeypots in a manner that maximally anonymizes identity of network hosts. The objective is to make a host untraceable over time by not letting even skilled attackers reuse discovered attributes of a host in previous scanning, including its addresses and fingerprint, to identify that host again. The mutations are generated through formal definition and modeling the problem. Using a red teaming evaluation with a group of white-hat hackers, we evaluated our five-dimensional defense model and compared its effectiveness with alternative and competing scenarios. These experiments as well as our analytical evaluation show that by anonymizing all identifying attributes of a host/honeypot over time, HIDE is able to significantly complicate reconnaissance, even for highly skilled human attackers.

Azab, M..  2014.  Multidimensional Diversity Employment for Software Behavior Encryption. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-5.

Modern cyber systems and their integration with the infrastructure has a clear effect on the productivity and quality of life immensely. Their involvement in our daily life elevate the need for means to insure their resilience against attacks and failure. One major threat is the software monoculture. Latest research work demonstrated the danger of software monoculture and presented diversity to reduce the attack surface. In this paper, we propose ChameleonSoft, a multidimensional software diversity employment to, in effect, induce spatiotemporal software behavior encryption and a moving target defense. ChameleonSoft introduces a loosely coupled, online programmable software-execution foundation separating logic, state and physical resources. The elastic construction of the foundation enabled ChameleonSoft to define running software as a set of behaviorally-mutated functionally-equivalent code variants. ChameleonSoft intelligently Shuffle, at runtime, these variants while changing their physical location inducing untraceable confusion and diffusion enough to encrypt the execution behavior of the running software. ChameleonSoft is also equipped with an autonomic failure recovery mechanism for enhanced resilience. In order to test the applicability of the proposed approach, we present a prototype of the ChameleonSoft Behavior Encryption (CBE) and recovery mechanisms. Further, using analysis and simulation, we study the performance and security aspects of the proposed system. This study aims to assess the provisioned level of security by measuring the avalanche effect percentage and the induced confusion and diffusion levels to evaluate the strength of the CBE mechanism. Further, we compute the computational cost of security provisioning and enhancing system resilience.

Azab, M..  2014.  Multidimensional Diversity Employment for Software Behavior Encryption. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-5.

Modern cyber systems and their integration with the infrastructure has a clear effect on the productivity and quality of life immensely. Their involvement in our daily life elevate the need for means to insure their resilience against attacks and failure. One major threat is the software monoculture. Latest research work demonstrated the danger of software monoculture and presented diversity to reduce the attack surface. In this paper, we propose ChameleonSoft, a multidimensional software diversity employment to, in effect, induce spatiotemporal software behavior encryption and a moving target defense. ChameleonSoft introduces a loosely coupled, online programmable software-execution foundation separating logic, state and physical resources. The elastic construction of the foundation enabled ChameleonSoft to define running software as a set of behaviorally-mutated functionally-equivalent code variants. ChameleonSoft intelligently Shuffle, at runtime, these variants while changing their physical location inducing untraceable confusion and diffusion enough to encrypt the execution behavior of the running software. ChameleonSoft is also equipped with an autonomic failure recovery mechanism for enhanced resilience. In order to test the applicability of the proposed approach, we present a prototype of the ChameleonSoft Behavior Encryption (CBE) and recovery mechanisms. Further, using analysis and simulation, we study the performance and security aspects of the proposed system. This study aims to assess the provisioned level of security by measuring the avalanche effect percentage and the induced confusion and diffusion levels to evaluate the strength of the CBE mechanism. Further, we compute the computational cost of security provisioning and enhancing system resilience.

Bando, S., Nozawa, A., Matsuya, Y..  2015.  Multidimensional directed coherence analysis of keystroke dynamics and physiological responses. 2015 International Conference on Noise and Fluctuations (ICNF). :1–4.

Techno-stress has been a problem in recent years with a development of information technology. Various studies have been reported about a relationship between key typing and psychosomatic state. Keystroke dynamics are known as dynamics of a key typing motion. The objective of this paper is to clarify the mechanism between keystroke dynamics and physiological responses. Inter-stroke time (IST) that was the interval between each keystroke was measured as keystroke dynamics. The physiological responses were heart rate variability (HRV) and respiration (Resp). The system consisted of IST, HRV, and Resp was applied multidimensional directed coherence in order to reveal a causal correlation. As a result, it was observed that strength of entrainment of physiological responses having fluctuation to IST differed in surround by the noise and a cognitive load. Specifically, the entrainment became weak as a cognitive resource devoted to IST was relatively increased with the keystroke motion had a robust rhythm. On the other hand, the entrainment became stronger as a cognitive resource devoted to IST was relatively decreased since the resource also devoted to the noise or the cognitive load.

Aron Laszka, Jian Lou, Yevgeniy Vorobeychik.  2016.  Multi-Defender Strategic Filtering Against Spear-Phishing Attacks. 30th AAAI Conference on Artificial Intelligence (AAAI).

Spear-phishing attacks pose a serious threat to sensitive computer systems, since they sidestep technical security mechanisms by exploiting the carelessness of authorized users. A common way to mitigate such attacks is to use e-mail filters which block e-mails with a maliciousness score above a chosen threshold. Optimal choice of such a threshold involves a tradeoff between the risk from delivered malicious emails and the cost of blocking benign traffic. A further complicating factor is the strategic nature of an attacker, who may selectively target users offering the best value in terms of likelihood of success and resulting access privileges. Previous work on strategic threshold-selection considered a single organization choosing thresholds for all users. In reality, many organizations are potential targets of such attacks, and their incentives need not be well aligned. We therefore consider the problem of strategic threshold-selection by a collection of independent self-interested users. We characterize both Stackelberg multi-defender equilibria, corresponding to short-term strategic dynamics, as well as Nash equilibria of the simultaneous game between all users and the attacker, modeling long-term dynamics, and exhibit a polynomial-time algorithm for computing short-term (Stackelberg) equilibria. We find that while Stackelberg multi-defender equilibrium need not exist, Nash equilibrium always exists, and remarkably, both equilibria are unique and socially optimal.