Visible to the public Biblio

Found 344 results

Filters: First Letter Of Title is N  [Clear All Filters]
A B C D E F G H I J K L M [N] O P Q R S T U V W X Y Z   [Show ALL]
Xiong, Leilei, Grijalva, Santiago.  2019.  N-1 RTU Cyber-Physical Security Assessment Using State Estimation. 2019 IEEE Power Energy Society General Meeting (PESGM). :1–5.
Real-time supervisory control and data acquisition (SCADA) systems use remote terminal units (RTUs) to monitor and manage the flow of power at electrical substations. As their connectivity to different utility and private networks increases, RTUs are becoming more vulnerable to cyber-attacks. Some attacks seek to access RTUs to directly control power system devices with the intent to shed load or cause equipment damage. Other attacks (such as denial-of-service) target network availability and seek to block, delay, or corrupt communications between the RTU and the control center. In the most severe case, when communications are entirely blocked, the loss of an RTU can cause the power system to become unobservable. It is important to understand how losing an RTU impacts the system state (bus voltage magnitudes and angles). The system state is determined by the state estimator and serves as the input to other critical EMS applications. There is currently no systematic approach for assessing the cyber-physical impact of losing RTUs. This paper proposes a methodology for N-1 RTU cyber-physical security assessment that could benefit power system control and operation. We demonstrate our approach on the IEEE 14-bus system as well as on a synthetic 200-bus system.
Zhang, Zhiyi, Yu, Yingdi, Afanasyev, Alexander, Burke, Jeff, Zhang, Lixia.  2017.  NAC: Name-based Access Control in Named Data Networking. Proceedings of the 4th ACM Conference on Information-Centric Networking. :186–187.

As a proposed Internet architecture, Named Data Networking must provide effective security support: data authenticity, confidentiality, and availability. This poster focuses on supporting data confidentiality via encryption. The main challenge is to provide an easy-to-use key management mechanism that ensures only authorized parties are given the access to protected data. We describe the design of name-based access control (NAC) which provides automated key management by developing systematic naming conventions for both data and cryptographic keys. We also discuss an enhanced version of NAC that leverages attribute-based encryption mechanisms (NAC-ABE) to improve the flexibility of data access control and reduce communication, storage, and processing overheads.

Lim, H., Ni, A., Kim, D., Ko, Y. B..  2017.  Named data networking testbed for scientific data. 2017 2nd International Conference on Computer and Communication Systems (ICCCS). :65–69.

Named Data Networking (NDN) is one of the future internet architectures, which is a clean-slate approach. NDN provides intelligent data retrieval using the principles of name-based symmetrical forwarding of Interest/Data packets and innetwork caching. The continually increasing demand for rapid dissemination of large-scale scientific data is driving the use of NDN in data-intensive science experiments. In this paper, we establish an intercontinental NDN testbed. In the testbed, an NDN-based application that targets climate science as an example data intensive science application is designed and implemented, which has differentiated features compared to those of previous studies. We verify experimental justification of using NDN for climate science in the intercontinental network, through performance comparisons between classical delivery techniques and NDN-based climate data delivery.

Song, Z., Kar, P..  2020.  Name-Signature Lookup System: A Security Enhancement to Named Data Networking. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1444–1448.
Named Data Networking (NDN) is a content-centric networking, where the publisher of the packet signs and encapsulates the data packet with a name-content-signature encryption to verify the authenticity and integrity of itself. This scheme can solve many of the security issues inherently compared to IP networking. NDN also support mobility since it hides the point-to-point connection details. However, an extreme attack takes place when an NDN consumer newly connects to a network. A Man-in-the-middle (MITM) malicious node can block the consumer and keep intercepting the interest packets sent out so as to fake the corresponding data packets signed with its own private key. Without knowledge and trust to the network, the NDN consumer can by no means perceive the attack and thus exposed to severe security and privacy hazard. In this paper, the Name-Signature Lookup System (NSLS) and corresponding Name-Signature Lookup Protocol (NSLP) is introduced to verify packets with their registered genuine publisher even in an untrusted network with the help of embedded keys inside Network Interface Controller (NIC), by which attacks like MITM is eliminated. A theoretical analysis of comparing NSLS with existing security model is provided. Digest algorithm SHA-256 and signature algorithm RSA are used in the NSLP model without specific preference.
Karatas, Nihan, Yoshikawa, Soshi, Okada, Michio.  2016.  NAMIDA: Sociable Driving Agents with Multiparty Conversation. Proceedings of the Fourth International Conference on Human Agent Interaction. :35–42.

We propose a multi party conversational social interface NAMIDA through a pilot study. The system consists of three robots that can converse with each other about environment throughout the road. Through this model, the directed utterances towards the driver diminishes by utilizing turn-taking process between the agents, and the mental workload of the driver can be reduced compared to the conventional one-to-one communication based approach that directly addresses the driver. We set up an experiment to compare the both approaches to explore their effects on the workload and attention behaviors of drivers. The results indicated that the multi-party conversational approach has a better effect on reducing certain workload factors. Also, the analysis of attention behaviors of drivers revealed that our method can better promote the drivers to focus on the road.

Elliott, Sean.  2019.  Nash Equilibrium of Multiple, Non-Uniform Bitcoin Block Withholding Attackers. 2019 2nd International Conference on Data Intelligence and Security (ICDIS). :144—151.
This research analyzes a seemingly malicious behavior known as a block withholding (BWH) attack between pools of cryptocurrency miners in Bitcoin-like systems featuring blockchain distributed databases. This work updates and builds on a seminal paper, The Miner's Dilemma, which studied a simplified scenario and showed that a BWH attack can be rational behavior that is profitable for the attacker. The new research presented here provides an in-depth profit analysis of a more complex and realistic BWH attack scenario, which includes mutual attacks between multiple, non-uniform Bitcoin mining pools. As a result of mathematical analysis and MATLAB modeling, this paper illustrates the Nash equilibrium conditions of a system of independent mining pools with varied mining rates and computes the equilibrium rates of mutual BWH attack. The analysis method quantifies the additional profit the largest pools extract from the system at the expense of the smaller pools. The results indicate that while the presence of BWH is a net negative for smaller pools, they must participate in BWH to maximize their remaining profits, and the results quantify the attack rates the smaller pools must maintain. Also, the smallest pools maximize profit by not attacking at all-that is, retaliation is not a rational move for them.
Ferguson, B., Tall, A., Olsen, D..  2014.  National Cyber Range Overview. Military Communications Conference (MILCOM), 2014 IEEE. :123-128.

The National Cyber Range (NCR) is an innovative Department of Defense (DoD) resource originally established by the Defense Advanced Research Projects Agency (DARPA) and now under the purview of the Test Resource Management Center (TRMC). It provides a unique environment for cyber security testing throughout the program development life cycle using unique methods to assess resiliency to advanced cyberspace security threats. This paper describes what a cyber security range is, how it might be employed, and the advantages a program manager (PM) can gain in applying the results of range events. Creating realism in a test environment isolated from the operational environment is a special challenge in cyberspace. Representing the scale and diversity of the complex DoD communications networks at a fidelity detailed enough to realistically portray current and anticipated attack strategies (e.g., Malware, distributed denial of service attacks, cross-site scripting) is complex. The NCR addresses this challenge by representing an Internet-like environment by employing a multitude of virtual machines and physical hardware augmented with traffic emulation, port/protocol/service vulnerability scanning, and data capture tools. Coupled with a structured test methodology, the PM can efficiently and effectively engage with the Range to gain cyberspace resiliency insights. The NCR capability, when applied, allows the DoD to incorporate cyber security early to avoid high cost integration at the end of the development life cycle. This paper provides an overview of the resources of the NCR which may be especially helpful for DoD PMs to find the best approach for testing the cyberspace resiliency of their systems under development.

Robert St. Amant, David L. Roberts.  2016.  Natural Interaction for Bot Detection. IEEE Internet Computing. July/August

Bot detection - identifying a software program that's using a computer system -- is an increasingly necessary security task. Existing solutions balance proof of human identity with unobtrusiveness in users' workflows. Cognitive modeling and natural interaction might provide stronger security and less intrusiveness.

Robert St. Amant, David L. Roberts.  2016.  Natural Interaction for Bot Detection. IEEE Internet Computing. 20(4):69–73.

Bot detection - identifying a software program that's using a computer system – is an increasingly necessary security task. Existing solutions balance proof of human identity with unobtrusiveness in users' workflows. Cognitive modeling and natural interaction might provide stronger security and less intrusiveness.

Robert St. Amant, David Roberts.  2016.  Natural interaction for bot detection. IEEE Internet Computing. 20:69–73.
Buck, Joshua W., Perugini, Saverio, Nguyen, Tam V..  2018.  Natural Language, Mixed-initiative Personal Assistant Agents. Proceedings of the 12th International Conference on Ubiquitous Information Management and Communication. :82:1–82:8.
The increasing popularity and use of personal voice assistant technologies, such as Siri and Google Now, is driving and expanding progress toward the long-term and lofty goal of using artificial intelligence to build human-computer dialog systems capable of understanding natural language. While dialog-based systems such as Siri support utterances communicated through natural language, they are limited in the flexibility they afford to the user in interacting with the system and, thus, support primarily action-requesting and information-seeking tasks. Mixed-initiative interaction, on the other hand, is a flexible interaction technique where the user and the system act as equal participants in an activity, and is often exhibited in human-human conversations. In this paper, we study user support for mixed-initiative interaction with dialog-based systems through natural language using a bag-of-words model and k-nearest-neighbor classifier. We study this problem in the context of a toolkit we developed for automated, mixed-initiative dialog system construction, involving a dialog authoring notation and management engine based on lambda calculus, for specifying and implementing task-based, mixed-initiative dialogs. We use ordering at Subway through natural language, human-computer dialogs as a case study. Our results demonstrate that the dialogs authored with our toolkit support the end user's completion of a natural language, human-computer dialog in a mixed-initiative fashion. The use of natural language in the resulting mixed-initiative dialogs afford the user the ability to experience multiple self-directed paths through the dialog and makes the flexibility in communicating user utterances commensurate with that in dialog completion paths—an aspect missing from commercial assistants like Siri.
Kadebu, Prudence, Thada, Vikas, Chiurunge, Panashe.  2018.  Natural Language Processing and Deep Learning Towards Security Requirements Classification. 2018 3rd International Conference on Contemporary Computing and Informatics (IC3I). :135–140.
Security Requirements classification is an important area to the Software Engineering community in order to build software that is secure, robust and able to withstand attacks. This classification facilitates proper analysis of security requirements so that adequate security mechanisms are incorporated in the development process. Machine Learning techniques have been used in Security Requirements classification to aid in the process that lead to ensuring that correct security mechanisms are designed corresponding to the Security Requirements classifications made to eliminate the risk of security being incorporated in the late stages of development. However, these Machine Learning techniques have been found to have problems including, handcrafting of features, overfitting and failure to perform well with high dimensional data. In this paper we explore Natural Language Processing and Deep Learning to determine if this can be applied to Security Requirements classification.
Hirlekar, V. V., Kumar, A..  2020.  Natural Language Processing based Online Fake News Detection Challenges – A Detailed Review. 2020 5th International Conference on Communication and Electronics Systems (ICCES). :748–754.
Online social media plays an important role during real world events such as natural calamities, elections, social movements etc. Since the social media usage has increased, fake news has grown. The social media is often used by modifying true news or creating fake news to spread misinformation. The creation and distribution of fake news poses major threats in several respects from a national security point of view. Hence Fake news identification becomes an essential goal for enhancing the trustworthiness of the information shared on online social network. Over the period of time many researcher has used different methods, algorithms, tools and techniques to identify fake news content from online social networks. The aim of this paper is to review and examine these methodologies, different tools, browser extensions and analyze the degree of output in question. In addition, this paper discuss the general approach of fake news detection as well as taxonomy of feature extraction which plays an important role to achieve maximum accuracy with the help of different Machine Learning and Natural Language Processing algorithms.
Nambiar, Sindhya K, Leons, Antony, Jose, Soniya, Arunsree.  2019.  Natural Language Processing Based Part of Speech Tagger using Hidden Markov Model. 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :782–785.
In various natural language processing applications, PART-OF-SPEECH (POS) tagging is performed as a preprocessing step. For making POS tagging accurate, various techniques have been explored. But in Indian languages, not much work has been done. This paper describes the methods to build a Part of speech tagger by using hidden markov model. Supervised learning approach is implemented in which, already tagged sentences in malayalam is used to build hidden markov model.
[Anonymous].  Submitted.  Natural Language Processing Characterization of Recurring Calls in Public Security Services.
Extracting knowledge from unstructured data silos, a legacy of old applications, is mandatory for improving the governance of today's cities and fostering the creation of smart cities. Texts in natural language often compose such data. Nevertheless, the inference of useful information from a linguistic-computational analysis of natural language data is an open challenge. In this paper, we propose a clustering method to analyze textual data employing the unsupervised machine learning algorithms k-means and hierarchical clustering. We assess different vector representation methods for text, similarity metrics, and the number of clusters that best matches the data. We evaluate the methods using a real database of a public record service of security occurrences. The results show that the k-means algorithm using Euclidean distance extracts non-trivial knowledge, reaching up to 93% accuracy in a set of test samples while identifying the 12 most prevalent occurrence patterns.
Bhagat, V., J, B. R..  2020.  Natural Language Processing on Diverse Data Layers Through Microservice Architecture. 2020 IEEE International Conference for Innovation in Technology (INOCON). :1–6.
With the rapid growth in Natural Language Processing (NLP), all types of industries find a need for analyzing a massive amount of data. Sentiment analysis is becoming a more exciting area for the businessmen and researchers in Text mining & NLP. This process includes the calculation of various sentiments with the help of text mining. Supplementary to this, the world is connected through Information Technology and, businesses are moving toward the next step of the development to make their system more intelligent. Microservices have fulfilled the need for development platforms which help the developers to use various development tools (Languages and applications) efficiently. With the consideration of data analysis for business growth, data security becomes a major concern in front of developers. This paper gives a solution to keep the data secured by providing required access to data scientists without disturbing the base system software. This paper has discussed data storage and exchange policies of microservices through common JavaScript Object Notation (JSON) response which performs the sentiment analysis of customer's data fetched from various microservices through secured APIs.
Chai, Yadeng, Liu, Yong.  2019.  Natural Spoken Instructions Understanding for Robot with Dependency Parsing. 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). :866–871.
This paper presents a method based on syntactic information, which can be used for intent determination and slot filling tasks in a spoken language understanding system including the spoken instructions understanding module for robot. Some studies in recent years attempt to solve the problem of spoken language understanding via syntactic information. This research is a further extension of these approaches which is based on dependency parsing. In this model, the input for neural network are vectors generated by a dependency parsing tree, which we called window vector. This vector contains dependency features that improves performance of the syntactic-based model. The model has been evaluated on the benchmark ATIS task, and the results show that it outperforms many other syntactic-based approaches, especially in terms of slot filling, it has a performance level on par with some state of the art deep learning algorithms in recent years. Also, the model has been evaluated on FBM3, a dataset of the RoCKIn@Home competition. The overall rate of correctly understanding the instructions for robot is quite good but still not acceptable in practical use, which is caused by the small scale of FBM3.
Peeters, Roel, Hermans, Jens, Maene, Pieter, Grenman, Katri, Halunen, Kimmo, Häikiö, Juha.  2017.  n-Auth: Mobile Authentication Done Right. Proceedings of the 33rd Annual Computer Security Applications Conference. :1–15.
Weak security, excessive personal data collection for user profiling, and a poor user experience are just a few of the many problems that mobile authentication solutions suffer from. Despite being an interesting platform, mobile devices are still not being used to their full potential for authentication. n-Auth is a firm step in unlocking the full potential of mobile devices in authentication, by improving both security and usability whilst respecting the privacy of the user. Our focus is on the combined usage of several strong cryptographic techniques with secure HCI design principles to achieve a better user experience. We specified and built n-Auth, for which robust Android and iOS apps are openly available through the official stores.
Zhou, Xinyan, Ji, Xiaoyu, Yan, Chen, Deng, Jiangyi, Xu, Wenyuan.  2019.  NAuth: Secure Face-to-Face Device Authentication via Nonlinearity. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :2080–2088.
With the increasing prevalence of mobile devices, face-to-face device-to-device (D2D) communication has been applied to a variety of daily scenarios such as mobile payment and short distance file transfer. In D2D communications, a critical security problem is verifying the legitimacy of devices when they share no secrets in advance. Previous research addressed the problem with device authentication and pairing schemes based on user intervention or exploiting physical properties of the radio or acoustic channels. However, a remaining challenge is to secure face-to-face D2D communication even in the middle of a crowd, within which an attacker may hide. In this paper, we present Nhuth, a nonlinearity-enhanced, location-sensitive authentication mechanism for such communication. Especially, we target at the secure authentication within a limited range such as 20 cm, which is the common case for face-to-face scenarios. Nhuth contains averification scheme based on the nonlinear distortion of speaker-microphone systems and a location-based-validation model. The verification scheme guarantees device authentication consistency by extracting acoustic nonlinearity patterns (ANP) while the validation model ensures device legitimacy by measuring the time difference of arrival (TDOA) at two microphones. We analyze the security of Nhuth theoretically and evaluate its performance experimentally. Results show that Nhuth can verify the device legitimacy in the presence of nearby attackers.
Pelissero, N., Laso, P. M., Puentes, J..  2020.  Naval cyber-physical anomaly propagation analysis based on a quality assessed graph. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–8.
As any other infrastructure relying on cyber-physical systems (CPS), naval CPS are highly interconnected and collect considerable data streams, on which depend multiple command and navigation decisions. Being a data-driven decision system requiring optimized supervisory control on a permanent basis, it is critical to examine the CPS vulnerability to anomalies and their propagation. This paper presents an approach to detect CPS anomalies and estimate their propagation applying a quality assessed graph, which represents the CPS physical and digital subsystems, combined with system variables dependencies and a set of data and information quality measures vectors. Following the identification of variables dependencies and high-risk nodes in the CPS, data and information quality measures reveal how system variables are modified when an anomaly is detected, also indicating its propagation path. Taking as reference the normal state of a naval propulsion management system, four anomalies in the form of cyber-attacks - port scan, programmable logical controller stop, and man in the middle to change the motor speed and operation of a tank valve - were produced. Three anomalies were properly detected and their propagation path identified. These results suggest the feasibility of anomaly detection and estimation of propagation estimation in CPS, applying data and information quality analysis to a system graph.
Chu, Jacqueline, Bryan, Chris, Shih, Min, Ferrer, Leonardo, Ma, Kwan-Liu.  2017.  Navigable Videos for Presenting Scientific Data on Affordable Head-Mounted Displays. Proceedings of the 8th ACM on Multimedia Systems Conference. :250–260.
Immersive, stereoscopic visualization enables scientists to better analyze structural and physical phenomena compared to traditional display mediums. Unfortunately, current head-mounted displays (HMDs) with the high rendering quality necessary for these complex datasets are prohibitively expensive, especially in educational settings where their high cost makes it impractical to buy several devices. To address this problem, we develop two tools: (1) An authoring tool allows domain scientists to generate a set of connected, 360° video paths for traversing between dimensional keyframes in the dataset. (2) A corresponding navigational interface is a video selection and playback tool that can be paired with a low-cost HMD to enable an interactive, non-linear, storytelling experience. We demonstrate the authoring tool's utility by conducting several case studies and assess the navigational interface with a usability study. Results show the potential of our approach in effectively expanding the accessibility of high-quality, immersive visualization to a wider audience using affordable HMDs.
Spooner, D., Silowash, G., Costa, D., Albrethsen, M..  2018.  Navigating the Insider Threat Tool Landscape: Low Cost Technical Solutions to Jump Start an Insider Threat Program. 2018 IEEE Security and Privacy Workshops (SPW). :247—257.
This paper explores low cost technical solutions that can help organizations prevent, detect, and respond to insider incidents. Features and functionality associated with insider risk mitigation are presented. A taxonomy for high-level categories of insider threat tools is presented. A discussion of the relationship between the types of tools points out the nuances of insider threat control deployment, and considerations for selecting, implementing, and operating insider threat tools are provided.
Wang, Xiao-yu, Li, Cong-cong, Wu, Hao-dong, Zhang, De, Zhang, Xiao-dong, Gong, Xun.  2019.  NDE Application of Air-Coupled Transducer for Surface Crack Detection. 2019 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). :1–4.
According to the technical difficulties of the air-coupled piezoelectric ultrasonic transducer, 1-3 type piezoelectric composites and double matching layers structure are adopted in order to solve the acoustic impedance mismatch at the interface between the piezoelectric materials and air. The optimal design of the matching layer thickness for double matching layers structure air-coupled ultrasonic transducer is also completed through experiments. Based on this, 440 kHz flat-plate and focused air-coupled piezoelectric ultrasonic transducer are designed, fabricated and characterized. Finally, surface cracks are detected using the focused air-coupled piezoelectric ultrasonic transducer.
Afanasyev, A., Ramani, S. K..  2020.  NDNconf: Network Management Framework for Named Data Networking. 2020 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
The rapid growth of the Internet is, in part, powered by the broad participation of numerous vendors building network components. All these network devices require that they be properly configured and maintained, which creates a challenge for system administrators of complex networks with a growing variety of heterogeneous devices. This challenge is true for today's networks, as well as for the networking architectures of the future, such as Named Data Networking (NDN). This paper gives a preliminary design of an NDNconf framework, an adaptation of a recently developed NETCONF protocol, to realize unified configuration and management for NDN. The presented design is built leveraging the benefits provided by NDN, including the structured naming shared among network and application layers, stateful data retrieval with name-based interest forwarding, in-network caching, data-centric security model, and others. Specifically, the configuration data models, the heart of NDNconf, the elements of the models and models themselves are represented as secured NDN data, allowing fetching models, fetching configuration data that correspond to elements of the model, and issuing commands using the standard Interest-Data exchanges. On top of that, the security of models, data, and commands are realized through native data-centric NDN mechanisms, providing highly secure systems with high granularity of control.
Zhang, Zhiyi, Lu, Edward, Li, Yanbiao, Zhang, Lixia, Yu, Tianyuan, Pesavento, Davide, Shi, Junxiao, Benmohamed, Lotfi.  2018.  NDNoT: A Framework for Named Data Network of Things. Proceedings of the 5th ACM Conference on Information-Centric Networking. :200–201.
The Named Data Networking (NDN) architecture provides simple solutions to the communication needs of Internet of Things (IoT) in terms of ease-of-use, security, and content delivery. To utilize the desirable properties of NDN architecture in IoT scenarios, we are working to provide an integrated framework, dubbed NDNoT, to support IoT over NDN. NDNoT provides solutions to auto configuration, service discovery, data-centric security, content delivery, and other needs of IoT application developers. Utilizing NDN naming conventions, NDNoT aims to create an open environment where IoT applications and different services can easily cooperate and work together. This poster introduces the basic components of our framework and explains how these components function together.